Learn the differences between an event-driven streaming platform and middleware like MQ, ETL and ESBs – including best practices and anti-patterns, but also how these concepts and tools complement each other in an enterprise architecture. Extract-Transform-Load (ETL) is still a widely-used pattern to move data between different systems via batch processing. Due to its challenges in today’s world where real time is the new standard, an Enterprise Service Bus (ESB) is used in many enterprises as integration backbone between any kind of microservice, legacy application or cloud service to move data via SOAP / REST Web Services or other technologies. Stream Processing is often added as its own component in the enterprise architecture for correlation of different events to implement contextual rules and stateful analytics. Using all these components introduces challenges and complexities in development and operations. This session discusses how teams in different industries solve these challenges by building a native streaming platform from the ground up instead of using ETL and ESB tools in their architecture. This allows to build and deploy independent, mission-critical streaming real time application and microservices. The architecture leverages distributed processing and fault-tolerance with fast failover, no-downtime rolling deployments and the ability to reprocess events, so you can recalculate output when your code changes. Integration and Stream Processing are still key functionality but can be realized in real time natively instead of using additional ETL, ESB or Stream Processing tools.