SlideShare a Scribd company logo
lessons learned
Solr
@jeroenrosenberg
Frontend of
Lucene
Lucene
xml/json api + field types + caching + faceting + grouping
+
Indexing
Indexing
Lucene's inverted index
Efficient when many docs
share the same value
Field types
<field name="id" type="string" indexed="true" stored="true" required="
true" multiValued="false"/>
<field name="name" type="string" indexed="false" stored="true"
required="true" multiValued="false"/>
Field type definition
<field name="id" type="string" indexed="true" stored="true" required="
true" multiValued="false"/>
<field name="name" type="string" indexed="false" stored="true"
required="true" multiValued="false"/>
Field type definition
...
<fieldtype name="pdate" class="solr.DateField" sortMissingLast="true"/>
...
<field name="date" type="pdate" indexed="false" stored="true"/>
<field name="range_date" type="pdate" indexed="true" stored="false"/>
<copyField source="date" dest="range_date"/>
Field type definition
...
<fieldtype name="pdate" class="solr.DateField" sortMissingLast="true"/>
...
<field name="date" type="pdate" indexed="false" stored="true"/>
<field name="range_date" type="pdate" indexed="true" stored="false"/>
<copyField source="date" dest="range_date"/>
Field type definition
<dynamicField name="*_s" type="string" indexed="true" stored="true"/>
Schemaless
Segments
Tune the merge factor
Max. # of segments
Faster search, but slower indexing
Faster indexing, but slower search
Don't commit. Ever.
Don't commit often.
Sharding
Manual
distribution
foo foo foo
core1 core2 core3
Index distributor
replication
Look Ma,
no downtime!
q=name:hotel1&
shards=solr2:7070/solr/foo,solr3:
7070/solr/foo&
partialResults=true
Distributed search
<requestHandler name="distributedSearch" class="solr.SearchHandler"
default="false">
<lst name="defaults">
<int name="rows">10</int>
<str name="fl">*</str>
<bool name="partialResults">true</bool>
<str name="shards">solr2:7070/solr/foo,solr3:7070/solr/foo</str>
</lst>
</requestHandler>
Distributed search config
<requestHandler name="distributedSearch" class="solr.SearchHandler"
default="false">
<lst name="defaults">
<int name="rows">10</int>
<str name="fl">*</str>
<bool name="partialResults">true</bool>
<str name="shards">solr2:7070/solr/foo,solr3:7070/solr/foo</str>
</lst>
</requestHandler>
Distributed search config
<requestHandler name="distributedSearch" class="solr.SearchHandler" default
false">
<lst name="defaults">
<int name="rows">10</int>
<str name="fl">*</str>
<bool name="partialResults">true</bool>
<str name="shards">solr2:7070/solr/foo,solr3:7070/solr/foo</str>
</lst>
</requestHandler>
Distributed search config
q=name:hotel1&qt=distributedSearch
Distributed search
Caching
Field value
Filter
Document
Query result
Document
Field value
Query result
FilterDoc ids of results per filter query
Query result
Document
Filter
Field value
Field names (facets)
mapped to mapping of
doc ids to terms
Field value
Filter
Document
Query result
Ordered set of doc ids of top N
results
Field value
Filter
Query result
Document
Stored fields for each doc
Autowarming
Apache Solr lessons learned
q=*:*&fq=country:AN&fq=duration:[1 TO *]&
fq=date:[NOW TO 2013-07-01T00:00:00Z]
Filter queries...
q=*:*&fq=country:AN&fq=duration:[1 TO *]&
fq=date:[NOW TO 2013-07-01T00:00:00Z]
Match all documents
q=*:*
q=*:*&fq=country:AN&fq=duration:[1 TO *]&
fq=date:[NOW TO 2013-07-01T00:00:00Z]
Filter by field value
fq=country:AN
q=*:*&fq=country:AN&fq=duration:[1 TO *]&
fq=date:[NOW TO 2013-07-01T00:00:00Z]
Range query with wildcard
fq=duration:[1 TO *]
range query using DateMath syntax
fq=date:[NOW TO 2013-07-01T00:00:00Z]
q=*:*&rows=10000000
Getting all results
Faceting
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
A facet query...
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
Enable faceting
facet=true
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
rows=0
Suppress document results
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
facet.field=departureairport
Specify a field name
...and another one
facet.field=touroperator
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
Unlimited field values (globally)
facet.limit=-1
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
Unlimited field values (globally)
facet.limit=-1
Basically, always a good idea
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
Override global limit for specific field names
f.touroperator.facet.limit=2
rows=0&facet=true&facet.field=departureairport&
facet.field=touroperator&facet.limit=-1&
facet.mincount=1&f.touroperator.facet.limit=2
At least 1 document per field value
facet.mincount=1
q=*:*&fq={!tag=country}country:AN&facet=true&
facet.field={!ex=country}country&facet.limit=-1&
facet.mincount=1
Multi-select faceting...
q=*:*&fq={!tag=country}country:AN&facet=true&
facet.field={!ex=country}country&facet.limit=-1&
facet.mincount=1
fq={!tag=country}country:AN
Tag a filter query...
...and exclude it for a field value
facet.field={!ex=country}country
FACET
ALL THE THINGS!
FACET
ALL THE THINGS!
Grouping
group=true&group.field=accoid&
group.sort=price asc&sort=popularity asc&
group.facets=UNGROUPED
A grouping query...
group=true&group.field=accoid&
group.sort=price asc&sort=popularity asc&
group.facets=UNGROUPED
Enable grouping
group=true
group=true&group.field=accoid&
group.sort=price asc&sort=popularity asc&
group.facets=UNGROUPED
Specify the field name
group.field=accoid
group=true&group.field=accoid&
group.sort=price asc&sort=popularity asc&
group.facets=UNGROUPED
Determines group head
group.sort=price asc
Determine order of document results
sort=popularity asc
group=true&group.field=accoid&
group.sort=price asc&sort=popularity asc&
group.facets=UNGROUPED
Determines group head
group.sort=price asc
Determine order of document results
sort=popularity asc
Only group heads are returned!
ONE DOES NOT
SIMPLY
EXPLAIN SOLR QUERIES
ONE DOES NOT
SIMPLY
EXPLAIN SOLR QUERIES
debugQuery=true
Solr 4.3 is
cominghttp://docs.lucidworks.com/display/solr/Major+Changes+from+Solr+3+to+Solr+4
Queries?
Ad

More Related Content

What's hot (20)

Introduction to MongoDB at IGDTUW
Introduction to MongoDB at IGDTUWIntroduction to MongoDB at IGDTUW
Introduction to MongoDB at IGDTUW
Ankur Raina
 
An Itroduction to the QUIS Language
An Itroduction to the QUIS LanguageAn Itroduction to the QUIS Language
An Itroduction to the QUIS Language
javadch
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
antoinegirbal
 
Indexing with MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
MongoDB
 
Querying Nested JSON Data Using N1QL and Couchbase
Querying Nested JSON Data Using N1QL and CouchbaseQuerying Nested JSON Data Using N1QL and Couchbase
Querying Nested JSON Data Using N1QL and Couchbase
Brant Burnett
 
Indexing In MongoDB
Indexing In MongoDBIndexing In MongoDB
Indexing In MongoDB
Kishor Parkhe
 
XML and Web Services
XML and Web ServicesXML and Web Services
XML and Web Services
Henry Osborne
 
2011 Mongo FR - Indexing in MongoDB
2011 Mongo FR - Indexing in MongoDB2011 Mongo FR - Indexing in MongoDB
2011 Mongo FR - Indexing in MongoDB
antoinegirbal
 
Avro, la puissance du binaire, la souplesse du JSON
Avro, la puissance du binaire, la souplesse du JSONAvro, la puissance du binaire, la souplesse du JSON
Avro, la puissance du binaire, la souplesse du JSON
Alexandre Victoor
 
Json
JsonJson
Json
Prabhat gangwar
 
A Higher-Order Data Flow Model for Heterogeneous Big Data
A Higher-Order Data Flow Model for Heterogeneous Big DataA Higher-Order Data Flow Model for Heterogeneous Big Data
A Higher-Order Data Flow Model for Heterogeneous Big Data
Simon Price
 
Single page application 05
Single page application   05Single page application   05
Single page application 05
Ismaeel Enjreny
 
Apache Spark - Aram Mkrtchyan
Apache Spark - Aram MkrtchyanApache Spark - Aram Mkrtchyan
Apache Spark - Aram Mkrtchyan
Hovhannes Kuloghlyan
 
Video upload process_code
Video upload process_codeVideo upload process_code
Video upload process_code
R21docs
 
Reading Data into R
Reading Data into RReading Data into R
Reading Data into R
Kazuki Yoshida
 
MongoDb and NoSQL
MongoDb and NoSQLMongoDb and NoSQL
MongoDb and NoSQL
TO THE NEW | Technology
 
RedisConf17 - Redis as a JSON document store
RedisConf17 - Redis as a JSON document storeRedisConf17 - Redis as a JSON document store
RedisConf17 - Redis as a JSON document store
Redis Labs
 
Odoo Technical Concepts Summary
Odoo Technical Concepts SummaryOdoo Technical Concepts Summary
Odoo Technical Concepts Summary
Mohamed Magdy
 
Bcp
BcpBcp
Bcp
LearningTech
 
MongoDB
MongoDB MongoDB
MongoDB
Hemant Kumar Tiwary
 
Introduction to MongoDB at IGDTUW
Introduction to MongoDB at IGDTUWIntroduction to MongoDB at IGDTUW
Introduction to MongoDB at IGDTUW
Ankur Raina
 
An Itroduction to the QUIS Language
An Itroduction to the QUIS LanguageAn Itroduction to the QUIS Language
An Itroduction to the QUIS Language
javadch
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
antoinegirbal
 
Indexing with MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
MongoDB
 
Querying Nested JSON Data Using N1QL and Couchbase
Querying Nested JSON Data Using N1QL and CouchbaseQuerying Nested JSON Data Using N1QL and Couchbase
Querying Nested JSON Data Using N1QL and Couchbase
Brant Burnett
 
XML and Web Services
XML and Web ServicesXML and Web Services
XML and Web Services
Henry Osborne
 
2011 Mongo FR - Indexing in MongoDB
2011 Mongo FR - Indexing in MongoDB2011 Mongo FR - Indexing in MongoDB
2011 Mongo FR - Indexing in MongoDB
antoinegirbal
 
Avro, la puissance du binaire, la souplesse du JSON
Avro, la puissance du binaire, la souplesse du JSONAvro, la puissance du binaire, la souplesse du JSON
Avro, la puissance du binaire, la souplesse du JSON
Alexandre Victoor
 
A Higher-Order Data Flow Model for Heterogeneous Big Data
A Higher-Order Data Flow Model for Heterogeneous Big DataA Higher-Order Data Flow Model for Heterogeneous Big Data
A Higher-Order Data Flow Model for Heterogeneous Big Data
Simon Price
 
Single page application 05
Single page application   05Single page application   05
Single page application 05
Ismaeel Enjreny
 
Video upload process_code
Video upload process_codeVideo upload process_code
Video upload process_code
R21docs
 
RedisConf17 - Redis as a JSON document store
RedisConf17 - Redis as a JSON document storeRedisConf17 - Redis as a JSON document store
RedisConf17 - Redis as a JSON document store
Redis Labs
 
Odoo Technical Concepts Summary
Odoo Technical Concepts SummaryOdoo Technical Concepts Summary
Odoo Technical Concepts Summary
Mohamed Magdy
 

Viewers also liked (9)

Websocket on Rails
Websocket on RailsWebsocket on Rails
Websocket on Rails
Jeroen Rosenberg
 
Produce Cleaner Code with Aspect-Oriented Programming
Produce Cleaner Code with Aspect-Oriented ProgrammingProduce Cleaner Code with Aspect-Oriented Programming
Produce Cleaner Code with Aspect-Oriented Programming
PostSharp Technologies
 
Spring aop concepts
Spring aop conceptsSpring aop concepts
Spring aop concepts
RushiBShah
 
Aspect-Oriented Programming for PHP
Aspect-Oriented Programming for PHPAspect-Oriented Programming for PHP
Aspect-Oriented Programming for PHP
William Candillon
 
Spring AOP
Spring AOPSpring AOP
Spring AOP
Jeroen Rosenberg
 
Introduction to Aspect Oriented Programming
Introduction to Aspect Oriented ProgrammingIntroduction to Aspect Oriented Programming
Introduction to Aspect Oriented Programming
Yan Cui
 
Aspect Oriented Software Development
Aspect Oriented Software DevelopmentAspect Oriented Software Development
Aspect Oriented Software Development
Jignesh Patel
 
Aspect Oriented Programming
Aspect Oriented ProgrammingAspect Oriented Programming
Aspect Oriented Programming
Anumod Kumar
 
Spring AOP
Spring AOPSpring AOP
Spring AOP
SHAKIL AKHTAR
 
Produce Cleaner Code with Aspect-Oriented Programming
Produce Cleaner Code with Aspect-Oriented ProgrammingProduce Cleaner Code with Aspect-Oriented Programming
Produce Cleaner Code with Aspect-Oriented Programming
PostSharp Technologies
 
Spring aop concepts
Spring aop conceptsSpring aop concepts
Spring aop concepts
RushiBShah
 
Aspect-Oriented Programming for PHP
Aspect-Oriented Programming for PHPAspect-Oriented Programming for PHP
Aspect-Oriented Programming for PHP
William Candillon
 
Introduction to Aspect Oriented Programming
Introduction to Aspect Oriented ProgrammingIntroduction to Aspect Oriented Programming
Introduction to Aspect Oriented Programming
Yan Cui
 
Aspect Oriented Software Development
Aspect Oriented Software DevelopmentAspect Oriented Software Development
Aspect Oriented Software Development
Jignesh Patel
 
Aspect Oriented Programming
Aspect Oriented ProgrammingAspect Oriented Programming
Aspect Oriented Programming
Anumod Kumar
 
Ad

Similar to Apache Solr lessons learned (20)

Json
JsonJson
Json
Raphael Wanjiku
 
Apache Solr Search Mastery
Apache Solr Search MasteryApache Solr Search Mastery
Apache Solr Search Mastery
Acquia
 
Elasticsearch and Symfony Integration - Debarko De
Elasticsearch and Symfony Integration - Debarko DeElasticsearch and Symfony Integration - Debarko De
Elasticsearch and Symfony Integration - Debarko De
Debarko De
 
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
SPTechCon
 
Schema design short
Schema design shortSchema design short
Schema design short
MongoDB
 
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
NoSQLmatters
 
Javascript2839
Javascript2839Javascript2839
Javascript2839
Ramamohan Chokkam
 
Json
JsonJson
Json
elliando dias
 
Introducing DataWave
Introducing DataWaveIntroducing DataWave
Introducing DataWave
Data Works MD
 
Peggy elasticsearch應用
Peggy elasticsearch應用Peggy elasticsearch應用
Peggy elasticsearch應用
LearningTech
 
Json the-x-in-ajax1588
Json the-x-in-ajax1588Json the-x-in-ajax1588
Json the-x-in-ajax1588
Ramamohan Chokkam
 
Schema Design with MongoDB
Schema Design with MongoDBSchema Design with MongoDB
Schema Design with MongoDB
rogerbodamer
 
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
Donghyeok Kang
 
Drupal Field API. Practical usage
Drupal Field API. Practical usageDrupal Field API. Practical usage
Drupal Field API. Practical usage
Pavel Makhrinsky
 
Data Access Options in SharePoint 2010
Data Access Options in SharePoint 2010Data Access Options in SharePoint 2010
Data Access Options in SharePoint 2010
Rob Windsor
 
XSPARQL CrEDIBLE workshop
XSPARQL CrEDIBLE workshopXSPARQL CrEDIBLE workshop
XSPARQL CrEDIBLE workshop
nunoalexandrelopes
 
Mongo DB Presentation
Mongo DB PresentationMongo DB Presentation
Mongo DB Presentation
Jaya Naresh Kovela
 
Broadleaf Presents Thymeleaf
Broadleaf Presents ThymeleafBroadleaf Presents Thymeleaf
Broadleaf Presents Thymeleaf
Broadleaf Commerce
 
Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling
rogerbodamer
 
Perl6 Regexen: Reduce the line noise in your code.
Perl6 Regexen: Reduce the line noise in your code.Perl6 Regexen: Reduce the line noise in your code.
Perl6 Regexen: Reduce the line noise in your code.
Workhorse Computing
 
Apache Solr Search Mastery
Apache Solr Search MasteryApache Solr Search Mastery
Apache Solr Search Mastery
Acquia
 
Elasticsearch and Symfony Integration - Debarko De
Elasticsearch and Symfony Integration - Debarko DeElasticsearch and Symfony Integration - Debarko De
Elasticsearch and Symfony Integration - Debarko De
Debarko De
 
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
Tutorial, Part 3: SharePoint 101: Jump-Starting the Developer by Rob Windsor ...
SPTechCon
 
Schema design short
Schema design shortSchema design short
Schema design short
MongoDB
 
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
Eric Redmond – Distributed Search on Riak 2.0 - NoSQL matters Barcelona 2014
NoSQLmatters
 
Introducing DataWave
Introducing DataWaveIntroducing DataWave
Introducing DataWave
Data Works MD
 
Peggy elasticsearch應用
Peggy elasticsearch應用Peggy elasticsearch應用
Peggy elasticsearch應用
LearningTech
 
Schema Design with MongoDB
Schema Design with MongoDBSchema Design with MongoDB
Schema Design with MongoDB
rogerbodamer
 
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
[제1회 루씬 한글분석기 기술세미나] solr로 나만의 검색엔진을 만들어보자
Donghyeok Kang
 
Drupal Field API. Practical usage
Drupal Field API. Practical usageDrupal Field API. Practical usage
Drupal Field API. Practical usage
Pavel Makhrinsky
 
Data Access Options in SharePoint 2010
Data Access Options in SharePoint 2010Data Access Options in SharePoint 2010
Data Access Options in SharePoint 2010
Rob Windsor
 
Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling
rogerbodamer
 
Perl6 Regexen: Reduce the line noise in your code.
Perl6 Regexen: Reduce the line noise in your code.Perl6 Regexen: Reduce the line noise in your code.
Perl6 Regexen: Reduce the line noise in your code.
Workhorse Computing
 
Ad

More from Jeroen Rosenberg (6)

Cooking your Ravioli "al dente" with Hexagonal Architecture
Cooking your Ravioli "al dente" with Hexagonal ArchitectureCooking your Ravioli "al dente" with Hexagonal Architecture
Cooking your Ravioli "al dente" with Hexagonal Architecture
Jeroen Rosenberg
 
CoffeeScript
CoffeeScriptCoffeeScript
CoffeeScript
Jeroen Rosenberg
 
Provisioning with Vagrant & Puppet
Provisioning with Vagrant & PuppetProvisioning with Vagrant & Puppet
Provisioning with Vagrant & Puppet
Jeroen Rosenberg
 
Dynamic System Configuration using SOA
Dynamic System Configuration using SOADynamic System Configuration using SOA
Dynamic System Configuration using SOA
Jeroen Rosenberg
 
Dynamic Lighting with OpenGL
Dynamic Lighting with OpenGLDynamic Lighting with OpenGL
Dynamic Lighting with OpenGL
Jeroen Rosenberg
 
Git the fast version control system
Git the fast version control systemGit the fast version control system
Git the fast version control system
Jeroen Rosenberg
 
Cooking your Ravioli "al dente" with Hexagonal Architecture
Cooking your Ravioli "al dente" with Hexagonal ArchitectureCooking your Ravioli "al dente" with Hexagonal Architecture
Cooking your Ravioli "al dente" with Hexagonal Architecture
Jeroen Rosenberg
 
Provisioning with Vagrant & Puppet
Provisioning with Vagrant & PuppetProvisioning with Vagrant & Puppet
Provisioning with Vagrant & Puppet
Jeroen Rosenberg
 
Dynamic System Configuration using SOA
Dynamic System Configuration using SOADynamic System Configuration using SOA
Dynamic System Configuration using SOA
Jeroen Rosenberg
 
Dynamic Lighting with OpenGL
Dynamic Lighting with OpenGLDynamic Lighting with OpenGL
Dynamic Lighting with OpenGL
Jeroen Rosenberg
 
Git the fast version control system
Git the fast version control systemGit the fast version control system
Git the fast version control system
Jeroen Rosenberg
 

Recently uploaded (20)

Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 

Apache Solr lessons learned