In this second part, we'll continue the Spark's review and introducing SparkSQL which allows to use data frames in Python, Java, and Scala; read and write data in a variety of structured formats; and query Big Data with SQL.
The document discusses different types of databases including relational, column-oriented, document-oriented, and graph databases. It explains key concepts such as ACID vs BASE, CAP theorem, isolation levels, indexes, sharding, and provides descriptions and comparisons of each database type.
This document provides an overview comparison of SAS and Spark for analytics. SAS is a commercial software while Spark is an open source framework. SAS uses datasets that reside in memory while Spark uses resilient distributed datasets (RDDs) that can scale across clusters. Both support SQL queries but Spark SQL allows querying distributed data lazily. Spark also provides machine learning APIs through MLlib that can perform tasks like classification, clustering, and recommendation at scale.
Created at the University of Berkeley in California, Apache Spark combines a distributed computing system through computer clusters with a simple and elegant way of writing programs. Spark is considered the first open source software that makes distribution programming really accessible to data scientists. Here you can find an introduction and basic concepts.
What is Distributed Computing, Why we use Apache SparkAndy Petrella
In this talk we introduce the notion of distributed computing then we tackle the Spark advantages.
The Spark core content is very tiny because the whole explanation has been done live using a Spark Notebook (https://github.com/andypetrella/spark-notebook/blob/geek/conf/notebooks/Geek.snb).
This talk has been given together by @xtordoir and myself at the University of Liège, Belgium.
Spark's distributed programming model uses resilient distributed datasets (RDDs) and a directed acyclic graph (DAG) approach. RDDs support transformations like map, filter, and actions like collect. Transformations are lazy and form the DAG, while actions execute the DAG. RDDs support caching, partitioning, and sharing state through broadcasts and accumulators. The programming model aims to optimize the DAG through operations like predicate pushdown and partition coalescing.
What is Mesos? How does it works? In the following slides we make an interesting review of this open-source software project to manage computer clusters.
This document provides an overview of Apache Spark, including how it compares to Hadoop, the Spark ecosystem, Resilient Distributed Datasets (RDDs), transformations and actions on RDDs, the directed acyclic graph (DAG) scheduler, Spark Streaming, and the DataFrames API. Key points covered include Spark's faster performance versus Hadoop through its use of memory instead of disk, the RDD abstraction for distributed collections, common RDD operations, and Spark's capabilities for real-time streaming data processing and SQL queries on structured data.
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)Spark Summit
This document summarizes the key findings from a study analyzing the performance bottlenecks in Spark data analytics frameworks. The study used three different workloads run on Spark and found that: network optimizations provided at most a 2% reduction in job completion time; CPU was often the main bottleneck rather than disk or network I/O; optimizing disk performance reduced completion time by less than 19%; and many straggler causes could be identified and addressed to improve performance. The document discusses the methodology used to measure bottlenecks and blocked times, limitations of the study, and reasons why the results differed from assumptions in prior works.
Apache Spark in Depth: Core Concepts, Architecture & InternalsAnton Kirillov
Slides cover Spark core concepts of Apache Spark such as RDD, DAG, execution workflow, forming stages of tasks and shuffle implementation and also describes architecture and main components of Spark Driver. The workshop part covers Spark execution modes , provides link to github repo which contains Spark Applications examples and dockerized Hadoop environment to experiment with
This document discusses scaling machine learning using Apache Spark. It covers several key topics:
1) Parallelizing machine learning algorithms and neural networks to distribute computation across clusters. This includes data, model, and parameter server parallelism.
2) Apache Spark's Resilient Distributed Datasets (RDDs) programming model which allows distributing data and computation across a cluster in a fault-tolerant manner.
3) Examples of very large neural networks trained on clusters, such as a Google face detection model using 1,000 servers and a IBM brain-inspired chip model using 262,144 CPUs.
This document provides a history and market overview of Apache Spark. It discusses the motivation for distributed data processing due to increasing data volumes, velocities and varieties. It then covers brief histories of Google File System, MapReduce, BigTable, and other technologies. Hadoop and MapReduce are explained. Apache Spark is introduced as a faster alternative to MapReduce that keeps data in memory. Competitors like Flink, Tez and Storm are also mentioned.
This document provides an overview of installing and deploying Apache Spark, including:
1. Spark can be installed via prebuilt packages or by building from source.
2. Spark runs in local, standalone, YARN, or Mesos cluster modes and the SparkContext is used to connect to the cluster.
3. Jobs are deployed to the cluster using the spark-submit script which handles building jars and dependencies.
This document discusses alternatives to Hadoop for big data analytics. It introduces the Berkeley data analytics stack, including Spark, and compares the performance of iterative machine learning algorithms between Spark and Hadoop. It also discusses using Twitter's Storm for real-time analytics and compares the performance of Mahout and R/ML over Storm. The document provides examples of using Spark for logistic regression and k-means clustering and discusses how companies like Ooyala and Conviva have benefited from using Spark.
Unsupervised learning refers to a branch of algorithms that try to find structure in unlabeled data. Clustering algorithms, for example, try to partition elements of a dataset into related groups. Dimensionality reduction algorithms search for a simpler representation of a dataset. Spark's MLLib module contains implementations of several unsupervised learning algorithms that scale to huge datasets. In this talk, we'll dive into uses and implementations of Spark's K-means clustering and Singular Value Decomposition (SVD).
Bio:
Sandy Ryza is an engineer on the data science team at Cloudera. He is a committer on Apache Hadoop and recently led Cloudera's Apache Spark development.
This document provides an overview of Apache Spark, including:
- The problems of big data that Spark addresses like large volumes of data from various sources.
- A comparison of Spark to existing techniques like Hadoop, noting Spark allows for better developer productivity and performance.
- An overview of the Spark ecosystem and how Spark can integrate with an existing enterprise.
- Details about Spark's programming model including its RDD abstraction and use of transformations and actions.
- A discussion of Spark's execution model involving stages and tasks.
Spark Based Distributed Deep Learning Framework For Big Data Applications Humoyun Ahmedov
Deep Learning architectures, such as deep neural networks, are currently the hottest emerging areas of data science, especially in Big Data. Deep Learning could be effectively exploited to address some major issues of Big Data, such as fast information retrieval, data classification, semantic indexing and so on. In this work, we designed and implemented a framework to train deep neural networks using Spark, fast and general data flow engine for large scale data processing, which can utilize cluster computing to train large scale deep networks. Training Deep Learning models requires extensive data and computation. Our proposed framework can accelerate the training time by distributing the model replicas, via stochastic gradient descent, among cluster nodes for data resided on HDFS.
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveSachin Aggarwal
We will give a detailed introduction to Apache Spark and why and how Spark can change the analytics world. Apache Spark's memory abstraction is RDD (Resilient Distributed DataSet). One of the key reason why Apache Spark is so different is because of the introduction of RDD. You cannot do anything in Apache Spark without knowing about RDDs. We will give a high level introduction to RDD and in the second half we will have a deep dive into RDDs.
Powering a Graph Data System with Scylla + JanusGraphScyllaDB
Key Value and Column Stores are not the only two data models Scylla is capable of. In this presentation learn the What, Why and How of building and deploying a graph data system in the cloud, backed by the power of Scylla.
This document introduces Apache Spark, an open-source cluster computing system that provides fast, general execution engines for large-scale data processing. It summarizes key Spark concepts including resilient distributed datasets (RDDs) that let users spread data across a cluster, transformations that operate on RDDs, and actions that return values to the driver program. Examples demonstrate how to load data from files, filter and transform it using RDDs, and run Spark programs on a local or cluster environment.
This presentation show the main Spark characteristics, like RDD, Transformations and Actions.
I used this presentation for many Spark Intro workshops from Cluj-Napoca Big Data community : http://www.meetup.com/Big-Data-Data-Science-Meetup-Cluj-Napoca/
Spark is a general engine for large-scale data processing. It introduces Resilient Distributed Datasets (RDDs) which allow in-memory caching for fault tolerance and act like familiar Scala collections for distributed computation across clusters. RDDs provide a programming model with transformations like map and reduce and actions to compute results. Spark also supports streaming, SQL, machine learning, and graph processing workloads.
End-to-end Data Pipeline with Apache SparkDatabricks
This document discusses Apache Spark, a fast and general cluster computing system. It summarizes Spark's capabilities for machine learning workflows, including feature preparation, model training, evaluation, and production use. It also outlines new high-level APIs for data science in Spark, including DataFrames, machine learning pipelines, and an R interface, with the goal of making Spark more similar to single-machine libraries like SciKit-Learn. These new APIs are designed to make Spark easier to use for machine learning and interactive data analysis.
AWS Big Data Demystified #2 | Athena, Spectrum, Emr, Hive Omid Vahdaty
This document provides an overview of various AWS big data services including Athena, Redshift Spectrum, EMR, and Hive. It discusses how Athena allows users to run SQL queries directly on data stored in S3 using Presto. Redshift Spectrum enables querying data in S3 using standard SQL from Amazon Redshift. EMR is a managed Hadoop framework that can run Hive, Spark, and other big data applications. Hive provides a SQL-like interface to query data stored in various formats like Parquet and ORC on distributed storage systems. The document demonstrates features and provides best practices for working with these AWS big data services.
Video: https://www.youtube.com/watch?v=kkOG_aJ9KjQ
This talk gives details about Spark internals and an explanation of the runtime behavior of a Spark application. It explains how high level user programs are compiled into physical execution plans in Spark. It then reviews common performance bottlenecks encountered by Spark users, along with tips for diagnosing performance problems in a production application.
Apache Spark presentation at HasGeek FifthElelephant
https://fifthelephant.talkfunnel.com/2015/15-processing-large-data-with-apache-spark
Covering Big Data Overview, Spark Overview, Spark Internals and its supported libraries
This talk gives details about Spark internals and an explanation of the runtime behavior of a Spark application. It explains how high level user programs are compiled into physical execution plans in Spark. It then reviews common performance bottlenecks encountered by Spark users, along with tips for diagnosing performance problems in a production application.
This document compares MapReduce and Spark frameworks. It discusses their histories and basic functionalities. MapReduce uses input, map, shuffle, and reduce stages, while Spark uses RDDs (Resilient Distributed Datasets) and transformations and actions. Spark is easier to program than MapReduce due to its interactive mode, but MapReduce has more supporting tools. Performance benchmarks show Spark is faster than MapReduce for sorting. The hardware and developer costs of Spark are also lower than MapReduce.
This document summarizes improvements to sorting and joining in Spark 2.0. Benchmarking shows Spark 2.0 performed joins and sorts faster than Spark 1.6 using fewer cores and less memory. The shuffle manager, which distributes data between partitions, was optimized in 2.0. Compression and limiting remote requests during shuffles reduced small files and improved performance. Garbage collection settings were also tuned.
This document provides an overview of Apache Spark's architectural components through the life of simple Spark jobs. It begins with a simple Spark application analyzing airline on-time arrival data, then covers Resilient Distributed Datasets (RDDs), the cluster architecture, job execution through Spark components like tasks and scheduling, and techniques for writing better Spark applications like optimizing partitioning and reducing shuffle size.
Apache Spark in Depth: Core Concepts, Architecture & InternalsAnton Kirillov
Slides cover Spark core concepts of Apache Spark such as RDD, DAG, execution workflow, forming stages of tasks and shuffle implementation and also describes architecture and main components of Spark Driver. The workshop part covers Spark execution modes , provides link to github repo which contains Spark Applications examples and dockerized Hadoop environment to experiment with
This document discusses scaling machine learning using Apache Spark. It covers several key topics:
1) Parallelizing machine learning algorithms and neural networks to distribute computation across clusters. This includes data, model, and parameter server parallelism.
2) Apache Spark's Resilient Distributed Datasets (RDDs) programming model which allows distributing data and computation across a cluster in a fault-tolerant manner.
3) Examples of very large neural networks trained on clusters, such as a Google face detection model using 1,000 servers and a IBM brain-inspired chip model using 262,144 CPUs.
This document provides a history and market overview of Apache Spark. It discusses the motivation for distributed data processing due to increasing data volumes, velocities and varieties. It then covers brief histories of Google File System, MapReduce, BigTable, and other technologies. Hadoop and MapReduce are explained. Apache Spark is introduced as a faster alternative to MapReduce that keeps data in memory. Competitors like Flink, Tez and Storm are also mentioned.
This document provides an overview of installing and deploying Apache Spark, including:
1. Spark can be installed via prebuilt packages or by building from source.
2. Spark runs in local, standalone, YARN, or Mesos cluster modes and the SparkContext is used to connect to the cluster.
3. Jobs are deployed to the cluster using the spark-submit script which handles building jars and dependencies.
This document discusses alternatives to Hadoop for big data analytics. It introduces the Berkeley data analytics stack, including Spark, and compares the performance of iterative machine learning algorithms between Spark and Hadoop. It also discusses using Twitter's Storm for real-time analytics and compares the performance of Mahout and R/ML over Storm. The document provides examples of using Spark for logistic regression and k-means clustering and discusses how companies like Ooyala and Conviva have benefited from using Spark.
Unsupervised learning refers to a branch of algorithms that try to find structure in unlabeled data. Clustering algorithms, for example, try to partition elements of a dataset into related groups. Dimensionality reduction algorithms search for a simpler representation of a dataset. Spark's MLLib module contains implementations of several unsupervised learning algorithms that scale to huge datasets. In this talk, we'll dive into uses and implementations of Spark's K-means clustering and Singular Value Decomposition (SVD).
Bio:
Sandy Ryza is an engineer on the data science team at Cloudera. He is a committer on Apache Hadoop and recently led Cloudera's Apache Spark development.
This document provides an overview of Apache Spark, including:
- The problems of big data that Spark addresses like large volumes of data from various sources.
- A comparison of Spark to existing techniques like Hadoop, noting Spark allows for better developer productivity and performance.
- An overview of the Spark ecosystem and how Spark can integrate with an existing enterprise.
- Details about Spark's programming model including its RDD abstraction and use of transformations and actions.
- A discussion of Spark's execution model involving stages and tasks.
Spark Based Distributed Deep Learning Framework For Big Data Applications Humoyun Ahmedov
Deep Learning architectures, such as deep neural networks, are currently the hottest emerging areas of data science, especially in Big Data. Deep Learning could be effectively exploited to address some major issues of Big Data, such as fast information retrieval, data classification, semantic indexing and so on. In this work, we designed and implemented a framework to train deep neural networks using Spark, fast and general data flow engine for large scale data processing, which can utilize cluster computing to train large scale deep networks. Training Deep Learning models requires extensive data and computation. Our proposed framework can accelerate the training time by distributing the model replicas, via stochastic gradient descent, among cluster nodes for data resided on HDFS.
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveSachin Aggarwal
We will give a detailed introduction to Apache Spark and why and how Spark can change the analytics world. Apache Spark's memory abstraction is RDD (Resilient Distributed DataSet). One of the key reason why Apache Spark is so different is because of the introduction of RDD. You cannot do anything in Apache Spark without knowing about RDDs. We will give a high level introduction to RDD and in the second half we will have a deep dive into RDDs.
Powering a Graph Data System with Scylla + JanusGraphScyllaDB
Key Value and Column Stores are not the only two data models Scylla is capable of. In this presentation learn the What, Why and How of building and deploying a graph data system in the cloud, backed by the power of Scylla.
This document introduces Apache Spark, an open-source cluster computing system that provides fast, general execution engines for large-scale data processing. It summarizes key Spark concepts including resilient distributed datasets (RDDs) that let users spread data across a cluster, transformations that operate on RDDs, and actions that return values to the driver program. Examples demonstrate how to load data from files, filter and transform it using RDDs, and run Spark programs on a local or cluster environment.
This presentation show the main Spark characteristics, like RDD, Transformations and Actions.
I used this presentation for many Spark Intro workshops from Cluj-Napoca Big Data community : http://www.meetup.com/Big-Data-Data-Science-Meetup-Cluj-Napoca/
Spark is a general engine for large-scale data processing. It introduces Resilient Distributed Datasets (RDDs) which allow in-memory caching for fault tolerance and act like familiar Scala collections for distributed computation across clusters. RDDs provide a programming model with transformations like map and reduce and actions to compute results. Spark also supports streaming, SQL, machine learning, and graph processing workloads.
End-to-end Data Pipeline with Apache SparkDatabricks
This document discusses Apache Spark, a fast and general cluster computing system. It summarizes Spark's capabilities for machine learning workflows, including feature preparation, model training, evaluation, and production use. It also outlines new high-level APIs for data science in Spark, including DataFrames, machine learning pipelines, and an R interface, with the goal of making Spark more similar to single-machine libraries like SciKit-Learn. These new APIs are designed to make Spark easier to use for machine learning and interactive data analysis.
AWS Big Data Demystified #2 | Athena, Spectrum, Emr, Hive Omid Vahdaty
This document provides an overview of various AWS big data services including Athena, Redshift Spectrum, EMR, and Hive. It discusses how Athena allows users to run SQL queries directly on data stored in S3 using Presto. Redshift Spectrum enables querying data in S3 using standard SQL from Amazon Redshift. EMR is a managed Hadoop framework that can run Hive, Spark, and other big data applications. Hive provides a SQL-like interface to query data stored in various formats like Parquet and ORC on distributed storage systems. The document demonstrates features and provides best practices for working with these AWS big data services.
Video: https://www.youtube.com/watch?v=kkOG_aJ9KjQ
This talk gives details about Spark internals and an explanation of the runtime behavior of a Spark application. It explains how high level user programs are compiled into physical execution plans in Spark. It then reviews common performance bottlenecks encountered by Spark users, along with tips for diagnosing performance problems in a production application.
Apache Spark presentation at HasGeek FifthElelephant
https://fifthelephant.talkfunnel.com/2015/15-processing-large-data-with-apache-spark
Covering Big Data Overview, Spark Overview, Spark Internals and its supported libraries
This talk gives details about Spark internals and an explanation of the runtime behavior of a Spark application. It explains how high level user programs are compiled into physical execution plans in Spark. It then reviews common performance bottlenecks encountered by Spark users, along with tips for diagnosing performance problems in a production application.
This document compares MapReduce and Spark frameworks. It discusses their histories and basic functionalities. MapReduce uses input, map, shuffle, and reduce stages, while Spark uses RDDs (Resilient Distributed Datasets) and transformations and actions. Spark is easier to program than MapReduce due to its interactive mode, but MapReduce has more supporting tools. Performance benchmarks show Spark is faster than MapReduce for sorting. The hardware and developer costs of Spark are also lower than MapReduce.
This document summarizes improvements to sorting and joining in Spark 2.0. Benchmarking shows Spark 2.0 performed joins and sorts faster than Spark 1.6 using fewer cores and less memory. The shuffle manager, which distributes data between partitions, was optimized in 2.0. Compression and limiting remote requests during shuffles reduced small files and improved performance. Garbage collection settings were also tuned.
This document provides an overview of Apache Spark's architectural components through the life of simple Spark jobs. It begins with a simple Spark application analyzing airline on-time arrival data, then covers Resilient Distributed Datasets (RDDs), the cluster architecture, job execution through Spark components like tasks and scheduling, and techniques for writing better Spark applications like optimizing partitioning and reducing shuffle size.
This document provides an introduction to Apache Spark, including its history and key concepts. It discusses how Spark was developed in response to big data processing needs at Google and how it builds upon earlier systems like MapReduce. The document then covers Spark's core abstractions like RDDs and DataFrames/Datasets and common transformations and actions. It also provides an overview of Spark SQL and how to deploy Spark applications on a cluster.
The document discusses Spark, an open-source cluster computing framework. It describes Spark's Resilient Distributed Dataset (RDD) as an immutable and partitioned collection that can automatically recover from node failures. RDDs can be created from data sources like files or existing collections. Transformations create new RDDs from existing ones lazily, while actions return values to the driver program. Spark supports operations like WordCount through transformations like flatMap and reduceByKey. It uses stages and shuffling to distribute operations across a cluster in a fault-tolerant manner. Spark Streaming processes live data streams by dividing them into batches treated as RDDs. Spark SQL allows querying data through SQL on DataFrames.
Data processing platforms with SMACK: Spark and Mesos internalsAnton Kirillov
The first part of the slides contains general overview of SMACK stack and possible architecture layouts that could be implemented on top of it. We discuss Apache Spark internals: the concept of RDD, DAG logical view and dependencies types, execution workflow, shuffle process and core Spark components. The second part is dedicated to Mesos architecture and the concept of framework, different ways of running applications and schedule Spark jobs on top of it. We'll take a look at popular frameworks like Marathon and Chronos and see how Spark Jobs and Docker containers are executed using them.
Apache Spark - San Diego Big Data Meetup Jan 14th 2015cdmaxime
This document provides an introduction to Apache Spark presented by Maxime Dumas of Cloudera. It discusses:
1. What Cloudera does including distributing Hadoop components with enterprise tooling and support.
2. An overview of the Apache Hadoop ecosystem including why Hadoop is used for scalability, efficiency, and flexibility with large amounts of data.
3. An introduction to Apache Spark which improves on MapReduce by being faster, easier to use, and supporting more types of applications such as machine learning and graph processing. Spark can be 100x faster than MapReduce for certain applications.
This document provides an overview of Spark driven big data analytics. It begins by defining big data and its characteristics. It then discusses the challenges of traditional analytics on big data and how Apache Spark addresses these challenges. Spark improves on MapReduce by allowing distributed datasets to be kept in memory across clusters. This enables faster iterative and interactive processing. The document outlines Spark's architecture including its core components like RDDs, transformations, actions and DAG execution model. It provides examples of writing Spark applications in Java and Java 8 to perform common analytics tasks like word count.
BKK16-408B Data Analytics and Machine Learning From Node to ClusterLinaro
Linaro is building an OpenStack based Developer Cloud. Here we present what was required to bring OpenStack to 64-bit ARM, the pitfalls, successes and lessons learnt; what’s missing and what’s next.
Apache Spark is a cluster computing framework that allows for fast, easy, and general processing of large datasets. It extends the MapReduce model to support iterative algorithms and interactive queries. Spark uses Resilient Distributed Datasets (RDDs), which allow data to be distributed across a cluster and cached in memory for faster processing. RDDs support transformations like map, filter, and reduce and actions like count and collect. This functional programming approach allows Spark to efficiently handle iterative algorithms and interactive data analysis.
r instance, in zero-dimensional (0D) nanomaterials all the dimensions are measured within the nanoscale (no dimensions are larger than 100 nm); in two-dimensional nanomaterials (2D), two dimensions are outside the nanoscale; and in three-dimensional nanomaterials (3D) are materials that are not confined to the nanoscale in any dimension. This class can contain bulk powders, dispersions of nanoparticles, bundles of nanowires, and nanotubes as well as multi-nanolayers. Check our Frequently Asked Questions to get more details.
For instance, in zero-dimensional (0D) nanomaterials all the dimensions are measured within the nanoscale (no dimensions are larger than 100 nm); in two-dimensional nanomaterials (2D), two dimensions are outside the nanoscale; and in three-dimensional nanomaterials (3D) are materials that are not confined to the nanoscale in any dimension. This class can contain bulk powders, dispersions of nanoparticles, bundles of nanowires, and nanotubes as well as multi-nanolayers. Check our Frequently Asked Questions to g
This document discusses Spark Streaming and its use for near real-time ETL. It provides an overview of Spark Streaming, how it works internally using receivers and workers to process streaming data, and an example use case of building a recommender system to find matches using both batch and streaming data. Key points covered include the streaming execution model, handling data receipt and job scheduling, and potential issues around data loss and (de)serialization.
Apache Spark - Santa Barbara Scala Meetup Dec 18th 2014cdmaxime
This document provides an introduction to Apache Spark, a general purpose cluster computing framework. It discusses how Spark improves upon MapReduce by offering better performance, support for iterative algorithms, and an easier developer experience. Spark retains MapReduce's advantages like scalability, fault tolerance, and data locality, but offers more by leveraging distributed memory and supporting directed acyclic graphs of tasks. Examples demonstrate how Spark can run programs up to 100x faster than Hadoop MapReduce and how it supports machine learning algorithms and streaming data analysis.
Spark is an open-source distributed computing framework used for processing large datasets. It allows for in-memory cluster computing, which enhances processing speed. Spark core components include Resilient Distributed Datasets (RDDs) and a directed acyclic graph (DAG) that represents the lineage of transformations and actions on RDDs. Spark Streaming is an extension that allows for processing of live data streams with low latency.
An overview of Apache Spark and AWS Glue.
Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.
AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics. You can create and run an ETL job with a few clicks in the AWS Management Console. You simply point AWS Glue to your data stored on AWS, and AWS Glue discovers your data and stores the associated metadata (e.g. table definition and schema) in the AWS Glue Data Catalog. Once cataloged, your data is immediately searchable, queryable, and available for ETL.
This document provides an agenda and summaries for a meetup on introducing DataFrames and R on Apache Spark. The agenda includes overviews of Apache Spark 1.3, DataFrames, R on Spark, and large scale machine learning on Spark. There will also be discussions on news items, contributions so far, what's new in Spark 1.3, more data source APIs, what DataFrames are, writing DataFrames, and DataFrames with RDDs and Parquet. Presentations will cover Spark components, an introduction to SparkR, and Spark machine learning experiences.
An Engine to process big data in faster(than MR), easy and extremely scalable way. An Open Source, parallel, in-memory processing, cluster computing framework. Solution for loading, processing and end to end analyzing large scale data. Iterative and Interactive : Scala, Java, Python, R and with Command line interface.
How to work with Python 3, how to create virtual environments, to install libraries, to create code skeletons and more.
Maybe an IDE for Python is right for you. If you are familiar with IntelliJ, then PyCharm is your option. There are other options such as Visual Studio Code, PyDev, Spyder, so you can choose the one you like the most.
And now you have no excuse to start with your first Python project.
How to document without dying in the attemptDatio Big Data
The document discusses the importance of documentation. It notes that documenting knowledge allows future generations to understand the past and envision the future. From a practical perspective, documentation provides advantages such as allowing others to use knowledge, standardizing processes, and producing documentation easily. The document then provides guidelines for technical writing such as using an active voice and focusing on the document's goal.
Testing is important for project quality and reliability. Unit tests check individual code units for correct functionality, are fast and independent. Behavior-driven development (BDD) applies business needs through scenarios defined in Gherkin. Test doubles replace code to independently test objects like dummies, fakes, stubs and mocks. Integration tests check connections between components while acceptance tests check overall project behavior from the user perspective, ensuring expected functionality but are slower and require more maintenance.
El documento describe las características y capacidades de Ceph, un sistema de almacenamiento de objetos distribuido de código abierto. Ceph puede escalar horizontalmente hasta el exabyte, no tiene puntos únicos de fallo, y funciona en hardware estándar. Utiliza un diseño descentralizado basado en objetos que puede exponer almacenamiento en forma de objetos, archivos o bloques.
La infraestructura Atlantis de Datio se basa en OpenStack. Consta de 3 controladores, 16 nodos de computación y almacenamiento distribuido Ceph. A nivel físico incluye servidores, cuchillas y almacenamiento. A nivel lógico define 4 redes aisladas y despliega los servicios principales de OpenStack como Keystone, Glance, Cinder y Neutron en alta disponibilidad. Los usuarios pueden gestionar la infraestructura a través de Horizon, la API de OpenStack o Ansible.
This document discusses data integration and architectures for processing both batch and streaming data. It covers topics like data ingestion using tools like Flume, Sqoop and Kafka to move data into data lakes and warehouses. It also discusses batch processing using MapReduce on Hadoop and stream processing using real-time technologies like Kafka and architectures like lambda and kappa for serving queries on both real-time and batch-processed views of the data.
How we have designed and applied the gamification at Datio.
See more about this topic in our blog:
http://www.datio.com/corporate/gwc-2016-towards-the-high-level-engagement/
http://www.datio.com/corporate/beginning-a-gamification-project/
Pandas: High Performance Structured Data ManipulationDatio Big Data
Brief theoretical introduction to Pandas: the Python library that is used primarily for manipulation and data analysis. Here we'll explain when it is convenient to work with this one, its main characteristics and the operations that allows.
El Quality Assurance ha experimentado una evolución equiparable a la de la especie humana. En esta presentación se explica la importancia creciente de los sistemas de gestión de la calidad en el desarollo de software.
DC/OS: The definitive platform for modern appsDatio Big Data
DC/OS is an open source platform that provides container orchestration and management using Mesos. It allows running applications and services across data center infrastructure including bare metal, VMs, and cloud. DC/OS provides services like Marathon for container orchestration, security, monitoring, load balancing and service discovery. It has features like high resource utilization, mixed workload support, elastic scalability, high availability and zero downtime upgrades.
The real purpose of any career plan should be to improve the skills of the person owning it, to discover his/her strong points, to find out the things they need help with and eventually becoming a better professional and a more self-assured individual. Then, we should start looking for a Personal Development Plan instead.
This document discusses security and governance considerations for big data. It notes that while many businesses use big data, they may not have sufficient access controls or security practices in place. Big data breaches can be large, making security critical. It then outlines some risks like insufficiently hardened systems, uncontrolled access, and unfulfilled regulatory requirements. The document introduces GOSEC as a centralized security component that manages access control across big data services like HDFS and applications. GOSEC allows setting access policies for users and groups for resources like files and topics. It covers authentication, authorization, and auditing. The document stresses the need to integrate GOSEC with the organization's identity provider and security strategies to prevent leakage of internal and external data. It
Kafka Connect allows data ingestion into Kafka from external systems by using connectors. It provides scalability, fault tolerance, and exactly-once semantics. Connectors are run as tasks within workers that can run in either standalone or distributed mode. The Schema Registry works with Kafka Connect to handle schema validation and evolution.
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxRishavKumar530754
LiDAR-Based System for Autonomous Cars
Autonomous Driving with LiDAR Tech
LiDAR Integration in Self-Driving Cars
Self-Driving Vehicles Using LiDAR
LiDAR Mapping for Driverless Cars
Sorting Order and Stability in Sorting.
Concept of Internal and External Sorting.
Bubble Sort,
Insertion Sort,
Selection Sort,
Quick Sort and
Merge Sort,
Radix Sort, and
Shell Sort,
External Sorting, Time complexity analysis of Sorting Algorithms.
The Fluke 925 is a vane anemometer, a handheld device designed to measure wind speed, air flow (volume), and temperature. It features a separate sensor and display unit, allowing greater flexibility and ease of use in tight or hard-to-reach spaces. The Fluke 925 is particularly suitable for HVAC (heating, ventilation, and air conditioning) maintenance in both residential and commercial buildings, offering a durable and cost-effective solution for routine airflow diagnostics.
The role of the lexical analyzer
Specification of tokens
Finite state machines
From a regular expressions to an NFA
Convert NFA to DFA
Transforming grammars and regular expressions
Transforming automata to grammars
Language for specifying lexical analyzers
Passenger car unit (PCU) of a vehicle type depends on vehicular characteristics, stream characteristics, roadway characteristics, environmental factors, climate conditions and control conditions. Keeping in view various factors affecting PCU, a model was developed taking a volume to capacity ratio and percentage share of particular vehicle type as independent parameters. A microscopic traffic simulation model VISSIM has been used in present study for generating traffic flow data which some time very difficult to obtain from field survey. A comparison study was carried out with the purpose of verifying when the adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and multiple linear regression (MLR) models are appropriate for prediction of PCUs of different vehicle types. From the results observed that ANFIS model estimates were closer to the corresponding simulated PCU values compared to MLR and ANN models. It is concluded that the ANFIS model showed greater potential in predicting PCUs from v/c ratio and proportional share for all type of vehicles whereas MLR and ANN models did not perform well.
π0.5: a Vision-Language-Action Model with Open-World GeneralizationNABLAS株式会社
今回の資料「Transfusion / π0 / π0.5」は、画像・言語・アクションを統合するロボット基盤モデルについて紹介しています。
拡散×自己回帰を融合したTransformerをベースに、π0.5ではオープンワールドでの推論・計画も可能に。
This presentation introduces robot foundation models that integrate vision, language, and action.
Built on a Transformer combining diffusion and autoregression, π0.5 enables reasoning and planning in open-world settings.
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfMohamedAbdelkader115
Glad to be one of only 14 members inside Kuwait to hold this credential.
Please check the members inside kuwait from this link:
https://www.rics.org/networking/find-a-member.html?firstname=&lastname=&town=&country=Kuwait&member_grade=(AssocRICS)&expert_witness=&accrediation=&page=1
International Journal of Distributed and Parallel systems (IJDPS)samueljackson3773
The growth of Internet and other web technologies requires the development of new
algorithms and architectures for parallel and distributed computing. International journal of
Distributed and parallel systems is a bimonthly open access peer-reviewed journal aims to
publish high quality scientific papers arising from original research and development from
the international community in the areas of parallel and distributed systems. IJDPS serves
as a platform for engineers and researchers to present new ideas and system technology,
with an interactive and friendly, but strongly professional atmosphere.
6. Rise of the data center
Hugh amounts of data spread out
across many commodity servers
MapReduce
lots of data → scale out
Data Processing Requirements
Network bottleneck → Distributed Computing
Hardware failure → Fault Tolerance
Abstraction to organize parallelizable tasks
MapReduce
Abstraction to organize parallelizable tasks
7. MapReduce
Input Split Map [combine]
Suffle &
Sort
Reduce Output
AA BB AA
AA CC DD
AA EE DD
BB FF AA
AA BB AA
AA CC DD
AA EE DD
BB FF AA
(AA, 1)
(BB, 1)
(AA, 1)
(AA, 1)
(CC, 1)
(DD, 1)
(AA, 1)
(EE, 1)
(DD, 1)
(BB, 1)
(FF, 1)
(AA, 1)
(AA, 2)
(BB, 1)
(AA, 1)
(CC, 1)
(DD, 1)
(AA, 1)
(EE, 1)
(DD, 1)
(BB, 1)
(FF, 1)
(AA, 1)
(AA, 2)
(AA, 1)
(AA, 1)
(AA, 1)
(BB, 1)
(BB, 1)
(CC, 1)
(DD, 1)
(DD, 1)
(EE, 1)
(FF, 1)
(AA, 5)
(BB, 2)
(CC, 1)
(DD, 2)
(EE, 1)
(FF, 1)
AA, 5
BB, 2
CC, 1
DD, 2
EE, 1
FF, 1
9. Spark Components
SparkContext
● Main entry point for Spark functionality
● Represents the connection to a Spark cluster
● Tells Spark how & where to access a cluster
● Can be used to create RDDs, accumulators and
broadcast variables on that cluster
Driver program
● “Main” process coordinated by the
SparkContext object
● Allows to configure any spark process with
specific parameters
● Spark actions are executed in the Driver
● Spark-shell
● Application → driver program + executors
Driver Program
SparkContext
10. Spark Components
● External service for acquiring resources on the cluster
● Variety of cluster managers
○ Local
○ Standalone
○ YARN
○ Mesos
● Deploy mode:
○ Cluster → framework launches the driver inside of the cluser
○ Client → submitter launches the driver outside of the cluster
Cluster Manager
11. Spark Components
● Any node that can run application code in the cluster
● Key Terms
○ Executor: A process launched for an application on a worker node, that runs tasks and
keeps data in memory or disk storage across them. Each application has its own executors.
○ Task: Unit of work that will be sent to one executor
○ Job: A parallel computation consisting of multiple tasks that gets spawned in response to a
Spark action (e.g. save, collect)
○ Stage: smaller set of tasks inside any job
Worker Node
Executor
Task Task
Worker
12. RDD
Resilient Distributed Datasets
● Collection of objects that is distributed across
nodes in a cluster
● Data Operations are performed on RDD
● Once created, RDD are immutable
● RDD can be persisted in memory or on disk
● Fault Tolerant
numbers = RDD[1,2,3,4,5,6,7,8,9,10]
Worker Node
Executor
[1,5,6,9]
Worker Node
Executor
[2,7,8]
Worker Node
Executor
[3,4,10]
22. DataFrame
● Ability to process the data in the size of Kilobytes to Petabytes on a single
node cluster to large cluster.
● Different data formats (JSON, Csv, Elastic Search, ...) and storage systems
(HDFS, HIVE tables, Oracle, ...)
● Easily integrated with others Big Data tools (Spark-Core).
● API for Python, Java, Scala, and R.
Features
25. WORKSHOP
In order to practice the main concepts, please complete the exercises
proposed at our Github repository by clicking the following link:
○ Homework