SlideShare a Scribd company logo
Lightning-fast cluster computing
Resilience
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Driver
Master (Active)
Job Job
Resilience
Driver
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Driver
Master (Active)
Job Job
./spark-submit
--deploy-mode
"cluster" --supervise
Resilience
Driver
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Driver
Master (Active)
Job Job
Driver runs
in the worker
Resilience
Driver
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Driver
Master (Active)
Job Job
Driver is
started in a
new worker
Resilience
Master
Master (Active)
Job Job
Zookeeper
Master (Standby)
Job Job
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Driver
Master (Active)
Resilience
Master
Zookeeper
Master (Standby)
Job Job Job Job
Driver
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Master (Active)
Resilience
Worker
Zookeeper
Master (Standby)
Job Job Job Job
Driver
Driver and
Executor are
also killed
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Master (Active)
Resilience
Worker
Zookeeper
Master (Standby)
Job Job Job Job
Driver
Worker is
relaunched
Driver and
executor are
also relaunched
Worker
Executor
Task Task
Worker
Executor
Task Task
Worker
Executor
Task Task
Resilience
RDD
● An RDD is an immutable, deterministically re-computable, distributed dataset.
● Each RDD remembers the lineage of deterministic operations that were used on a
fault-tolerant input dataset to create it.
● If any partition of an RDD is lost due to a worker node failure, then that partition can be
re-computed from the original fault-tolerant dataset using the lineage of operations.
● Assuming that all of the RDD transformations are deterministic, the data in the final
transformed RDD will always be the same irrespective of failures in the Spark cluster.
cache
logLinesRDD
cleanedRDD
collect()
errosRDD
Error, ts, msg1,
ts, msg3, ts
Error, ts, msg4,
ts, msg1
Error, ts, msg1, ts Error, ts, ts, msg1
filter(fx)
errorMsg1RDD
count()
saveToCassandra()
Resilience
RDD
filter(fx)
coalesce(2)
If partition is damaged, it can
recompute from his parent, if
parents aren't in memory
anymore, it'll reprocess from disk
RDD
Shard allocation
RDD - Resilient Distributed Dataset
Error, ts,
msg1, warn, ts,
msg2, Error
info, ts, msg8,
info, ts, msg3,
info
Error, ts,
msg5, ts, info
Error, ts, info,
msg9, ts, info,
Error
File (hdfs,
s3, etc)
partitions
Default Algorithm: Hash partition
RDD = Data abstraction
It hides data partitioning and distribution complexity
Worker
Executor
Task
Worker
Executor
Task
Worker
Executor
TaskTask
RDD
Shard allocation
RDD - Resilient Distributed Dataset
Error, ts,
msg1, warn, ts,
msg2, Error
info, ts, msg8,
info, ts, msg3,
info
Error, ts,
msg5, ts, info
Error, ts, info,
msg9, ts, info,
Error
File (hdfs,
s3, etc)
Default Algorithm: Hash partition
partitions
Shard allocation
Partition configuration - numbers of partition
Specifying number of partition
By default it create one partition for
each processor core
Default settings:
● mapreduce.input.fileinputformat.split.minsize = 1 byte (minSize)
● dfs.block.size = 128 MB (cluster) / fs.local.block.size = 32 MB (local) (blockSize)
Calculating goal size:
e.g.:
● Total size of input files = T = 599 MB
● Desired number of partitions = P = 30 (parametrized)
● Partition Goal size = PGS = T / P = 599 / 30 = 19 MB
Result: Math.max(1, Math.min(19, 32)) == 19 MB
Shard allocation
Partition configuration - defining partition size
Fewer partitions
● more data in each partition
● less network and disk i/o
● fast access to data
● increase memory pressure
● don't make use of
parallelism
More partitions
● increase parallelism processing
● less data in each partition
● more network and disk i/o
Shard allocation
Trade offs
Shard allocation
Example - Cases - auxiliary function
Shard allocation
Example - Case 1
Correctly distributed between 8 partitions
Shard allocation
Example - Case 2
Inefficient use of resources - 8 cores, 4 idles
Shard allocation
Example - Case 1 - explanation
val = 2.000.000 / 8 = 250.000
Range partition:
[0] -> 2 - 250.000
[1] -> 250.001 - 500.000
[2] -> 500.001 - 750.000
[3] -> 750.001 - 1.000.000
[4] -> 1.000.001 - 1.025.000
[5] -> 1.025.001 - 1.050,000
[6] -> 1.050.001 - 1.075.000
[7] -> 1.075.001 - 2.000.000
Shard allocation
Example - Case 2 - explanation
val = 2.000.000
map() turned into (key,value), where:
Each value was a list of all integers we needed to multiply the key by to find the multiples up to 2 million. For half
of them (all keys greater than 1 million) this meant that the value was an empty list
E.g.:
(2, Range(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,...
...
(200013,Range(2, 3, 4, 5, 6, 7, 8, 9))
Shard allocation
Example - Case 3 - fixing it using repartition
Correctly distributed between 8 partitions
Shuffle partitions
References
http://spark.apache.org
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-partitions.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd.html
http://blog.cloudera.com/blog/2015/05/working-with-apache-spark-or-how-i-learned-to-sto
p-worrying-and-love-the-shuffle/
http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html
Thanks!Questions?
jefersonm@gmail.com
@jefersonm
jefersonm
jefersonm
jefmachado
Ad

More Related Content

What's hot (20)

Introduction to MapReduce and Hadoop
Introduction to MapReduce and HadoopIntroduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop
Mohamed Elsaka
 
Advanced Apache Cassandra Operations with JMX
Advanced Apache Cassandra Operations with JMXAdvanced Apache Cassandra Operations with JMX
Advanced Apache Cassandra Operations with JMX
zznate
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
viadea
 
orca_fosdem_FINAL
orca_fosdem_FINALorca_fosdem_FINAL
orca_fosdem_FINAL
addisonhuddy
 
C* Summit 2013: Cassandra at Instagram by Rick Branson
C* Summit 2013: Cassandra at Instagram by Rick BransonC* Summit 2013: Cassandra at Instagram by Rick Branson
C* Summit 2013: Cassandra at Instagram by Rick Branson
DataStax Academy
 
Gnocchi Profiling v2
Gnocchi Profiling v2Gnocchi Profiling v2
Gnocchi Profiling v2
Gordon Chung
 
Hadoop & MapReduce
Hadoop & MapReduceHadoop & MapReduce
Hadoop & MapReduce
Newvewm
 
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
DataStax
 
Gnocchi Profiling 2.1.x
Gnocchi Profiling 2.1.xGnocchi Profiling 2.1.x
Gnocchi Profiling 2.1.x
Gordon Chung
 
Concurrent and Distributed Applications with Akka, Java and Scala
Concurrent and Distributed Applications with Akka, Java and ScalaConcurrent and Distributed Applications with Akka, Java and Scala
Concurrent and Distributed Applications with Akka, Java and Scala
Fernando Rodriguez
 
38 39 v-dbench june 16
38 39 v-dbench june 1638 39 v-dbench june 16
38 39 v-dbench june 16
Senthilkumar E
 
ClickHouse Materialized Views: The Magic Continues
ClickHouse Materialized Views: The Magic ContinuesClickHouse Materialized Views: The Magic Continues
ClickHouse Materialized Views: The Magic Continues
Altinity Ltd
 
Failing gracefully
Failing gracefullyFailing gracefully
Failing gracefully
Takuya UESHIN
 
ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...
Altinity Ltd
 
Apache Spark with Scala
Apache Spark with ScalaApache Spark with Scala
Apache Spark with Scala
Fernando Rodriguez
 
C07.heaps
C07.heapsC07.heaps
C07.heaps
syeda madeha azmat
 
Gnocchi v3
Gnocchi v3Gnocchi v3
Gnocchi v3
Gordon Chung
 
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert HodgesWebinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Altinity Ltd
 
Gnocchi v4 (preview)
Gnocchi v4 (preview)Gnocchi v4 (preview)
Gnocchi v4 (preview)
Gordon Chung
 
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB
 
Introduction to MapReduce and Hadoop
Introduction to MapReduce and HadoopIntroduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop
Mohamed Elsaka
 
Advanced Apache Cassandra Operations with JMX
Advanced Apache Cassandra Operations with JMXAdvanced Apache Cassandra Operations with JMX
Advanced Apache Cassandra Operations with JMX
zznate
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
viadea
 
C* Summit 2013: Cassandra at Instagram by Rick Branson
C* Summit 2013: Cassandra at Instagram by Rick BransonC* Summit 2013: Cassandra at Instagram by Rick Branson
C* Summit 2013: Cassandra at Instagram by Rick Branson
DataStax Academy
 
Gnocchi Profiling v2
Gnocchi Profiling v2Gnocchi Profiling v2
Gnocchi Profiling v2
Gordon Chung
 
Hadoop & MapReduce
Hadoop & MapReduceHadoop & MapReduce
Hadoop & MapReduce
Newvewm
 
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
Cassandra Backups and Restorations Using Ansible (Joshua Wickman, Knewton) | ...
DataStax
 
Gnocchi Profiling 2.1.x
Gnocchi Profiling 2.1.xGnocchi Profiling 2.1.x
Gnocchi Profiling 2.1.x
Gordon Chung
 
Concurrent and Distributed Applications with Akka, Java and Scala
Concurrent and Distributed Applications with Akka, Java and ScalaConcurrent and Distributed Applications with Akka, Java and Scala
Concurrent and Distributed Applications with Akka, Java and Scala
Fernando Rodriguez
 
38 39 v-dbench june 16
38 39 v-dbench june 1638 39 v-dbench june 16
38 39 v-dbench june 16
Senthilkumar E
 
ClickHouse Materialized Views: The Magic Continues
ClickHouse Materialized Views: The Magic ContinuesClickHouse Materialized Views: The Magic Continues
ClickHouse Materialized Views: The Magic Continues
Altinity Ltd
 
ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...
Altinity Ltd
 
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert HodgesWebinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Altinity Ltd
 
Gnocchi v4 (preview)
Gnocchi v4 (preview)Gnocchi v4 (preview)
Gnocchi v4 (preview)
Gordon Chung
 
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB
 

Similar to Apache Spark Internals - Part 2 (20)

Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
Apache Cassandra at Macys
Apache Cassandra at MacysApache Cassandra at Macys
Apache Cassandra at Macys
DataStax Academy
 
Apache Flink & Graph Processing
Apache Flink & Graph ProcessingApache Flink & Graph Processing
Apache Flink & Graph Processing
Vasia Kalavri
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOW
Mark Chang
 
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Databricks
 
Scaling up data science applications
Scaling up data science applicationsScaling up data science applications
Scaling up data science applications
Kexin Xie
 
Large volume data analysis on the Typesafe Reactive Platform
Large volume data analysis on the Typesafe Reactive PlatformLarge volume data analysis on the Typesafe Reactive Platform
Large volume data analysis on the Typesafe Reactive Platform
Martin Zapletal
 
Learn Matlab
Learn MatlabLearn Matlab
Learn Matlab
Abd El Kareem Ahmed
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdf
nyomans1
 
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDBBuilding a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Cody Ray
 
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
Tulsa techfest Spark Core Aug 5th 2016
Tulsa techfest Spark Core Aug 5th 2016Tulsa techfest Spark Core Aug 5th 2016
Tulsa techfest Spark Core Aug 5th 2016
Mark Smith
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
Masayuki Matsushita
 
Introduction to Cache-Oblivious Algorithms
Introduction to Cache-Oblivious AlgorithmsIntroduction to Cache-Oblivious Algorithms
Introduction to Cache-Oblivious Algorithms
Christopher Gilbert
 
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidiaRAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
Mail.ru Group
 
Lecture12
Lecture12Lecture12
Lecture12
tt_aljobory
 
User biglm
User biglmUser biglm
User biglm
johnatan pladott
 
Inferno Scalable Deep Learning on Spark
Inferno Scalable Deep Learning on SparkInferno Scalable Deep Learning on Spark
Inferno Scalable Deep Learning on Spark
DataWorks Summit/Hadoop Summit
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmap
Kostas Tzoumas
 
Workshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Workshop "Can my .NET application use less CPU / RAM?", Yevhen TatarynovWorkshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Workshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Fwdays
 
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
Apache Flink & Graph Processing
Apache Flink & Graph ProcessingApache Flink & Graph Processing
Apache Flink & Graph Processing
Vasia Kalavri
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOW
Mark Chang
 
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Scaling Up: How Switching to Apache Spark Improved Performance, Realizability...
Databricks
 
Scaling up data science applications
Scaling up data science applicationsScaling up data science applications
Scaling up data science applications
Kexin Xie
 
Large volume data analysis on the Typesafe Reactive Platform
Large volume data analysis on the Typesafe Reactive PlatformLarge volume data analysis on the Typesafe Reactive Platform
Large volume data analysis on the Typesafe Reactive Platform
Martin Zapletal
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdf
nyomans1
 
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDBBuilding a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Building a Scalable Distributed Stats Infrastructure with Storm and KairosDB
Cody Ray
 
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
Samantha Wang [InfluxData] | Best Practices on How to Transform Your Data Usi...
InfluxData
 
Tulsa techfest Spark Core Aug 5th 2016
Tulsa techfest Spark Core Aug 5th 2016Tulsa techfest Spark Core Aug 5th 2016
Tulsa techfest Spark Core Aug 5th 2016
Mark Smith
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
Masayuki Matsushita
 
Introduction to Cache-Oblivious Algorithms
Introduction to Cache-Oblivious AlgorithmsIntroduction to Cache-Oblivious Algorithms
Introduction to Cache-Oblivious Algorithms
Christopher Gilbert
 
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidiaRAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
Mail.ru Group
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmap
Kostas Tzoumas
 
Workshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Workshop "Can my .NET application use less CPU / RAM?", Yevhen TatarynovWorkshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Workshop "Can my .NET application use less CPU / RAM?", Yevhen Tatarynov
Fwdays
 
Ad

More from Jéferson Machado (20)

druid.io
druid.iodruid.io
druid.io
Jéferson Machado
 
Node.js, is it the solution for every problem?
Node.js, is it the solution for every problem?Node.js, is it the solution for every problem?
Node.js, is it the solution for every problem?
Jéferson Machado
 
Plano de carreira, isso funciona ? Me consegue uma bússola por favor. (Agile...
Plano de carreira, isso funciona ? Me consegue uma bússola por favor. (Agile...Plano de carreira, isso funciona ? Me consegue uma bússola por favor. (Agile...
Plano de carreira, isso funciona ? Me consegue uma bússola por favor. (Agile...
Jéferson Machado
 
How to innovate ?
How to innovate ?How to innovate ?
How to innovate ?
Jéferson Machado
 
Management 3.0 (TDC 2015)
Management 3.0 (TDC 2015)Management 3.0 (TDC 2015)
Management 3.0 (TDC 2015)
Jéferson Machado
 
Management 3.0, como evoluir pessoas em conjunto com sua organização.
Management 3.0, como evoluir pessoas em conjunto com sua organização.Management 3.0, como evoluir pessoas em conjunto com sua organização.
Management 3.0, como evoluir pessoas em conjunto com sua organização.
Jéferson Machado
 
Business model generation
Business model generationBusiness model generation
Business model generation
Jéferson Machado
 
Lean & T.O.C
Lean & T.O.CLean & T.O.C
Lean & T.O.C
Jéferson Machado
 
Kanban metrics
Kanban metricsKanban metrics
Kanban metrics
Jéferson Machado
 
Python - basics
Python - basicsPython - basics
Python - basics
Jéferson Machado
 
GROW
GROWGROW
GROW
Jéferson Machado
 
1 jeferson (grow)
1 jeferson (grow)1 jeferson (grow)
1 jeferson (grow)
Jéferson Machado
 
Apache Pig
Apache PigApache Pig
Apache Pig
Jéferson Machado
 
Apache HBase
Apache HBaseApache HBase
Apache HBase
Jéferson Machado
 
Scala
ScalaScala
Scala
Jéferson Machado
 
Management 3.0
Management 3.0Management 3.0
Management 3.0
Jéferson Machado
 
Theory of constraints
Theory of constraintsTheory of constraints
Theory of constraints
Jéferson Machado
 
Spring MVC
Spring MVCSpring MVC
Spring MVC
Jéferson Machado
 
Continuous integration
Continuous integrationContinuous integration
Continuous integration
Jéferson Machado
 
Ad

Recently uploaded (20)

Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
Data Structures_Introduction to algorithms.pptx
Data Structures_Introduction to algorithms.pptxData Structures_Introduction to algorithms.pptx
Data Structures_Introduction to algorithms.pptx
RushaliDeshmukh2
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
The Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLabThe Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLab
Journal of Soft Computing in Civil Engineering
 
Artificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptxArtificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptx
DrMarwaElsherif
 
Data Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptxData Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptx
RushaliDeshmukh2
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Journal of Soft Computing in Civil Engineering
 
Compiler Design_Lexical Analysis phase.pptx
Compiler Design_Lexical Analysis phase.pptxCompiler Design_Lexical Analysis phase.pptx
Compiler Design_Lexical Analysis phase.pptx
RushaliDeshmukh2
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
Data Structures_Introduction to algorithms.pptx
Data Structures_Introduction to algorithms.pptxData Structures_Introduction to algorithms.pptx
Data Structures_Introduction to algorithms.pptx
RushaliDeshmukh2
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Artificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptxArtificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptx
DrMarwaElsherif
 
Data Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptxData Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptx
RushaliDeshmukh2
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Compiler Design_Lexical Analysis phase.pptx
Compiler Design_Lexical Analysis phase.pptxCompiler Design_Lexical Analysis phase.pptx
Compiler Design_Lexical Analysis phase.pptx
RushaliDeshmukh2
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 

Apache Spark Internals - Part 2