CyberMLToolkit: Anomaly Detection as a Scalable Generic Service Over Apache S...Databricks
Cybercrime is one the greatest threats to every company in the world today and a major problem for mankind in general. The damage due to Cybercrime is estimated to be around $6 Trillion By 2021. Security professionals are struggling to cope with the threat. As a result, powerful and easy to use tools are necessary to aid in this battle. For this purpose we created an anomaly detection framework focused on security which can identify anomalous access patterns. It is built on top of Apache Spark and can be applied in parallel over multiple tenants. This allows the model to be trained over the data of thousands of customers over a Databricks cluster within less than an hour. The model leverages proven technologies from Recommendation Engines to produce high quality anomalies. We thoroughly evaluated the model’s ability to identify actual anomalies by using synthetically generated data and also by creating an actual attack and showing that the model clearly identifies the attack as anomalous behavior. We plan to open source this library as part of a cyber-ML toolkit we will be offering.
Auto-Pilot for Apache Spark Using Machine LearningDatabricks
At Qubole, users run Spark at scale on cloud (900+ concurrent nodes). At such scale, for efficiently running SLA critical jobs, tuning Spark configurations is essential. But it continues to be a difficult undertaking, largely driven by trial and error. In this talk, we will address the problem of auto-tuning SQL workloads on Spark. The same technique can also be adapted for non-SQL Spark workloads. In our earlier work[1], we proposed a model based on simple rules and insights. It was simple yet effective at optimizing queries and finding the right instance types to run queries. However, with respect to auto tuning Spark configurations we saw scope of improvement. On exploration, we found previous works addressing auto-tuning using Machine learning techniques. One major drawback of the simple model[1] is that it cannot use multiple runs of query for improving recommendation, whereas the major drawback with Machine Learning techniques is that it lacks domain specific knowledge. Hence, we decided to combine both techniques. Our auto-tuner interacts with both models to arrive at good configurations. Once user selects a query to auto tune, the next configuration is computed from models and the query is run with it. Metrics from event log of the run is fed back to models to obtain next configuration. Auto-tuner will continue exploring good configurations until it meets the fixed budget specified by the user. We found that in practice, this method gives much better configurations compared to configurations chosen even by experts on real workload and converges soon to optimal configuration. In this talk, we will present a novel ML model technique and the way it was combined with our earlier approach. Results on real workload will be presented along with limitations and challenges in productionizing them. [1] Margoor et al,'Automatic Tuning of SQL-on-Hadoop Engines' 2018,IEEE CLOUD
Using Apache Spark to analyze large datasets in the cloud presents a range of challenges. Different stages of your pipeline may be constrained by CPU, memory, disk and/or network IO. But what if all those stages have to run on the same cluster? In the cloud, you have limited control over the hardware your cluster runs on.
You may have even less control over the size and format of your raw input files. Performance tuning is an iterative and experimental process. It’s frustrating with very large datasets: what worked great with 30 billion rows may not work at all with 400 billion rows. But with strategic optimizations and compromises, 50+ TiB datasets can be no big deal.
By using Spark UI and simple metrics, explore how to diagnose and remedy issues on jobs:
Sizing the cluster based on your dataset (shuffle partitions)
Ingestion challenges – well begun is half done (globbing S3, small files)
Managing memory (sorting GC – when to go parallel, when to go G1, when offheap can help you)
Shuffle (give a little to get a lot – configs for better out of box shuffle) – Spill (partitioning for the win)
Scheduling (FAIR vs FIFO, is there a difference for your pipeline?)
Caching and persistence (it’s the cost of doing business, so what are your options?)
Fault tolerance (blacklisting, speculation, task reaping)
Making the best of a bad deal (skew joins, windowing, UDFs, very large query plans)
Writing to S3 (dealing with write partitions, HDFS and s3DistCp vs writing directly to S3)
In this session you will learn about how H&M have created a reference architecture for deploying their machine learning models on azure utilizing databricks following devOps principles. The architecture is currently used in production and has been iterated over multiple times to solve some of the discovered pain points. The team that are presenting is currently responsible for ensuring that best practices are implemented on all H&M use cases covering 100''s of models across the entire H&M group. <br> This architecture will not only give benefits to data scientist to use notebooks for exploration and modeling but also give the engineers a way to build robust production grade code for deployment. The session will in addition cover topics like lifecycle management, traceability, automation, scalability and version control.
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Databricks
This document discusses using TigerGraph for real-time fraud detection at scale by integrating real-time deep-link graph analytics with Spark AI. It provides examples of common TigerGraph use cases including recommendation engines, fraud detection, and risk assessment. It then discusses how TigerGraph can power explainable AI by extracting over 100 graph-based features from entities and their relationships to feed machine learning models. Finally, it shares a case study of how China Mobile used TigerGraph for real-time phone-based fraud detection by analyzing over 600 million phone numbers and 15 billion call connections as a graph to detect various types of fraud in real-time.
Tactical Data Science Tips: Python and Spark TogetherDatabricks
This document summarizes a talk given by Bill Chambers on processing data with Spark and Python. It discusses 5 ways to process data: RDDs, DataFrames, Koalas, UDFs, and pandasUDFs. It then covers two data science use cases - growth forecasting and churn prediction - and how they were implemented using these different processing methods based on characteristics like the number of input rows, features, and required models. The talk emphasizes using DataFrames and pandasUDFs for optimal performance and flexibility. It also highlights tracking models with MLFlow for consistency in production.
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...Databricks
In this talk, we will present how we analyze, predict, and visualize network quality data, as a spark AI use case in a telecommunications company. SK Telecom is the largest wireless telecommunications provider in South Korea with 300,000 cells and 27 million subscribers. These 300,000 cells generate data every 10 seconds, the total size of which is 60TB, 120 billion records per day.
In order to address previous problems of Spark based on HDFS, we have developed a new data store for SparkSQL consisting of Redis and RocksDB that allows us to distribute and store these data in real time and analyze it right away, We were not satisfied with being able to analyze network quality in real-time, we tried to predict network quality in near future in order to quickly detect and recover network device failures, by designing network signal pattern-aware DNN model and a new in-memory data pipeline from spark to tensorflow.
In addition, by integrating Apache Livy and MapboxGL to SparkSQL and our new store, we have built a geospatial visualization system that shows the current population and signal strength of 300,000 cells on the map in real time.
AI on Spark for Malware Analysis and Anomalous Threat DetectionDatabricks
At Avast, we believe everyone has the right to be safe. We are dedicated to creating a world that provides safety and privacy for all, not matter where you are, who you are, or how you connect. With over 1.5 billion attacks stopped and 30 million new executable files monthly, big data pipelines are crucial for the security of our customers. At Avast we are leveraging Apache Spark machine learning libraries and TensorflowOnSpark for a variety of tasks ranging from marketing and advertisement, through network security to malware detection. This talk will cover our main cybersecurity usecases of Spark. After describing our cluster environment we will first demonstrate anomaly detection on time series of threats. Having thousands of types of attacks and malware, AI helps human analysts select and focus on most urgent or dire threats. We will walk through our setup for distributed training of deep neural networks with Tensorflow to deploying and monitoring of a streaming anomaly detection application with trained model. Next we will show how we use Spark for analysis and clustering of malicious files and large scale experimentation to automatically process and handle changes in malware. In the end, we will give comparison to other tools we used for solving those problems.
Blue Pill/Red Pill: The Matrix of Thousands of Data StreamsDatabricks
Designing a streaming application which has to process data from 1 or 2 streams is easy. Any streaming framework which provides scalability, high-throughput, and fault-tolerance would work. But when the number of streams start growing in order 100s or 1000s, managing them can be daunting. How would you share resources among 1000s of streams with all of them running 24×7? Manage their state, Apply advanced streaming operations, Add/Delete streams without restarting? This talk explains common scenarios & shows techniques that can handle thousands of streams using Spark Structured Streaming.
Stream, Stream, Stream: Different Streaming Methods with Apache Spark and KafkaDatabricks
At NMC (Nielsen Marketing Cloud) we provide our customers (marketers and publishers) real-time analytics tools to profile their target audiences. To achieve that, we need to ingest billions of events per day into our big data stores, and we need to do it in a scalable yet cost-efficient manner.
In this session, we will discuss how we continuously transform our data infrastructure to support these goals. Specifically, we will review how we went from CSV files and standalone Java applications all the way to multiple Kafka and Spark clusters, performing a mixture of Streaming and Batch ETLs, and supporting 10x data growth We will share our experience as early-adopters of Spark Streaming and Spark Structured Streaming, and how we overcame technical barriers (and there were plenty). We will present a rather unique solution of using Kafka to imitate streaming over our Data Lake, while significantly reducing our cloud services’ costs. Topics include:
Kafka and Spark Streaming for stateless and stateful use-cases
Spark Structured Streaming as a possible alternative
Combining Spark Streaming with batch ETLs
”Streaming” over Data Lake using Kafka
SparkML: Easy ML Productization for Real-Time BiddingDatabricks
dataxu bids on ads in real-time on behalf of its customers at the rate of 3 million requests a second and trains on past bids to optimize for future bids. Our system trains thousands of advertiser-specific models and runs multi-terabyte datasets. In this presentation we will share the lessons learned from our transition towards a fully automated Spark-based machine learning system and how this has drastically reduced the time to get a research idea into production. We'll also share how we: - continually ship models to production - train models in an unattended fashion with auto-tuning capabilities - tune and overbooked cluster resources for maximum performance - ported our previous ML solution into Spark - evaluate the performance of high-rate bidding models
Speakers: Maximo Gurmendez, Javier Buquet
Going Real-Time: Creating Frequently-Updating Datasets for Personalization: S...Spark Summit
Streaming applications have often been complex to design and maintain because of the significant upfront infrastructure investment required. However, with the advent of Spark an easy transition to stream processing is now available, enabling personalization applications and experiments to consume near real-time data without massive development cycles.
Our decision to evaluate Spark as our stream processing engine was primarily led by the following considerations: 1) Ease of development for the team (already familiar with spark for batch), 2) the scope/requirements of our problem, 3) re-usability of code from spark batch jobs, and 4) Spark support from infrastructure teams within the company.
In this session, we will present our experience using Spark for stream processing unbounded datasets in the personalization space. The datasets consisted of, but were not limited, to the stream of playback events that are used as feedback for all personalization algorithms. These plays are used to extract specific behaviors which are highly predictive of a customer’s enjoyment of our service. This dataset is massive and has to be further enriched by other online and offline Netflix data sources. These datasets, when consumed by our machine learning models, directly affect the customer’s personalized experience, which means that the impact is high and tolerance for failure is low. We’ll talk about the experiments we did to compare Spark with other streaming solutions like Apache Flink , the impact that we had on our customers, and most importantly, the challenges we faced.
Take-aways for the audience:
1) A great example of stream processing large, personalization datasets at scale.
2) An increased awareness of the costs/requirements for making the transition from batch to streaming successfully.
3) Exposure to some of the technical challenges that should be expected along the way.
Unifying State-of-the-Art AI and Big Data in Apache Spark with Reynold XinDatabricks
This document summarizes the history and development of Apache Spark and Project Hydrogen. It discusses how Spark introduced DataFrames and Tungsten to improve performance. It then explains two challenges in supporting machine learning frameworks - data exchange and incompatible execution models between Spark and ML frameworks. Project Hydrogen aims to address these by introducing vectorized data exchange and a barrier execution model to unify Spark and distributed ML training. This allows 10 to 100x faster training and reconciles the different execution models.
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowDatabricks
This document discusses platforms for democratizing data science and enabling enterprise grade machine learning applications. It introduces Flock, a platform that aims to automate the machine learning lifecycle including tracking experiments, managing models, and deploying models for production. It demonstrates Flock by instrumenting Python code for a light gradient boosted machine model to track parameters, log models to MLFlow, convert the model to ONNX, optimize it, and deploy it as a REST API. Future work discussed includes improving Flock's data governance, generalizing auto-tracking capabilities, and integrating with other systems like SQL and Spark for end-to-end pipeline provenance.
Real-Time Analytics and Actions Across Large Data Sets with Apache SparkDatabricks
Around the world, businesses are turning to AI to transform the way they operate and serve their customers. But before they can implement these technologies, companies must address the roadblock of moving from batch analytics to making real-time decisions by rapidly accessing and analyzing the relevant information amidst a sea of data. Yaron will explain how to make Spark handle multivariate real-time, historical and event data simultaneously to provide immediate and intelligent responses. He will present several time sensitive use-cases including fraud detection, prevention of outages and customer recommendations to demonstrate how to perform predictive analytics and real-time actions with Spark.
Speaker: Yaron Ekshtein
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Spark Summit
The document discusses Conviva's Unified Framework (CUF) for analyzing video streaming data in real-time, near real-time, and offline using Spark and Databricks. It summarizes Conviva's platform for measuring video quality of experience across devices and networks. The framework unifies the three analysis stacks onto Spark to share code and insights. Using Databricks improves the offline analysis speed and enables data scientists to independently explore large datasets and build machine learning models.
Distributed Models Over Distributed Data with MLflow, Pyspark, and PandasDatabricks
Does more data always improve ML models? Is it better to use distributed ML instead of single node ML?
In this talk I will show that while more data often improves DL models in high variance problem spaces (with semi or unstructured data) such as NLP, image, video more data does not significantly improve high bias problem spaces where traditional ML is more appropriate. Additionally, even in the deep learning domain, single node models can still outperform distributed models via transfer learning.
Data scientists have pain points running many models in parallel automating the experimental set up. Getting others (especially analysts) within an organization to use their models Databricks solves these problems using pandas udfs, ml runtime and MLflow.
Using SparkML to Power a DSaaS (Data Science as a Service): Spark Summit East...Spark Summit
The document discusses Sparkle, a solution built by Comcast to address challenges in processing massive amounts of data and enabling data science workflows at scale. Sparkle is a centralized processing system with SQL and machine learning capabilities that is highly scalable and accessible via a REST API. It is used by Comcast to power various use cases including churn modeling, price elasticity analysis, and direct mail campaign optimization.
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...Spark Summit
In this presentation, we are going to talk about the state of the art infrastructure we have established at Walmart Labs for the Search product using Spark Streaming and DataFrames. First, we have been able to successfully use multiple micro batch spark streaming pipelines to update and process information like product availability, pick up today etc. along with updating our product catalog information in our search index to up to 10,000 kafka events per sec in near real-time. Earlier, all the product catalog changes in the index had a 24 hour delay, using Spark Streaming we have made it possible to see these changes in near real-time. This addition has provided a great boost to the business by giving the end-costumers instant access to features likes availability of a product, store pick up, etc.
Second, we have built a scalable anomaly detection framework purely using Spark Data Frames that is being used by our data pipelines to detect abnormality in search data. Anomaly detection is an important problem not only in the search domain but also many domains such as performance monitoring, fraud detection, etc. During this, we realized that not only are Spark DataFrames able to process information faster but also are more flexible to work with. One could write hive like queries, pig like code, UDFs, UDAFs, python like code etc. all at the same place very easily and can build DataFrame template which can be used and reused by multiple teams effectively. We believe that if implemented correctly Spark Data Frames can potentially replace hive/pig in big data space and have the potential of becoming unified data language.
We conclude that Spark Streaming and Data Frames are the key to processing extremely large streams of data in real-time with ease of use.
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...Databricks
Debugging big data analytics in Data-Intensive Scalable Computing (DISC) systems is a time-consuming effort. Today’s DISC systems offer very little tooling for debugging and, as a result, programmers spend countless hours analyzing log files and performing trial and error debugging. To aid this effort, UCLA developed BigDebug, an interactive debugging tool and automated fault localization service to help Apache Spark developers in debugging big data analytics.
To emulate interactive step-wise debugging without reducing throughput, BigDebug provides simulated breakpoints that enable a user to inspect a program without actually pausing the entire distributed computation. It also supports on-demand watchpoints that enable a user to retrieve intermediate data using a guard predicate and transfer the selected data on demand. To understand the flow of individual records within a pipeline of RDD transformations, BigDebug provides data provenance capability, which can help understand how errors propagate through data processing steps. To support efficient trial-and-error debugging, BigDebug enables users to change program logic in response to an error at runtime through a realtime code fix feature, and selectively replay the execution from that step. Finally, BigDebug proposes an automated fault localization service that leverages all the above features together to isolate failure-inducing inputs, diagnose the root cause of an error, and resume the workflow for only affected data and code.
The BigDebug system should contribute to improving Spark developerproductivity and the correctness of their Big Data applications. This big data debugging effort is led by UCLA Professors Miryung Kim and Tyson Condie, and produced several research papers in top Software Engineering and Database conferences. The current version of BigDebug is publicly available at https://sites.google.com/site/sparkbigdebug/.
Simplify and Scale Data Engineering Pipelines with Delta LakeDatabricks
We’re always told to ‘Go for the Gold!,’ but how do we get there? This talk will walk you through the process of moving your data to the finish fine to get that gold metal! A common data engineering pipeline architecture uses tables that correspond to different quality levels, progressively adding structure to the data: data ingestion (‘Bronze’ tables), transformation/feature engineering (‘Silver’ tables), and machine learning training or prediction (‘Gold’ tables). Combined, we refer to these tables as a ‘multi-hop’ architecture. It allows data engineers to build a pipeline that begins with raw data as a ‘single source of truth’ from which everything flows. In this session, we will show how to build a scalable data engineering data pipeline using Delta Lake, so you can be the champion in your organization.
Data Warehousing with Spark Streaming at ZalandoDatabricks
Zalandos AI-driven products and distributed landscape of analytical data marts cannot wait for long-running, hard-to-recover, monolithic batch jobs taking all night to calculate already outdated data. Modern data integration pipelines need to deliver fast and easy to consume data sets in high quality. Based on Spark Streaming and Delta, the central data warehousing team was able to deliver widely-used master data as S3 or Kafka streams and snapshots at the same time.
The talk will cover challenges in our fashion data platform and a detailed architectural deep dive about separation of integration from enrichment, providing streams as well as snapshots and feeding the data to distributed data marts. Finally, lessons learned and best practices about Delta’s MERGE command, Scala API vs Spark SQL and schema evolution give more insights and guidance for similar use cases.
Lessons Learned from Using Spark for Evaluating Road Detection at BMW Autonom...Databricks
Getting cars to drive autonomously is one of the most exciting problems these days. One of the key challenges is making them drive safely, which requires processing large amounts of data. In our talk we would like to focus on only one task of a self-driving car, namely road detection. Road detection is a software component which needs to be safe for being able to keep the car in the current lane. In order to track the progress of such a software component, a well-designed KPI (key performance indicators) evaluation pipeline is required. In this presentation we would like to show you how we incorporate Spark in our pipeline to deal with huge amounts of data and operate under strict scalability constraints for gathering relevant KPIs. Additionally, we would like to mention several lessons learned from using Spark in this environment.
Insights Without Tradeoffs: Using Structured StreamingDatabricks
Apache Spark 2.0 introduced Structured Streaming which allows users to continually and incrementally update your view of the world as new data arrives while still using the same familiar Spark SQL abstractions. Michael Armbrust from Databricks talks about the progress made since the release of Spark 2.0 on robustness, latency, expressiveness and observability, using examples of production end-to-end continuous applications.
Speaker: Michael Armbrust
Video: http://go.databricks.com/videos/spark-summit-east-2017/using-structured-streaming-apache-spark
This talk was originally presented at Spark Summit East 2017.
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...Databricks
As the development of semiconductor devices, manufacturing system leads to improve productivity and efficiency for wafer fabrication. Owing to such improvement, the number of wafers yielded from the fabrication process has been rapidly increasing. However, current software systems for semiconductor wafers are not aimed at processing large number of wafers. To resolve this issue, the BISTel (a world-class provider of manufacturing intelligence solutions and services for manufacturers) tries to build several products for big data such as Trace Analyzer (TA) and Map Analyzer (MA) using Apache Spark. TA is to analyze raw trace data from a manufacturing process. It captures details on all variable changes, big and small and give the traces' statistical summary (i.e.: min, max, slope, average, etc.). Several BISTel's customers, which are the top-tier semiconductor company in the world use the TA to analyze the massive raw trace data from their manufacturing process. Especially, TA is able to manage terabytes of data by applying Apache Spark's APIs. MA is an advanced pattern recognition tool that sorts wafer yield maps and automatically identify common yield loss patterns. Also, some semiconductor companies use MA to identify clustering patterns for more than 100,000 wafers, which can be considered as big data in the semiconductor area. This talk will introduce these two products which are developed based on the Apache Spark and present how to handle the large-scale semiconductor data in the aspects of software techniques.
Speakers: Seungchul Lee, Daeyoung Kim
Tech-Talk at Bay Area Spark Meetup
Apache Spark(tm) has rapidly become a key tool for data scientists to explore, understand and transform massive datasets and to build and train advanced machine learning models. The question then becomes, how do I deploy these model to a production environment. How do I embed what I have learned into customer facing data applications. Like all things in engineering, it depends.
In this meetup, we will discuss best practices from Databricks on how our customers productionize machine learning models and do a deep dive with actual customer case studies and live demos of a few example architectures and code in Python and Scala. We will also briefly touch on what is coming in Apache Spark 2.X with model serialization and scoring options.
Streaming Analytics for Financial EnterprisesDatabricks
Streaming Analytics (or Fast Data processing) is becoming an increasingly popular subject in the financial sector. There are two main reasons for this development. First, more and more data has to be analyze in real-time to prevent fraud; all transactions that are being processed by banks have to pass and ever-growing number of tests to make sure that the money is coming from and going to legitimate sources. Second, customers want to have friction-less mobile experiences while managing their money, such as immediate notifications and personal advise based on their online behavior and other users’ actions.
A typical streaming analytics solution follows a ‘pipes and filters’ pattern that consists of three main steps: detecting patterns on raw event data (Complex Event Processing), evaluating the outcomes with the aid of business rules and machine learning algorithms, and deciding on the next action. At the core of this architecture is the execution of predictive models that operate on enormous amounts of never-ending data streams.
In this talk, I’ll present an architecture for streaming analytics solutions that covers many use cases that follow this pattern: actionable insights, fraud detection, log parsing, traffic analysis, factory data, the IoT, and others. I’ll go through a few architecture challenges that will arise when dealing with streaming data, such as latency issues, event time vs server time, and exactly-once processing. The solution is build on the KISSS stack: Kafka, Ignite, and Spark Structured Streaming. The solution is open source and available on GitHub.
This document discusses Industry 4.0 and the transition to smart manufacturing. It outlines a roadmap with the following phases:
1. Develop a platform aligned with Lambda Architecture separating data ingestion, streaming, and storage layers. Introduce a data lake.
2. Migrate data to the data lake using technologies like Kafka, MQTT, and REST. Use Redis, Spark, and MongoDB for real-time analytics.
3. Integrate migrated applications and introduce ML models initially using existing data sets to train linear models. Gradually transition to more advanced hybrid models like SOM-SVM.
This document discusses analytics and IoT. It covers key topics like data collection from IoT sensors, data storage and processing using big data tools, and performing descriptive, predictive, and prescriptive analytics. Cloud platforms and visualization tools that can be used to build end-to-end IoT and analytics solutions are also presented. The document provides an overview of building IoT solutions for collecting, analyzing, and gaining insights from sensor data.
Blue Pill/Red Pill: The Matrix of Thousands of Data StreamsDatabricks
Designing a streaming application which has to process data from 1 or 2 streams is easy. Any streaming framework which provides scalability, high-throughput, and fault-tolerance would work. But when the number of streams start growing in order 100s or 1000s, managing them can be daunting. How would you share resources among 1000s of streams with all of them running 24×7? Manage their state, Apply advanced streaming operations, Add/Delete streams without restarting? This talk explains common scenarios & shows techniques that can handle thousands of streams using Spark Structured Streaming.
Stream, Stream, Stream: Different Streaming Methods with Apache Spark and KafkaDatabricks
At NMC (Nielsen Marketing Cloud) we provide our customers (marketers and publishers) real-time analytics tools to profile their target audiences. To achieve that, we need to ingest billions of events per day into our big data stores, and we need to do it in a scalable yet cost-efficient manner.
In this session, we will discuss how we continuously transform our data infrastructure to support these goals. Specifically, we will review how we went from CSV files and standalone Java applications all the way to multiple Kafka and Spark clusters, performing a mixture of Streaming and Batch ETLs, and supporting 10x data growth We will share our experience as early-adopters of Spark Streaming and Spark Structured Streaming, and how we overcame technical barriers (and there were plenty). We will present a rather unique solution of using Kafka to imitate streaming over our Data Lake, while significantly reducing our cloud services’ costs. Topics include:
Kafka and Spark Streaming for stateless and stateful use-cases
Spark Structured Streaming as a possible alternative
Combining Spark Streaming with batch ETLs
”Streaming” over Data Lake using Kafka
SparkML: Easy ML Productization for Real-Time BiddingDatabricks
dataxu bids on ads in real-time on behalf of its customers at the rate of 3 million requests a second and trains on past bids to optimize for future bids. Our system trains thousands of advertiser-specific models and runs multi-terabyte datasets. In this presentation we will share the lessons learned from our transition towards a fully automated Spark-based machine learning system and how this has drastically reduced the time to get a research idea into production. We'll also share how we: - continually ship models to production - train models in an unattended fashion with auto-tuning capabilities - tune and overbooked cluster resources for maximum performance - ported our previous ML solution into Spark - evaluate the performance of high-rate bidding models
Speakers: Maximo Gurmendez, Javier Buquet
Going Real-Time: Creating Frequently-Updating Datasets for Personalization: S...Spark Summit
Streaming applications have often been complex to design and maintain because of the significant upfront infrastructure investment required. However, with the advent of Spark an easy transition to stream processing is now available, enabling personalization applications and experiments to consume near real-time data without massive development cycles.
Our decision to evaluate Spark as our stream processing engine was primarily led by the following considerations: 1) Ease of development for the team (already familiar with spark for batch), 2) the scope/requirements of our problem, 3) re-usability of code from spark batch jobs, and 4) Spark support from infrastructure teams within the company.
In this session, we will present our experience using Spark for stream processing unbounded datasets in the personalization space. The datasets consisted of, but were not limited, to the stream of playback events that are used as feedback for all personalization algorithms. These plays are used to extract specific behaviors which are highly predictive of a customer’s enjoyment of our service. This dataset is massive and has to be further enriched by other online and offline Netflix data sources. These datasets, when consumed by our machine learning models, directly affect the customer’s personalized experience, which means that the impact is high and tolerance for failure is low. We’ll talk about the experiments we did to compare Spark with other streaming solutions like Apache Flink , the impact that we had on our customers, and most importantly, the challenges we faced.
Take-aways for the audience:
1) A great example of stream processing large, personalization datasets at scale.
2) An increased awareness of the costs/requirements for making the transition from batch to streaming successfully.
3) Exposure to some of the technical challenges that should be expected along the way.
Unifying State-of-the-Art AI and Big Data in Apache Spark with Reynold XinDatabricks
This document summarizes the history and development of Apache Spark and Project Hydrogen. It discusses how Spark introduced DataFrames and Tungsten to improve performance. It then explains two challenges in supporting machine learning frameworks - data exchange and incompatible execution models between Spark and ML frameworks. Project Hydrogen aims to address these by introducing vectorized data exchange and a barrier execution model to unify Spark and distributed ML training. This allows 10 to 100x faster training and reconciles the different execution models.
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowDatabricks
This document discusses platforms for democratizing data science and enabling enterprise grade machine learning applications. It introduces Flock, a platform that aims to automate the machine learning lifecycle including tracking experiments, managing models, and deploying models for production. It demonstrates Flock by instrumenting Python code for a light gradient boosted machine model to track parameters, log models to MLFlow, convert the model to ONNX, optimize it, and deploy it as a REST API. Future work discussed includes improving Flock's data governance, generalizing auto-tracking capabilities, and integrating with other systems like SQL and Spark for end-to-end pipeline provenance.
Real-Time Analytics and Actions Across Large Data Sets with Apache SparkDatabricks
Around the world, businesses are turning to AI to transform the way they operate and serve their customers. But before they can implement these technologies, companies must address the roadblock of moving from batch analytics to making real-time decisions by rapidly accessing and analyzing the relevant information amidst a sea of data. Yaron will explain how to make Spark handle multivariate real-time, historical and event data simultaneously to provide immediate and intelligent responses. He will present several time sensitive use-cases including fraud detection, prevention of outages and customer recommendations to demonstrate how to perform predictive analytics and real-time actions with Spark.
Speaker: Yaron Ekshtein
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Spark Summit
The document discusses Conviva's Unified Framework (CUF) for analyzing video streaming data in real-time, near real-time, and offline using Spark and Databricks. It summarizes Conviva's platform for measuring video quality of experience across devices and networks. The framework unifies the three analysis stacks onto Spark to share code and insights. Using Databricks improves the offline analysis speed and enables data scientists to independently explore large datasets and build machine learning models.
Distributed Models Over Distributed Data with MLflow, Pyspark, and PandasDatabricks
Does more data always improve ML models? Is it better to use distributed ML instead of single node ML?
In this talk I will show that while more data often improves DL models in high variance problem spaces (with semi or unstructured data) such as NLP, image, video more data does not significantly improve high bias problem spaces where traditional ML is more appropriate. Additionally, even in the deep learning domain, single node models can still outperform distributed models via transfer learning.
Data scientists have pain points running many models in parallel automating the experimental set up. Getting others (especially analysts) within an organization to use their models Databricks solves these problems using pandas udfs, ml runtime and MLflow.
Using SparkML to Power a DSaaS (Data Science as a Service): Spark Summit East...Spark Summit
The document discusses Sparkle, a solution built by Comcast to address challenges in processing massive amounts of data and enabling data science workflows at scale. Sparkle is a centralized processing system with SQL and machine learning capabilities that is highly scalable and accessible via a REST API. It is used by Comcast to power various use cases including churn modeling, price elasticity analysis, and direct mail campaign optimization.
Learnings Using Spark Streaming and DataFrames for Walmart Search: Spark Summ...Spark Summit
In this presentation, we are going to talk about the state of the art infrastructure we have established at Walmart Labs for the Search product using Spark Streaming and DataFrames. First, we have been able to successfully use multiple micro batch spark streaming pipelines to update and process information like product availability, pick up today etc. along with updating our product catalog information in our search index to up to 10,000 kafka events per sec in near real-time. Earlier, all the product catalog changes in the index had a 24 hour delay, using Spark Streaming we have made it possible to see these changes in near real-time. This addition has provided a great boost to the business by giving the end-costumers instant access to features likes availability of a product, store pick up, etc.
Second, we have built a scalable anomaly detection framework purely using Spark Data Frames that is being used by our data pipelines to detect abnormality in search data. Anomaly detection is an important problem not only in the search domain but also many domains such as performance monitoring, fraud detection, etc. During this, we realized that not only are Spark DataFrames able to process information faster but also are more flexible to work with. One could write hive like queries, pig like code, UDFs, UDAFs, python like code etc. all at the same place very easily and can build DataFrame template which can be used and reused by multiple teams effectively. We believe that if implemented correctly Spark Data Frames can potentially replace hive/pig in big data space and have the potential of becoming unified data language.
We conclude that Spark Streaming and Data Frames are the key to processing extremely large streams of data in real-time with ease of use.
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...Databricks
Debugging big data analytics in Data-Intensive Scalable Computing (DISC) systems is a time-consuming effort. Today’s DISC systems offer very little tooling for debugging and, as a result, programmers spend countless hours analyzing log files and performing trial and error debugging. To aid this effort, UCLA developed BigDebug, an interactive debugging tool and automated fault localization service to help Apache Spark developers in debugging big data analytics.
To emulate interactive step-wise debugging without reducing throughput, BigDebug provides simulated breakpoints that enable a user to inspect a program without actually pausing the entire distributed computation. It also supports on-demand watchpoints that enable a user to retrieve intermediate data using a guard predicate and transfer the selected data on demand. To understand the flow of individual records within a pipeline of RDD transformations, BigDebug provides data provenance capability, which can help understand how errors propagate through data processing steps. To support efficient trial-and-error debugging, BigDebug enables users to change program logic in response to an error at runtime through a realtime code fix feature, and selectively replay the execution from that step. Finally, BigDebug proposes an automated fault localization service that leverages all the above features together to isolate failure-inducing inputs, diagnose the root cause of an error, and resume the workflow for only affected data and code.
The BigDebug system should contribute to improving Spark developerproductivity and the correctness of their Big Data applications. This big data debugging effort is led by UCLA Professors Miryung Kim and Tyson Condie, and produced several research papers in top Software Engineering and Database conferences. The current version of BigDebug is publicly available at https://sites.google.com/site/sparkbigdebug/.
Simplify and Scale Data Engineering Pipelines with Delta LakeDatabricks
We’re always told to ‘Go for the Gold!,’ but how do we get there? This talk will walk you through the process of moving your data to the finish fine to get that gold metal! A common data engineering pipeline architecture uses tables that correspond to different quality levels, progressively adding structure to the data: data ingestion (‘Bronze’ tables), transformation/feature engineering (‘Silver’ tables), and machine learning training or prediction (‘Gold’ tables). Combined, we refer to these tables as a ‘multi-hop’ architecture. It allows data engineers to build a pipeline that begins with raw data as a ‘single source of truth’ from which everything flows. In this session, we will show how to build a scalable data engineering data pipeline using Delta Lake, so you can be the champion in your organization.
Data Warehousing with Spark Streaming at ZalandoDatabricks
Zalandos AI-driven products and distributed landscape of analytical data marts cannot wait for long-running, hard-to-recover, monolithic batch jobs taking all night to calculate already outdated data. Modern data integration pipelines need to deliver fast and easy to consume data sets in high quality. Based on Spark Streaming and Delta, the central data warehousing team was able to deliver widely-used master data as S3 or Kafka streams and snapshots at the same time.
The talk will cover challenges in our fashion data platform and a detailed architectural deep dive about separation of integration from enrichment, providing streams as well as snapshots and feeding the data to distributed data marts. Finally, lessons learned and best practices about Delta’s MERGE command, Scala API vs Spark SQL and schema evolution give more insights and guidance for similar use cases.
Lessons Learned from Using Spark for Evaluating Road Detection at BMW Autonom...Databricks
Getting cars to drive autonomously is one of the most exciting problems these days. One of the key challenges is making them drive safely, which requires processing large amounts of data. In our talk we would like to focus on only one task of a self-driving car, namely road detection. Road detection is a software component which needs to be safe for being able to keep the car in the current lane. In order to track the progress of such a software component, a well-designed KPI (key performance indicators) evaluation pipeline is required. In this presentation we would like to show you how we incorporate Spark in our pipeline to deal with huge amounts of data and operate under strict scalability constraints for gathering relevant KPIs. Additionally, we would like to mention several lessons learned from using Spark in this environment.
Insights Without Tradeoffs: Using Structured StreamingDatabricks
Apache Spark 2.0 introduced Structured Streaming which allows users to continually and incrementally update your view of the world as new data arrives while still using the same familiar Spark SQL abstractions. Michael Armbrust from Databricks talks about the progress made since the release of Spark 2.0 on robustness, latency, expressiveness and observability, using examples of production end-to-end continuous applications.
Speaker: Michael Armbrust
Video: http://go.databricks.com/videos/spark-summit-east-2017/using-structured-streaming-apache-spark
This talk was originally presented at Spark Summit East 2017.
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...Databricks
As the development of semiconductor devices, manufacturing system leads to improve productivity and efficiency for wafer fabrication. Owing to such improvement, the number of wafers yielded from the fabrication process has been rapidly increasing. However, current software systems for semiconductor wafers are not aimed at processing large number of wafers. To resolve this issue, the BISTel (a world-class provider of manufacturing intelligence solutions and services for manufacturers) tries to build several products for big data such as Trace Analyzer (TA) and Map Analyzer (MA) using Apache Spark. TA is to analyze raw trace data from a manufacturing process. It captures details on all variable changes, big and small and give the traces' statistical summary (i.e.: min, max, slope, average, etc.). Several BISTel's customers, which are the top-tier semiconductor company in the world use the TA to analyze the massive raw trace data from their manufacturing process. Especially, TA is able to manage terabytes of data by applying Apache Spark's APIs. MA is an advanced pattern recognition tool that sorts wafer yield maps and automatically identify common yield loss patterns. Also, some semiconductor companies use MA to identify clustering patterns for more than 100,000 wafers, which can be considered as big data in the semiconductor area. This talk will introduce these two products which are developed based on the Apache Spark and present how to handle the large-scale semiconductor data in the aspects of software techniques.
Speakers: Seungchul Lee, Daeyoung Kim
Tech-Talk at Bay Area Spark Meetup
Apache Spark(tm) has rapidly become a key tool for data scientists to explore, understand and transform massive datasets and to build and train advanced machine learning models. The question then becomes, how do I deploy these model to a production environment. How do I embed what I have learned into customer facing data applications. Like all things in engineering, it depends.
In this meetup, we will discuss best practices from Databricks on how our customers productionize machine learning models and do a deep dive with actual customer case studies and live demos of a few example architectures and code in Python and Scala. We will also briefly touch on what is coming in Apache Spark 2.X with model serialization and scoring options.
Streaming Analytics for Financial EnterprisesDatabricks
Streaming Analytics (or Fast Data processing) is becoming an increasingly popular subject in the financial sector. There are two main reasons for this development. First, more and more data has to be analyze in real-time to prevent fraud; all transactions that are being processed by banks have to pass and ever-growing number of tests to make sure that the money is coming from and going to legitimate sources. Second, customers want to have friction-less mobile experiences while managing their money, such as immediate notifications and personal advise based on their online behavior and other users’ actions.
A typical streaming analytics solution follows a ‘pipes and filters’ pattern that consists of three main steps: detecting patterns on raw event data (Complex Event Processing), evaluating the outcomes with the aid of business rules and machine learning algorithms, and deciding on the next action. At the core of this architecture is the execution of predictive models that operate on enormous amounts of never-ending data streams.
In this talk, I’ll present an architecture for streaming analytics solutions that covers many use cases that follow this pattern: actionable insights, fraud detection, log parsing, traffic analysis, factory data, the IoT, and others. I’ll go through a few architecture challenges that will arise when dealing with streaming data, such as latency issues, event time vs server time, and exactly-once processing. The solution is build on the KISSS stack: Kafka, Ignite, and Spark Structured Streaming. The solution is open source and available on GitHub.
This document discusses Industry 4.0 and the transition to smart manufacturing. It outlines a roadmap with the following phases:
1. Develop a platform aligned with Lambda Architecture separating data ingestion, streaming, and storage layers. Introduce a data lake.
2. Migrate data to the data lake using technologies like Kafka, MQTT, and REST. Use Redis, Spark, and MongoDB for real-time analytics.
3. Integrate migrated applications and introduce ML models initially using existing data sets to train linear models. Gradually transition to more advanced hybrid models like SOM-SVM.
This document discusses analytics and IoT. It covers key topics like data collection from IoT sensors, data storage and processing using big data tools, and performing descriptive, predictive, and prescriptive analytics. Cloud platforms and visualization tools that can be used to build end-to-end IoT and analytics solutions are also presented. The document provides an overview of building IoT solutions for collecting, analyzing, and gaining insights from sensor data.
Designing data pipelines for analytics and machine learning in industrial set...DataWorks Summit
Machine learning has made it possible for technologists to do amazing things with data. Its arrival coincides with the evolution of networked manufacturing systems driven by IoT. In this presentation we’ll examine the rise of IoT and ML from a practitioners perspective to better understand how applications of AI can be built in industrial settings. We'll walk through a case study that combines multiple IoT and ML technologies to monitor and optimize an industrial heating and cooling HVAC system. Through this instructive example you'll see how the following components can be put into action:
1. A StreamSets data pipeline that sources from MQTT and persists to OpenTSDB
2. A TensorFlow model that predicts anomalies in streaming sensor data
3. A Spark application that derives new event streams for real-time alerts
4. A Grafana dashboard that displays factory sensors and alerts in an interactive view
By walking through this solution step-by-step, you'll learn how to build the fundamental capabilities needed in order to handle endless streams of IoT data and derive ML insights from that data:
1. How to transport IoT data through scalable publish/subscribe event streams
2. How to process data streams with transformations and filters
3. How to persist data streams with the timeliness required for interactive dashboards
4. How to collect labeled datasets for training machine learning models
At the end of this presentation you will have learned how a variety of tools can be used together to build ML enhanced applications and data products for instrumented manufacturing systems.
Speakers
Ian Downard, Sr. Developer Evangelist, MapR
William Ochandarena, Senior Director of Product Management, MapR
Wikibon #IoT #HyperConvergence Presentation via @theCUBE John Furrier
SiliconANGLE Media Research team at Wikibon prepared this presentation to share their findings on a new category called #IoT #HyperConvergence Analytics
Crowd Chat Conversation here:
https://www.crowdchat.net/chat/c3BvdF9vYmpfMTg4Mg==
More and more data is streaming in from many sources in order to drive operations in real-time.
When driving decisions with speed at scale is the norm, the traditional trade-off in analytics between simple but fast and slow but sophisticated has to give way.
Traditionally fast data comes to rest in a database after the simpler in-flight analytics. Only after it is comes to rest can a database perform sophisticated analytics. But in-flight and at rest analytics have to come together in a single, hyper-converged analytic platform.
A presentation pertaining to the integration of real-time data to the cloud with significant potential in the areas of Industrial IT,Real-time sensor information processing and Smart grids applied to various vertical industries. This is related to my blog post at www.cloudshoring.in
Streaming Analytics Comparison of Open Source Frameworks, Products, Cloud Ser...Kai Wähner
This document provides an overview of streaming analytics and compares different streaming analytics frameworks. It begins with real-world use cases in various industries and then defines what a data stream is. The core components of a streaming analytics processing pipeline are described, including ingestion, preprocessing, and real-time and batch processing. Popular open-source frameworks like Apache Storm and AWS Kinesis are highlighted. The document concludes by noting that both streaming analytics frameworks and products are growing significantly to enable real-time analytics on streaming data.
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...Otávio Carvalho
Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science - Federal University of Rio Grande do - Brazil
ML on Big Data: Real-Time Analysis on Time SeriesSigmoid
This document discusses building a machine learning model for real-time time series analysis on big data. It describes using Spark and Kafka to ingest streaming sensor data and train a model to identify patterns and predict failures. The training phase identifies concepts in historical data to build a knowledge base. In real-time, incoming data is processed in microbatches to identify patterns and sequences matching the concepts, triggering alerts. Challenges addressed include handling large volumes of small files and sharing data between batches for signals spanning multiple batches.
The document discusses the need for a model management framework to ease the development and deployment of analytical models at scale. It describes how such a framework could capture and template models created by data scientists, enable faster model iteration through a brute force approach, and visually compare models. The framework would reduce complexity for data scientists and allow business analysts to participate in modeling. It is presented as essential for enabling predictive modeling on data from thousands of sensors in an Internet of Things platform.
IIoT + Predictive Analytics: Solving for Disruption in Oil & Gas and Energy &...DataWorks Summit
The electric grid has evolved from linear generation and delivery to a complex mix of renewables, prosumer-generated electricity, and electric vehicles (EVs). Smart meters are generating loads of data. As a result, traditional forecasting models and technologies can no longer adequately predict supply and demand. Extreme weather, an aging infrastructure, and the burgeoning worldwide population are also contributing to increased outage frequency.
In oil and gas, commodity pricing pressures, resulting workforce reductions, and the need to reduce failures, automate workflows, and increase operational efficiencies are driving operators to shift analytics initiatives to advanced data-driven applications to complement physics-based tools.
While sensored equipment and legacy surveillance applications are generating massive amounts of data, just 2% is understood and being leveraged. Operationalizing it along with external datasets enables a shift from time-based to condition-based maintenance, better forecasting and dramatic reductions in unplanned downtime.
The session includes plenty of real-world anecdotes. For example, how an electric power holding company reduced the time it took to investigate energy theft from six months to less than one hour, producing theft leads in minutes and an expected multi-million dollar ROI. How a global offshore contract drilling services provider implemented an open source IIoT solution across its fleet of assets in less than a year, enabling remote monitoring, predictive analytics and maintenance.
Key takeaways:
• How are new processes for data collection, storage and democratization making it accessible and usable at scale?
• Beyond time series data, what other data types are important to assess?
• What advantage are open source technologies providing to enterprises deploying IIoT?
• Why is collaboration important across industrial verticals to increase IIoT open source adoption?
Speaker
Kenneth Smith, General Manager, Energy, Hortonworks
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...HostedbyConfluent
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenzhong XU | Current 2022
If you are a data scientist or a platform engineer, you probably can relate to the pains of working with the current explosive growth of Data/ML technologies and toolings. With many overlapping options and steep learning curves for each, it’s increasingly challenging for data science teams. Many platform teams started thinking about building an abstracted ML platform layer to support generalized ML use cases. But there are many complexities involved, especially as the underlying real-time data is shifting into the mainstream.
In this talk, we’ll discuss why ML platforms can benefit from a simple and ""invisible"" abstraction. We’ll offer some evidence on why you should consider leveraging streaming technologies even if your use cases are not real-time yet. We’ll share learnings (combining both ML and Infra perspectives) about some of the hard complexities involved in building such simple abstractions, the design principles behind them, and some counterintuitive decisions you may come across along the way.
By the end of the talk, I hope data scientists can walk away with some tips on how to evaluate ML platforms, and platform engineers learned a few architectural and design tricks.
This document discusses big data, including opportunities and risks. It covers big data technologies, the big data market, opportunities and risks related to capital trends, and issues around algorithmic accountability and privacy. The document contains several sections that describe topics like the Internet of Things, Hadoop, analytics approaches for static versus streaming data, big data challenges, and deep learning. It also includes examples of big data use cases and discusses hype cycles, adoption curves, and strategies for big data adoption.
The document discusses challenges in the oil and gas industry with legacy equipment and the need for scalable IoT solutions. It proposes that AWS IoT architecture can address issues of security, scalability and integrating old and new devices by connecting things at the edge to analytics and computing resources in the cloud. Examples are given of how Ambyint has used high-resolution sensor data and machine learning on AWS to develop autonomous solutions for well optimization, improving productivity and reducing costs.
AI-Powered Streaming Analytics for Real-Time Customer ExperienceDatabricks
Interacting with customers in the moment and in a relevant, meaningful way can be challenging to organizations faced with hundreds of various data sources at the edge, on-premises, and in multiple clouds.
To capitalize on real-time customer data, you need a data management infrastructure that allows you to do three things:
1) Sense-Capture event data and stream data from a source, e.g. social media, web logs, machine logs, IoT sensors.
2) Reason-Automatically combine and process this data with existing data for context.
3) Act-Respond appropriately in a reliable, timely, consistent way. In this session we’ll describe and demo an AI powered streaming solution that can tackle the entire end-to-end sense-reason-act process at any latency (real-time, streaming, and batch) using Spark Structured Streaming.
The solution uses AI (e.g. A* and NLP for data structure inference and machine learning algorithms for ETL transform recommendations) and metadata to automate data management processes (e.g. parse, ingest, integrate, and cleanse dynamic and complex structured and unstructured data) and guide user behavior for real-time streaming analytics. It’s built on Spark Structured Streaming to take advantage of unified API’s, multi-latency and event time-based processing, out-of-order data delivery, and other capabilities.
You will gain a clear understanding of how to use Spark Structured Streaming for data engineering using an intelligent data streaming solution that unifies fast-lane data streaming and batch lane data processing to deliver in-the-moment next best actions that improve customer experience.
The document discusses developing effective models for analyzing power grid data in real-time and at scale. It outlines an iterative approach using historical sensor data to develop and validate event detection models. Initial runs revealed significant data quality issues that were addressed through exploratory analysis and custom filters. Once cleaned, the models effectively detected events. Ongoing work involves refining the models, applying them to real-time streams, and establishing an open data repository.
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...Kai Wähner
Kai Wähner (@KaiWaehner) is a Technology Evangelist and Community Director at TIBCO Software - a leading provider of integration and analytics middleware. Kai is an experience guy in broad variety of topics like Big Data, Advanced Analytics & Machine Learning, he loves to write articles and blog about new technologies and make talks. The talk is about 3 different projects where Kai's team built analytic models with technologies R, Apache Spark or H2O.ai which were deployed to real time processing. The use cases include predictive maintenance in manufacturing but also fraud detection in banking and context-specific pricing in insurance. For one of the cases, Kai gonna show detailed steps will be, how it was built and deployed using supervised/unsupervised ML.
Talk was done together with my colleague Ankitaa Bhowmick.
The document discusses migrating a data warehouse to the Databricks Lakehouse Platform. It outlines why legacy data warehouses are struggling, how the Databricks Platform addresses these issues, and key considerations for modern analytics and data warehousing. The document then provides an overview of the migration methodology, approach, strategies, and key takeaways for moving to a lakehouse on Databricks.
Data Lakehouse Symposium | Day 1 | Part 1Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
Data Lakehouse Symposium | Day 1 | Part 2Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The document discusses the challenges of modern data, analytics, and AI workloads. Most enterprises struggle with siloed data systems that make integration and productivity difficult. The future of data lies with a data lakehouse platform that can unify data engineering, analytics, data warehousing, and machine learning workloads on a single open platform. The Databricks Lakehouse platform aims to address these challenges with its open data lake approach and capabilities for data engineering, SQL analytics, governance, and machine learning.
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
In this session, learn how to quickly supplement your on-premises Hadoop environment with a simple, open, and collaborative cloud architecture that enables you to generate greater value with scaled application of analytics and AI on all your data. You will also learn five critical steps for a successful migration to the Databricks Lakehouse Platform along with the resources available to help you begin to re-skill your data teams.
Democratizing Data Quality Through a Centralized PlatformDatabricks
Bad data leads to bad decisions and broken customer experiences. Organizations depend on complete and accurate data to power their business, maintain efficiency, and uphold customer trust. With thousands of datasets and pipelines running, how do we ensure that all data meets quality standards, and that expectations are clear between producers and consumers? Investing in shared, flexible components and practices for monitoring data health is crucial for a complex data organization to rapidly and effectively scale.
At Zillow, we built a centralized platform to meet our data quality needs across stakeholders. The platform is accessible to engineers, scientists, and analysts, and seamlessly integrates with existing data pipelines and data discovery tools. In this presentation, we will provide an overview of our platform’s capabilities, including:
Giving producers and consumers the ability to define and view data quality expectations using a self-service onboarding portal
Performing data quality validations using libraries built to work with spark
Dynamically generating pipelines that can be abstracted away from users
Flagging data that doesn’t meet quality standards at the earliest stage and giving producers the opportunity to resolve issues before use by downstream consumers
Exposing data quality metrics alongside each dataset to provide producers and consumers with a comprehensive picture of health over time
Learn to Use Databricks for Data ScienceDatabricks
Data scientists face numerous challenges throughout the data science workflow that hinder productivity. As organizations continue to become more data-driven, a collaborative environment is more critical than ever — one that provides easier access and visibility into the data, reports and dashboards built against the data, reproducibility, and insights uncovered within the data.. Join us to hear how Databricks’ open and collaborative platform simplifies data science by enabling you to run all types of analytics workloads, from data preparation to exploratory analysis and predictive analytics, at scale — all on one unified platform.
Why APM Is Not the Same As ML MonitoringDatabricks
Application performance monitoring (APM) has become the cornerstone of software engineering allowing engineering teams to quickly identify and remedy production issues. However, as the world moves to intelligent software applications that are built using machine learning, traditional APM quickly becomes insufficient to identify and remedy production issues encountered in these modern software applications.
As a lead software engineer at NewRelic, my team built high-performance monitoring systems including Insights, Mobile, and SixthSense. As I transitioned to building ML Monitoring software, I found the architectural principles and design choices underlying APM to not be a good fit for this brand new world. In fact, blindly following APM designs led us down paths that would have been better left unexplored.
In this talk, I draw upon my (and my team’s) experience building an ML Monitoring system from the ground up and deploying it on customer workloads running large-scale ML training with Spark as well as real-time inference systems. I will highlight how the key principles and architectural choices of APM don’t apply to ML monitoring. You’ll learn why, understand what ML Monitoring can successfully borrow from APM, and hear what is required to build a scalable, robust ML Monitoring architecture.
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixDatabricks
Autonomy and ownership are core to working at Stitch Fix, particularly on the Algorithms team. We enable data scientists to deploy and operate their models independently, with minimal need for handoffs or gatekeeping. By writing a simple function and calling out to an intuitive API, data scientists can harness a suite of platform-provided tooling meant to make ML operations easy. In this talk, we will dive into the abstractions the Data Platform team has built to enable this. We will go over the interface data scientists use to specify a model and what that hooks into, including online deployment, batch execution on Spark, and metrics tracking and visualization.
Stage Level Scheduling Improving Big Data and AI IntegrationDatabricks
In this talk, I will dive into the stage level scheduling feature added to Apache Spark 3.1. Stage level scheduling extends upon Project Hydrogen by improving big data ETL and AI integration and also enables multiple other use cases. It is beneficial any time the user wants to change container resources between stages in a single Apache Spark application, whether those resources are CPU, Memory or GPUs. One of the most popular use cases is enabling end-to-end scalable Deep Learning and AI to efficiently use GPU resources. In this type of use case, users read from a distributed file system, do data manipulation and filtering to get the data into a format that the Deep Learning algorithm needs for training or inference and then sends the data into a Deep Learning algorithm. Using stage level scheduling combined with accelerator aware scheduling enables users to seamlessly go from ETL to Deep Learning running on the GPU by adjusting the container requirements for different stages in Spark within the same application. This makes writing these applications easier and can help with hardware utilization and costs.
There are other ETL use cases where users want to change CPU and memory resources between stages, for instance there is data skew or perhaps the data size is much larger in certain stages of the application. In this talk, I will go over the feature details, cluster requirements, the API and use cases. I will demo how the stage level scheduling API can be used by Horovod to seamlessly go from data preparation to training using the Tensorflow Keras API using GPUs.
The talk will also touch on other new Apache Spark 3.1 functionality, such as pluggable caching, which can be used to enable faster dataframe access when operating from GPUs.
Simplify Data Conversion from Spark to TensorFlow and PyTorchDatabricks
In this talk, I would like to introduce an open-source tool built by our team that simplifies the data conversion from Apache Spark to deep learning frameworks.
Imagine you have a large dataset, say 20 GBs, and you want to use it to train a TensorFlow model. Before feeding the data to the model, you need to clean and preprocess your data using Spark. Now you have your dataset in a Spark DataFrame. When it comes to the training part, you may have the problem: How can I convert my Spark DataFrame to some format recognized by my TensorFlow model?
The existing data conversion process can be tedious. For example, to convert an Apache Spark DataFrame to a TensorFlow Dataset file format, you need to either save the Apache Spark DataFrame on a distributed filesystem in parquet format and load the converted data with third-party tools such as Petastorm, or save it directly in TFRecord files with spark-tensorflow-connector and load it back using TFRecordDataset. Both approaches take more than 20 lines of code to manage the intermediate data files, rely on different parsing syntax, and require extra attention for handling vector columns in the Spark DataFrames. In short, all these engineering frictions greatly reduced the data scientists’ productivity.
The Databricks Machine Learning team contributed a new Spark Dataset Converter API to Petastorm to simplify these tedious data conversion process steps. With the new API, it takes a few lines of code to convert a Spark DataFrame to a TensorFlow Dataset or a PyTorch DataLoader with default parameters.
In the talk, I will use an example to show how to use the Spark Dataset Converter to train a Tensorflow model and how simple it is to go from single-node training to distributed training on Databricks.
Scaling your Data Pipelines with Apache Spark on KubernetesDatabricks
There is no doubt Kubernetes has emerged as the next generation of cloud native infrastructure to support a wide variety of distributed workloads. Apache Spark has evolved to run both Machine Learning and large scale analytics workloads. There is growing interest in running Apache Spark natively on Kubernetes. By combining the flexibility of Kubernetes and scalable data processing with Apache Spark, you can run any data and machine pipelines on this infrastructure while effectively utilizing resources at disposal.
In this talk, Rajesh Thallam and Sougata Biswas will share how to effectively run your Apache Spark applications on Google Kubernetes Engine (GKE) and Google Cloud Dataproc, orchestrate the data and machine learning pipelines with managed Apache Airflow on GKE (Google Cloud Composer). Following topics will be covered: – Understanding key traits of Apache Spark on Kubernetes- Things to know when running Apache Spark on Kubernetes such as autoscaling- Demonstrate running analytics pipelines on Apache Spark orchestrated with Apache Airflow on Kubernetes cluster.
Scaling and Unifying SciKit Learn and Apache Spark PipelinesDatabricks
Pipelines have become ubiquitous, as the need for stringing multiple functions to compose applications has gained adoption and popularity. Common pipeline abstractions such as “fit” and “transform” are even shared across divergent platforms such as Python Scikit-Learn and Apache Spark.
Scaling pipelines at the level of simple functions is desirable for many AI applications, however is not directly supported by Ray’s parallelism primitives. In this talk, Raghu will describe a pipeline abstraction that takes advantage of Ray’s compute model to efficiently scale arbitrarily complex pipeline workflows. He will demonstrate how this abstraction cleanly unifies pipeline workflows across multiple platforms such as Scikit-Learn and Spark, and achieves nearly optimal scale-out parallelism on pipelined computations.
Attendees will learn how pipelined workflows can be mapped to Ray’s compute model and how they can both unify and accelerate their pipelines with Ray.
Sawtooth Windows for Feature AggregationsDatabricks
In this talk about zipline, we will introduce a new type of windowing construct called a sawtooth window. We will describe various properties about sawtooth windows that we utilize to achieve online-offline consistency, while still maintaining high-throughput, low-read latency and tunable write latency for serving machine learning features.We will also talk about a simple deployment strategy for correcting feature drift – due operations that are not “abelian groups”, that operate over change data.
We want to present multiple anti patterns utilizing Redis in unconventional ways to get the maximum out of Apache Spark.All examples presented are tried and tested in production at Scale at Adobe. The most common integration is spark-redis which interfaces with Redis as a Dataframe backing Store or as an upstream for Structured Streaming. We deviate from the common use cases to explore where Redis can plug gaps while scaling out high throughput applications in Spark.
Niche 1 : Long Running Spark Batch Job – Dispatch New Jobs by polling a Redis Queue
· Why?
o Custom queries on top a table; We load the data once and query N times
· Why not Structured Streaming
· Working Solution using Redis
Niche 2 : Distributed Counters
· Problems with Spark Accumulators
· Utilize Redis Hashes as distributed counters
· Precautions for retries and speculative execution
· Pipelining to improve performance
Re-imagine Data Monitoring with whylogs and SparkDatabricks
In the era of microservices, decentralized ML architectures and complex data pipelines, data quality has become a bigger challenge than ever. When data is involved in complex business processes and decisions, bad data can, and will, affect the bottom line. As a result, ensuring data quality across the entire ML pipeline is both costly, and cumbersome while data monitoring is often fragmented and performed ad hoc. To address these challenges, we built whylogs, an open source standard for data logging. It is a lightweight data profiling library that enables end-to-end data profiling across the entire software stack. The library implements a language and platform agnostic approach to data quality and data monitoring. It can work with different modes of data operations, including streaming, batch and IoT data.
In this talk, we will provide an overview of the whylogs architecture, including its lightweight statistical data collection approach and various integrations. We will demonstrate how the whylogs integration with Apache Spark achieves large scale data profiling, and we will show how users can apply this integration into existing data and ML pipelines.
Raven: End-to-end Optimization of ML Prediction QueriesDatabricks
Machine learning (ML) models are typically part of prediction queries that consist of a data processing part (e.g., for joining, filtering, cleaning, featurization) and an ML part invoking one or more trained models. In this presentation, we identify significant and unexplored opportunities for optimization. To the best of our knowledge, this is the first effort to look at prediction queries holistically, optimizing across both the ML and SQL components.
We will present Raven, an end-to-end optimizer for prediction queries. Raven relies on a unified intermediate representation that captures both data processing and ML operators in a single graph structure.
This allows us to introduce optimization rules that
(i) reduce unnecessary computations by passing information between the data processing and ML operators
(ii) leverage operator transformations (e.g., turning a decision tree to a SQL expression or an equivalent neural network) to map operators to the right execution engine, and
(iii) integrate compiler techniques to take advantage of the most efficient hardware backend (e.g., CPU, GPU) for each operator.
We have implemented Raven as an extension to Spark’s Catalyst optimizer to enable the optimization of SparkSQL prediction queries. Our implementation also allows the optimization of prediction queries in SQL Server. As we will show, Raven is capable of improving prediction query performance on Apache Spark and SQL Server by up to 13.1x and 330x, respectively. For complex models, where GPU acceleration is beneficial, Raven provides up to 8x speedup compared to state-of-the-art systems. As part of the presentation, we will also give a demo showcasing Raven in action.
Processing Large Datasets for ADAS Applications using Apache SparkDatabricks
Semantic segmentation is the classification of every pixel in an image/video. The segmentation partitions a digital image into multiple objects to simplify/change the representation of the image into something that is more meaningful and easier to analyze [1][2]. The technique has a wide variety of applications ranging from perception in autonomous driving scenarios to cancer cell segmentation for medical diagnosis.
Exponential growth in the datasets that require such segmentation is driven by improvements in the accuracy and quality of the sensors generating the data extending to 3D point cloud data. This growth is further compounded by exponential advances in cloud technologies enabling the storage and compute available for such applications. The need for semantically segmented datasets is a key requirement to improve the accuracy of inference engines that are built upon them.
Streamlining the accuracy and efficiency of these systems directly affects the value of the business outcome for organizations that are developing such functionalities as a part of their AI strategy.
This presentation details workflows for labeling, preprocessing, modeling, and evaluating performance/accuracy. Scientists and engineers leverage domain-specific features/tools that support the entire workflow from labeling the ground truth, handling data from a wide variety of sources/formats, developing models and finally deploying these models. Users can scale their deployments optimally on GPU-based cloud infrastructure to build accelerated training and inference pipelines while working with big datasets. These environments are optimized for engineers to develop such functionality with ease and then scale against large datasets with Spark-based clusters on the cloud.
Massive Data Processing in Adobe Using Delta LakeDatabricks
At Adobe Experience Platform, we ingest TBs of data every day and manage PBs of data for our customers as part of the Unified Profile Offering. At the heart of this is a bunch of complex ingestion of a mix of normalized and denormalized data with various linkage scenarios power by a central Identity Linking Graph. This helps power various marketing scenarios that are activated in multiple platforms and channels like email, advertisements etc. We will go over how we built a cost effective and scalable data pipeline using Apache Spark and Delta Lake and share our experiences.
What are we storing?
Multi Source – Multi Channel Problem
Data Representation and Nested Schema Evolution
Performance Trade Offs with Various formats
Go over anti-patterns used
(String FTW)
Data Manipulation using UDFs
Writer Worries and How to Wipe them Away
Staging Tables FTW
Datalake Replication Lag Tracking
Performance Time!
Monterey College of Law’s mission is to zseoali2660
Monterey College of Law’s mission is to provide a quality legal education in a community law school setting with graduates who are dedicated to professional excellence, integrity, and community service.
Mastering Data Science: Unlocking Insights and Opportunities at Yale IT Skill...smrithimuralidas
The Data Science Course at Yale IT Skill Hub in Coimbatore provides in-depth training in data analysis, machine learning, and AI using Python, R, SQL, and tools like Tableau. Ideal for beginners and professionals, it covers data wrangling, visualization, and predictive modeling through hands-on projects and real-world case studies. With expert-led sessions, flexible schedules, and 100% placement support, this course equips learners with skills for Coimbatore’s booming tech industry. Earn a globally recognized certification to excel in data-driven roles. The Data Analytics Course at Yale IT Skill Hub in Coimbatore offers comprehensive training in data visualization, statistical analysis, and predictive modeling using tools like Power BI, Tableau, Python, and R. Designed for beginners and professionals, it features hands-on projects, expert-led sessions, and real-world case studies tailored to industries like IT and manufacturing. With flexible schedules, 100% placement support, and globally recognized certification, this course equips learners to excel in Coimbatore’s growing data-driven job market.
Ethical Frameworks for Trustworthy AI – Opportunities for Researchers in Huma...Karim Baïna
Artificial Intelligence (AI) is reshaping societies and raising complex ethical, legal, and geopolitical questions. This talk explores the foundations and limits of Trustworthy AI through the lens of global frameworks such as the EU’s HLEG guidelines, UNESCO’s human rights-based approach, OECD recommendations, and NIST’s taxonomy of AI security risks.
We analyze key principles like fairness, transparency, privacy, robustness, and accountability — not only as ideals, but in terms of their practical implementation and tensions. Special attention is given to real-world contexts such as Morocco’s deployment of 4,000 intelligent cameras and the country’s positioning in AI readiness indexes. These examples raise critical issues about surveillance, accountability, and ethical governance in the Global South.
Rather than relying on standardized terms or ethical "checklists", this presentation advocates for a grounded, interdisciplinary, and context-aware approach to responsible AI — one that balances innovation with human rights, and technological ambition with social responsibility.
This rich Trustworthy and Responsible AI frameworks context is a serious opportunity for Human and Social Sciences Researchers : either operate as gatekeepers, reinforcing existing ethical constraints, or become revolutionaries, pioneering new paradigms that redefine how AI interacts with society, knowledge production, and policymaking ?
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)apidays
Agentic AI Future: Agents Reshaping Digital Transformation and API Strategy
Seena Ganesh, Vice President Engineering - B2C & B2B eCommerce & Digital AI at Staples
apidays New York 2025
API Management for Surfing the Next Innovation Waves: GenAI and Open Banking
Convene 360 Madison, New York
May 14 & 15, 2025
------
Check out our conferences at https://www.apidays.global/
Do you want to sponsor or talk at one of our conferences?
https://apidays.typeform.com/to/ILJeAaV8
Learn more on APIscene, the global media made by the community for the community:
https://www.apiscene.io
Explore the API ecosystem with the API Landscape:
https://apilandscape.apiscene.io/
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...apidays
From Data to Decisions: How AI is Transforming Product Management
Shereen Moussa, Digital Product Owner at PepsiCo
apidays New York 2025
API Management for Surfing the Next Innovation Waves: GenAI and Open Banking
Convene 360 Madison, New York
May 14 & 15, 2025
------
Check out our conferences at https://www.apidays.global/
Do you want to sponsor or talk at one of our conferences?
https://apidays.typeform.com/to/ILJeAaV8
Learn more on APIscene, the global media made by the community for the community:
https://www.apiscene.io
Explore the API ecosystem with the API Landscape:
https://apilandscape.apiscene.io/
An Algorithmic Test Using The Game of PokerGraham Ware
In an interview you may be presented with a poker set and asked to create a game that mimics the market and data science. Here is a fun way we created such a scenario.
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...apidays
Turn API Chaos Into AI-Powered Growth
Jeremy Waterkotte, Solutions Consultant, Alliances at Boomi
apidays New York 2025
API Management for Surfing the Next Innovation Waves: GenAI and Open Banking
Convene 360 Madison, New York
May 14 & 15, 2025
------
Check out our conferences at https://www.apidays.global/
Do you want to sponsor or talk at one of our conferences?
https://apidays.typeform.com/to/ILJeAaV8
Learn more on APIscene, the global media made by the community for the community:
https://www.apiscene.io
Explore the API ecosystem with the API Landscape:
https://apilandscape.apiscene.io/
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docxsofiawilliams5966
Autonomous vehicles represent the cutting edge of modern technology, promising to revolutionize transportation by improving safety, efficiency, and accessibility.
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdfepsilonice
This outlines a comprehensive roadmap for mastering artificial intelligence, machine learning, data science, data analysis, and data structures and algorithms, guiding learners from beginner to advanced levels by building upon foundational Python knowledge.
Brain, Bytes & Bias: ML Interview Questions You Can’t Miss!yashikanigam1
Preparing for a machine learning role? Get ready to tackle real-world problem-solving questions! From regression vs. classification to the ETL process, expect a deep dive into algorithms and data pipelines. Most live courses for professionals and best online professional certificates now include mock interviews and case studies to gear you up. Mastering these ML interview questions not only helps in cracking top tech interviews but also builds your confidence.
At Tutort Academy, we train you with real-time scenarios and curated interview prep for success.
The final presentation of our time series forecasting project for the "Data Science for Society and Business" Master's program at Constructor University Bremen
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)apidays
From Rates and Bookings to AI Intelligence: The Evolution of Travel APIs
Eric White, CTO at Eviivo
apidays New York 2025
API Management for Surfing the Next Innovation Waves: GenAI and Open Banking
Convene 360 Madison, New York
May 14 & 15, 2025
------
Check out our conferences at https://www.apidays.global/
Do you want to sponsor or talk at one of our conferences?
https://apidays.typeform.com/to/ILJeAaV8
Learn more on APIscene, the global media made by the community for the community:
https://www.apiscene.io
Explore the API ecosystem with the API Landscape:
https://apilandscape.apiscene.io/
2. Pranav Prakash, Quartic.ai
Application and challenges of streaming
analytics and machine learning on multi-variate
time series data for smart manufacturing
#UnifiedDataAnalytics #SparkAISummit
3. Pranav Prakash
• Co-Founder, VP Engineering at
Quartic.ai
• Ex- LinkedIn SlideShare
• Passionate about
– A.I., Computer Vision, 3D
Printing
– Music, Caffeine
3
4. What
you’ll
learn in
next 40
mins
4
A cool startup
solving some real-
life use cases
Downtime
Reduction use
case of a critical
asset in Pharma
world
•And a “secret” to
solve such problems
Challenges in
Industrial Stream
Processing
Spark specific stuff
that we learned
5. We enable Industry 4.0
• AI powered smart manufacturing platform
• Processing Billions of sensor data every
day
• Work with top Pharma companies on
multiple use cases
• Team of 22 techies including Engineers &
Data Scientists + 4 Domain Veterans
#UnifiedDataAnalytics #SparkAISummit 5
7. We started by
building
solutions for
pharmaceutical
manufacturing
And created a
DIY platform
• Increased uptime of sterilization autoclave by 7 days
• Increased yield of protein from fermentation process
• Incubated egg harvester – increase uptime during
critical flu season
• Cold-chain monitoring for pharma refrigeration –
reduced downtime and waste
• Predictive health monitoring of air handlers for clean
rooms in pharma
• Enable continuous validation of biologic production
process
• Medical Device Assembly – reduce recalls caused by
poor quality.
8. Case study – an Intelligent
Asset Health Monitoring system
for an Industrial Autoclave
• Mission - Improve the
reliability of a complex asset.
• Details - 13 differentmodes
(cycles)
• Runs 24/7
• CriticalAsset
9. Equipment
Reliability
• Capture process, condition data
• Establish baseline and measure
deviations
• Forecast the future
• Classify errors early
• “Advisory Mode” AI
10. SCADA = Supervisory Control and Data Acquisition
PLC = Programable Logic Controller
11. System
Design
Params
• Data
– Speed: 10ms – 2 hours
– Volume: Couple 1,000s sensors per
asset. 10,000s of asset per
enterprise
– Data Type: String, Numeric,
Boolean, Array
– Timeseries, Discrete
13. System
Design
Params
• Use Cases
– Automatic Model Param Tuning,
Model Training
– 1000s of ML Models Deployment
– Complex Event Processing (CEP)
– Statistical & Analytical Processing
• Rule Recommendation
• Near Real Time Stream Processing
14. Challenges
• ML
– Multiple granularities
– Late Data Arrival
– Model Deployment on a
heterogenous data stream
– Flash Flood of Data
15. Multiple Granularities
15
TS Sensor A Sensor B
12:03:01.198
12:03:02.283
12:03:03.316
12:03:04.572
12:03:05.283
12:03:06.342
TS Sensor C Sensor D
12:03:01.230
12:03:06.233
12:03:11.316
12:03:16.520
12:03:21.283
- Both belong to same “Asset”
- Target Feature – C/D or A/B
Poll Frequency = 1s Poll Frequency = 5s