The main purpose of data mining is to extract knowledge from large amount of data. Artificial Neural network (ANN) has already been applied in a variety of domains with remarkable success. This paper presents the application of hybrid model for stroke disease that integrates Genetic algorithm and back propagation algorithm. Selecting a good subset of features, without sacrificing accuracy, is of great importance for neural networks to be successfully applied to the area. In addition the hybrid model that leads to further improvised categorization, accuracy compared to the result produced by genetic algorithm alone. In this study, a new hybrid model of Neural Networks and Genetic Algorithm (GA) to initialize and optimize the connection weights of ANN so as to improve the performance of the ANN and the same has been applied in a medical problem of predicting stroke disease for verification of the results.