SlideShare a Scribd company logo
CSCE 3110
Data Structures &
Algorithm Analysis
Rada Mihalcea
http://www.cs.unt.edu/~rada/CSCE3110
Arrays
Arrays
Array: a set of pairs (index and value)
data structure
For each index, there is a value associated with
that index.
representation (possible)
implemented by using consecutive memory.
Objects: A set of pairs <index, value> where for each value of index
there is a value from the set item. Index is a finite ordered set of one or
more dimensions, for example, {0, … , n-1} for one dimension,
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions,
etc.
Methods:
for all A ∈ Array, i ∈ index, x ∈ item, j, size ∈ integer
Array Create(j, list) ::= return an array of j dimensions where list is a
j-tuple whose kth element is the size of the
kth dimension. Items are undefined.
Item Retrieve(A, i) ::= if (i ∈ index) return the item associated with
index value i in array A
else return error
Array Store(A, i, x) ::= if (i in index)
return an array that is identical to array
A except the new pair <i, x> has been
inserted else return error
The Array ADT
Arrays in C
int list[5], *plist[5];
list[5]: five integers
list[0], list[1], list[2], list[3], list[4]
*plist[5]: five pointers to integers
plist[0], plist[1], plist[2], plist[3],
plist[4]
implementation of 1-D array
list[0] base address = α
list[1] α + sizeof(int)
list[2] α + 2*sizeof(int)
list[3] α + 3*sizeof(int)
Arrays in C (cont’d)
Compare int *list1 and int list2[5] in C.
Same: list1 and list2 are pointers.
Difference: list2 reserves five locations.
Notations:
list2 - a pointer to list2[0]
(list2 + i) - a pointer to list2[i] (&list2[i])
*(list2 + i) - list2[i]
Address Contents
1228 0
1230 1
1232 2
1234 3
1236 4
Example:
int one[] = {0, 1, 2, 3, 4}; //Goal: print out
address and value
void print1(int *ptr, int rows)
{
printf(“Address Contentsn”);
for (i=0; i < rows; i++)
printf(“%8u%5dn”, ptr+i, *(ptr+i));
printf(“n”);
}
Example
ne
n
e
xaxaxp ++= ...)( 1
1
Polynomials A(X)=3X20
+2X5
+4, B(X)=X4
+10X3
+3X2
+1
Other Data Structures
Based on Arrays
•Arrays:
•Basic data structure
•May store any type of elements
Polynomials: defined by a list of coefficients and
exponents
- degree of polynomial = the largest exponent in a
polynomial
Polynomial ADT
Objects: a set of ordered pairs of <ei,ai>
where ai in Coefficients and
ei in Exponents, ei are integers >= 0
Methods:
for all poly, poly1, poly2  Polynomial, coef Coefficients, expon
Exponents
Polynomial Zero( ) ::= return the polynomial p(x) = 0
Boolean IsZero(poly) ::= if (poly) return FALSE
else return TRUE
Coefficient Coef(poly, expon) ::= if (expon  poly) return its
coefficient else return Zero
Exponent Lead_Exp(poly) ::= return the largest exponent in
poly
Polynomial Attach(poly,coef, expon) ::= if (expon  poly) return error
else return the polynomial poly
with the term <coef, expon>
inserted
Polyomial ADT (cont’d)
Polynomial Remove(poly, expon) ::= if (expon  poly) return the
polynomial poly with the term
whose exponent is expon deleted
else return error
Polynomial SingleMult(poly, coef, expon)::= return the polynomial
poly • coef • xexpon
Polynomial Add(poly1, poly2) ::= return the polynomial
poly1 +poly2
Polynomial Mult(poly1, poly2) ::= return the polynomial
poly1 • poly2
Polynomial Addition (1)
#define MAX_DEGREE 101
typedef struct {
int degree;
float coef[MAX_DEGREE];
} polynomial;
Addition(polynomial * a, polynomial * b, polynomial* c)
{
…
}
advantage: easy implementation
disadvantage: waste space when sparse
Running time?
Use one global array to store all polynomials
Polynomial Addition (2)
2 1 1 10 3 1
1000 0 4 3 2 0
coef
exp
starta finisha startb finishb avail
0 1 2 3 4 5 6
A(X)=2X1000
+1
B(X)=X4
+10X3
+3X2
+1
Polynomial Addition (2) (cont’d)
#define MAX_DEGREE 101
typedef struct {
int exp;
float coef;
} polynomial_term;
polynomial_term terms[3*MAX_DEGREE];
Addition(int starta, int enda, int startb, int endb, int startc, int endc)
{
…
}
advantage: less space
disadvantage: longer code
Running time?




















−
−
0002800
0000091
000000
006000
0003110
150220015
col1 col2 col3 col4 col5 col6
row0
row1
row2
row3
row4
row5
8/36
6*65*3
15/15
sparse matrix
data structure?
Sparse Matrices
Sparse Matrix ADT
Objects: a set of triples, <row, column, value>, where row
and column are integers and form a unique combination, and
value comes from the set item.
Methods:
for all a, b ∈ Sparse_Matrix, x  item, i, j, max_col,
max_row  index
Sparse_Marix Create(max_row, max_col) ::=
return a Sparse_matrix that can hold up to
max_items = max _row  max_col and
whose maximum row size is max_row and
whose maximum column size is max_col.
Sparse Matrix ADT (cont’d)
Sparse_Matrix Transpose(a) ::=
return the matrix produced by interchanging
the row and column value of every triple.
Sparse_Matrix Add(a, b) ::=
if the dimensions of a and b are the same
return the matrix produced by adding
corresponding items, namely those with
identical row and column values.
else return error
Sparse_Matrix Multiply(a, b) ::=
if number of columns in a equals number of rows in b
return the matrix d produced by multiplying
a by b according to the formula: d [i] [j] =
(a[i][k]•b[k][j]) where d (i, j) is the (i,j)th
element
else return error.
(1) Represented by a two-dimensional array.
Sparse matrix wastes space.
(2) Each element is characterized by <row, col, value>.
Sparse Matrix Representation
Sparse_matrix Create(max_row, max_col) ::=
#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
int col;
int row;
int value;
} term;
term A[MAX_TERMS]
The terms in A should be ordered
based on <row, col>
Sparse Matrix Operations
Transpose of a sparse matrix.
What is the transpose of a matrix?
row col value row col value
a[0] 6 6 8 b[0] 6 6 8
[1] 0 0 15 [1] 0 0 15
[2] 0 3 22 [2] 0 4 91
[3] 0 5 -15 [3] 1 1 11
[4] 1 1 11 [4] 2 1 3
[5] 1 2 3 [5] 2 5 28
[6] 2 3 -6 [6] 3 0 22
[7] 4 0 91 [7] 3 2 -6
[8] 5 2 28 [8] 5 0 -15
transpose
(1) for each row i
take element <i, j, value> and store it
in element <j, i, value> of the transpose.
difficulty: where to put <j, i, value>?
(0, 0, 15) ====> (0, 0, 15)
(0, 3, 22) ====> (3, 0, 22)
(0, 5, -15) ====> (5, 0, -15)
(1, 1, 11) ====> (1, 1, 11)
Move elements down very often.
(2) For all elements in column j,
place element <i, j, value> in element <j, i,
Transpose a Sparse Matrix
Transpose of a Sparse Matrix
(cont’d)
void transpose (term a[], term b[])
/* b is set to the transpose of a */
{
int n, i, j, currentb;
n = a[0].value; /* total number of elements */
b[0].row = a[0].col; /* rows in b = columns in a */
b[0].col = a[0].row; /*columns in b = rows in a */
b[0].value = n;
if (n > 0) { /*non zero matrix */
currentb = 1;
for (i = 0; i < a[0].col; i++)
/* transpose by columns in a */
for( j = 1; j <= n; j++)
/* find elements from the current column */
if (a[j].col == i) {
/* element is in current column, add it to b */
Ad

More Related Content

What's hot (20)

Expression trees
Expression treesExpression trees
Expression trees
Salman Vadsarya
 
Searching and Sorting Techniques in Data Structure
Searching and Sorting Techniques in Data StructureSearching and Sorting Techniques in Data Structure
Searching and Sorting Techniques in Data Structure
Balwant Gorad
 
Prefix, Infix and Post-fix Notations
Prefix, Infix and Post-fix NotationsPrefix, Infix and Post-fix Notations
Prefix, Infix and Post-fix Notations
Afaq Mansoor Khan
 
Topological Sorting
Topological SortingTopological Sorting
Topological Sorting
ShahDhruv21
 
Memory Management C++ (Peeling operator new() and delete())
Memory Management C++ (Peeling operator new() and delete())Memory Management C++ (Peeling operator new() and delete())
Memory Management C++ (Peeling operator new() and delete())
Sameer Rathoud
 
DSA (Data Structure and Algorithm) Questions
DSA (Data Structure and Algorithm) QuestionsDSA (Data Structure and Algorithm) Questions
DSA (Data Structure and Algorithm) Questions
RESHAN FARAZ
 
Sorting Algorithms
Sorting AlgorithmsSorting Algorithms
Sorting Algorithms
Mohammed Hussein
 
Asymptotic Notations
Asymptotic NotationsAsymptotic Notations
Asymptotic Notations
Rishabh Soni
 
Priority Queue in Data Structure
Priority Queue in Data StructurePriority Queue in Data Structure
Priority Queue in Data Structure
Meghaj Mallick
 
List,tuple,dictionary
List,tuple,dictionaryList,tuple,dictionary
List,tuple,dictionary
nitamhaske
 
Infix prefix postfix
Infix prefix postfixInfix prefix postfix
Infix prefix postfix
Self-Employed
 
Data Structures- Part5 recursion
Data Structures- Part5 recursionData Structures- Part5 recursion
Data Structures- Part5 recursion
Abdullah Al-hazmy
 
linked lists in data structures
linked lists in data structureslinked lists in data structures
linked lists in data structures
DurgaDeviCbit
 
LR(1) and SLR(1) parsing
LR(1) and SLR(1) parsingLR(1) and SLR(1) parsing
LR(1) and SLR(1) parsing
R Islam
 
Recursive algorithms
Recursive algorithmsRecursive algorithms
Recursive algorithms
subhashchandra197
 
Arrays in python
Arrays in pythonArrays in python
Arrays in python
moazamali28
 
Arrays In Python | Python Array Operations | Edureka
Arrays In Python | Python Array Operations | EdurekaArrays In Python | Python Array Operations | Edureka
Arrays In Python | Python Array Operations | Edureka
Edureka!
 
Introduction to data structure
Introduction to data structure Introduction to data structure
Introduction to data structure
NUPOORAWSARMOL
 
AVL Tree Data Structure
AVL Tree Data StructureAVL Tree Data Structure
AVL Tree Data Structure
Afaq Mansoor Khan
 
ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCEARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE
Sabique Khan
 
Searching and Sorting Techniques in Data Structure
Searching and Sorting Techniques in Data StructureSearching and Sorting Techniques in Data Structure
Searching and Sorting Techniques in Data Structure
Balwant Gorad
 
Prefix, Infix and Post-fix Notations
Prefix, Infix and Post-fix NotationsPrefix, Infix and Post-fix Notations
Prefix, Infix and Post-fix Notations
Afaq Mansoor Khan
 
Topological Sorting
Topological SortingTopological Sorting
Topological Sorting
ShahDhruv21
 
Memory Management C++ (Peeling operator new() and delete())
Memory Management C++ (Peeling operator new() and delete())Memory Management C++ (Peeling operator new() and delete())
Memory Management C++ (Peeling operator new() and delete())
Sameer Rathoud
 
DSA (Data Structure and Algorithm) Questions
DSA (Data Structure and Algorithm) QuestionsDSA (Data Structure and Algorithm) Questions
DSA (Data Structure and Algorithm) Questions
RESHAN FARAZ
 
Asymptotic Notations
Asymptotic NotationsAsymptotic Notations
Asymptotic Notations
Rishabh Soni
 
Priority Queue in Data Structure
Priority Queue in Data StructurePriority Queue in Data Structure
Priority Queue in Data Structure
Meghaj Mallick
 
List,tuple,dictionary
List,tuple,dictionaryList,tuple,dictionary
List,tuple,dictionary
nitamhaske
 
Infix prefix postfix
Infix prefix postfixInfix prefix postfix
Infix prefix postfix
Self-Employed
 
Data Structures- Part5 recursion
Data Structures- Part5 recursionData Structures- Part5 recursion
Data Structures- Part5 recursion
Abdullah Al-hazmy
 
linked lists in data structures
linked lists in data structureslinked lists in data structures
linked lists in data structures
DurgaDeviCbit
 
LR(1) and SLR(1) parsing
LR(1) and SLR(1) parsingLR(1) and SLR(1) parsing
LR(1) and SLR(1) parsing
R Islam
 
Arrays in python
Arrays in pythonArrays in python
Arrays in python
moazamali28
 
Arrays In Python | Python Array Operations | Edureka
Arrays In Python | Python Array Operations | EdurekaArrays In Python | Python Array Operations | Edureka
Arrays In Python | Python Array Operations | Edureka
Edureka!
 
Introduction to data structure
Introduction to data structure Introduction to data structure
Introduction to data structure
NUPOORAWSARMOL
 
ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCEARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE
Sabique Khan
 

Similar to Arrays (20)

Array
ArrayArray
Array
Malainine Zaid
 
sparse-matrix.ppt
sparse-matrix.pptsparse-matrix.ppt
sparse-matrix.ppt
ArunachalamSelva
 
Chapter2
Chapter2Chapter2
Chapter2
Krishna Kumar
 
Chapter2
Chapter2Chapter2
Chapter2
Nashra Akhter
 
Data structures KTU chapter2.PPT
Data structures KTU chapter2.PPTData structures KTU chapter2.PPT
Data structures KTU chapter2.PPT
Albin562191
 
arrays.pptx
arrays.pptxarrays.pptx
arrays.pptx
NehaJain919374
 
Chapter 13.pptx
Chapter 13.pptxChapter 13.pptx
Chapter 13.pptx
AnisZahirahAzman
 
Arrays
ArraysArrays
Arrays
Saranya saran
 
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
DATA STRUCTURE CLASS 12 COMPUTER SCIENCEDATA STRUCTURE CLASS 12 COMPUTER SCIENCE
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
Dev Chauhan
 
Array
ArrayArray
Array
Vivian Chia En Chiang
 
Data Structure Midterm Lesson Arrays
Data Structure Midterm Lesson ArraysData Structure Midterm Lesson Arrays
Data Structure Midterm Lesson Arrays
Maulen Bale
 
bobok
bobokbobok
bobok
Adi Pandarangga
 
Array 31.8.2020 updated
Array 31.8.2020 updatedArray 31.8.2020 updated
Array 31.8.2020 updated
vrgokila
 
Multi dimensional arrays
Multi dimensional arraysMulti dimensional arrays
Multi dimensional arrays
Aseelhalees
 
Arrays_in_c++.pptx
Arrays_in_c++.pptxArrays_in_c++.pptx
Arrays_in_c++.pptx
MrMaster11
 
Extractors & Implicit conversions
Extractors & Implicit conversionsExtractors & Implicit conversions
Extractors & Implicit conversions
Knoldus Inc.
 
An Introduction to Part of C++ STL
An Introduction to Part of C++ STLAn Introduction to Part of C++ STL
An Introduction to Part of C++ STL
乐群 陈
 
Array,MULTI ARRAY, IN C
Array,MULTI ARRAY, IN CArray,MULTI ARRAY, IN C
Array,MULTI ARRAY, IN C
naveed jamali
 
Basic of array and data structure, data structure basics, array, address calc...
Basic of array and data structure, data structure basics, array, address calc...Basic of array and data structure, data structure basics, array, address calc...
Basic of array and data structure, data structure basics, array, address calc...
nsitlokeshjain
 
Chap 6 c++
Chap 6 c++Chap 6 c++
Chap 6 c++
Venkateswarlu Vuggam
 
Data structures KTU chapter2.PPT
Data structures KTU chapter2.PPTData structures KTU chapter2.PPT
Data structures KTU chapter2.PPT
Albin562191
 
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
DATA STRUCTURE CLASS 12 COMPUTER SCIENCEDATA STRUCTURE CLASS 12 COMPUTER SCIENCE
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
Dev Chauhan
 
Data Structure Midterm Lesson Arrays
Data Structure Midterm Lesson ArraysData Structure Midterm Lesson Arrays
Data Structure Midterm Lesson Arrays
Maulen Bale
 
Array 31.8.2020 updated
Array 31.8.2020 updatedArray 31.8.2020 updated
Array 31.8.2020 updated
vrgokila
 
Multi dimensional arrays
Multi dimensional arraysMulti dimensional arrays
Multi dimensional arrays
Aseelhalees
 
Arrays_in_c++.pptx
Arrays_in_c++.pptxArrays_in_c++.pptx
Arrays_in_c++.pptx
MrMaster11
 
Extractors & Implicit conversions
Extractors & Implicit conversionsExtractors & Implicit conversions
Extractors & Implicit conversions
Knoldus Inc.
 
An Introduction to Part of C++ STL
An Introduction to Part of C++ STLAn Introduction to Part of C++ STL
An Introduction to Part of C++ STL
乐群 陈
 
Array,MULTI ARRAY, IN C
Array,MULTI ARRAY, IN CArray,MULTI ARRAY, IN C
Array,MULTI ARRAY, IN C
naveed jamali
 
Basic of array and data structure, data structure basics, array, address calc...
Basic of array and data structure, data structure basics, array, address calc...Basic of array and data structure, data structure basics, array, address calc...
Basic of array and data structure, data structure basics, array, address calc...
nsitlokeshjain
 
Ad

Recently uploaded (20)

Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Ad

Arrays

  • 1. CSCE 3110 Data Structures & Algorithm Analysis Rada Mihalcea http://www.cs.unt.edu/~rada/CSCE3110 Arrays
  • 2. Arrays Array: a set of pairs (index and value) data structure For each index, there is a value associated with that index. representation (possible) implemented by using consecutive memory.
  • 3. Objects: A set of pairs <index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, {0, … , n-1} for one dimension, {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions, etc. Methods: for all A ∈ Array, i ∈ index, x ∈ item, j, size ∈ integer Array Create(j, list) ::= return an array of j dimensions where list is a j-tuple whose kth element is the size of the kth dimension. Items are undefined. Item Retrieve(A, i) ::= if (i ∈ index) return the item associated with index value i in array A else return error Array Store(A, i, x) ::= if (i in index) return an array that is identical to array A except the new pair <i, x> has been inserted else return error The Array ADT
  • 4. Arrays in C int list[5], *plist[5]; list[5]: five integers list[0], list[1], list[2], list[3], list[4] *plist[5]: five pointers to integers plist[0], plist[1], plist[2], plist[3], plist[4] implementation of 1-D array list[0] base address = α list[1] α + sizeof(int) list[2] α + 2*sizeof(int) list[3] α + 3*sizeof(int)
  • 5. Arrays in C (cont’d) Compare int *list1 and int list2[5] in C. Same: list1 and list2 are pointers. Difference: list2 reserves five locations. Notations: list2 - a pointer to list2[0] (list2 + i) - a pointer to list2[i] (&list2[i]) *(list2 + i) - list2[i]
  • 6. Address Contents 1228 0 1230 1 1232 2 1234 3 1236 4 Example: int one[] = {0, 1, 2, 3, 4}; //Goal: print out address and value void print1(int *ptr, int rows) { printf(“Address Contentsn”); for (i=0; i < rows; i++) printf(“%8u%5dn”, ptr+i, *(ptr+i)); printf(“n”); } Example
  • 7. ne n e xaxaxp ++= ...)( 1 1 Polynomials A(X)=3X20 +2X5 +4, B(X)=X4 +10X3 +3X2 +1 Other Data Structures Based on Arrays •Arrays: •Basic data structure •May store any type of elements Polynomials: defined by a list of coefficients and exponents - degree of polynomial = the largest exponent in a polynomial
  • 8. Polynomial ADT Objects: a set of ordered pairs of <ei,ai> where ai in Coefficients and ei in Exponents, ei are integers >= 0 Methods: for all poly, poly1, poly2  Polynomial, coef Coefficients, expon Exponents Polynomial Zero( ) ::= return the polynomial p(x) = 0 Boolean IsZero(poly) ::= if (poly) return FALSE else return TRUE Coefficient Coef(poly, expon) ::= if (expon  poly) return its coefficient else return Zero Exponent Lead_Exp(poly) ::= return the largest exponent in poly Polynomial Attach(poly,coef, expon) ::= if (expon  poly) return error else return the polynomial poly with the term <coef, expon> inserted
  • 9. Polyomial ADT (cont’d) Polynomial Remove(poly, expon) ::= if (expon  poly) return the polynomial poly with the term whose exponent is expon deleted else return error Polynomial SingleMult(poly, coef, expon)::= return the polynomial poly • coef • xexpon Polynomial Add(poly1, poly2) ::= return the polynomial poly1 +poly2 Polynomial Mult(poly1, poly2) ::= return the polynomial poly1 • poly2
  • 10. Polynomial Addition (1) #define MAX_DEGREE 101 typedef struct { int degree; float coef[MAX_DEGREE]; } polynomial; Addition(polynomial * a, polynomial * b, polynomial* c) { … } advantage: easy implementation disadvantage: waste space when sparse Running time?
  • 11. Use one global array to store all polynomials Polynomial Addition (2) 2 1 1 10 3 1 1000 0 4 3 2 0 coef exp starta finisha startb finishb avail 0 1 2 3 4 5 6 A(X)=2X1000 +1 B(X)=X4 +10X3 +3X2 +1
  • 12. Polynomial Addition (2) (cont’d) #define MAX_DEGREE 101 typedef struct { int exp; float coef; } polynomial_term; polynomial_term terms[3*MAX_DEGREE]; Addition(int starta, int enda, int startb, int endb, int startc, int endc) { … } advantage: less space disadvantage: longer code Running time?
  • 13.                     − − 0002800 0000091 000000 006000 0003110 150220015 col1 col2 col3 col4 col5 col6 row0 row1 row2 row3 row4 row5 8/36 6*65*3 15/15 sparse matrix data structure? Sparse Matrices
  • 14. Sparse Matrix ADT Objects: a set of triples, <row, column, value>, where row and column are integers and form a unique combination, and value comes from the set item. Methods: for all a, b ∈ Sparse_Matrix, x  item, i, j, max_col, max_row  index Sparse_Marix Create(max_row, max_col) ::= return a Sparse_matrix that can hold up to max_items = max _row  max_col and whose maximum row size is max_row and whose maximum column size is max_col.
  • 15. Sparse Matrix ADT (cont’d) Sparse_Matrix Transpose(a) ::= return the matrix produced by interchanging the row and column value of every triple. Sparse_Matrix Add(a, b) ::= if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values. else return error Sparse_Matrix Multiply(a, b) ::= if number of columns in a equals number of rows in b return the matrix d produced by multiplying a by b according to the formula: d [i] [j] = (a[i][k]•b[k][j]) where d (i, j) is the (i,j)th element else return error.
  • 16. (1) Represented by a two-dimensional array. Sparse matrix wastes space. (2) Each element is characterized by <row, col, value>. Sparse Matrix Representation Sparse_matrix Create(max_row, max_col) ::= #define MAX_TERMS 101 /* maximum number of terms +1*/ typedef struct { int col; int row; int value; } term; term A[MAX_TERMS] The terms in A should be ordered based on <row, col>
  • 17. Sparse Matrix Operations Transpose of a sparse matrix. What is the transpose of a matrix? row col value row col value a[0] 6 6 8 b[0] 6 6 8 [1] 0 0 15 [1] 0 0 15 [2] 0 3 22 [2] 0 4 91 [3] 0 5 -15 [3] 1 1 11 [4] 1 1 11 [4] 2 1 3 [5] 1 2 3 [5] 2 5 28 [6] 2 3 -6 [6] 3 0 22 [7] 4 0 91 [7] 3 2 -6 [8] 5 2 28 [8] 5 0 -15 transpose
  • 18. (1) for each row i take element <i, j, value> and store it in element <j, i, value> of the transpose. difficulty: where to put <j, i, value>? (0, 0, 15) ====> (0, 0, 15) (0, 3, 22) ====> (3, 0, 22) (0, 5, -15) ====> (5, 0, -15) (1, 1, 11) ====> (1, 1, 11) Move elements down very often. (2) For all elements in column j, place element <i, j, value> in element <j, i, Transpose a Sparse Matrix
  • 19. Transpose of a Sparse Matrix (cont’d) void transpose (term a[], term b[]) /* b is set to the transpose of a */ { int n, i, j, currentb; n = a[0].value; /* total number of elements */ b[0].row = a[0].col; /* rows in b = columns in a */ b[0].col = a[0].row; /*columns in b = rows in a */ b[0].value = n; if (n > 0) { /*non zero matrix */ currentb = 1; for (i = 0; i < a[0].col; i++) /* transpose by columns in a */ for( j = 1; j <= n; j++) /* find elements from the current column */ if (a[j].col == i) { /* element is in current column, add it to b */