Principles of soft computing-Associative memory networksSivagowry Shathesh
The document discusses various types of associative memory networks including auto-associative, hetero-associative, bidirectional associative memory (BAM), and Hopfield networks. It describes the architecture, training algorithms, and testing procedures for each type of network. The key points are: Auto-associative networks store and recall patterns using the same input and output vectors, while hetero-associative networks use different input and output vectors. BAM networks perform bidirectional retrieval of patterns. Hopfield networks are auto-associative single-layer recurrent networks that can converge to stable states representing stored patterns. Hebbian learning and energy functions are important concepts in analyzing the storage and recall capabilities of these associative memory networks.
Biomedical Image Processing
Topics covered: Biomedical imaging, Need of image processing in medicine, Principles of image processing, Components of image processing, Application of image processing in different medical imaging systems
This is a sample Website proposal that anyone can use for sending it to client. The context for this sample website was an airline client that wanted a new mini-site developed for their Chinese market. Please feel free to reach out for more information by emailing us at: [email protected]
Part of speech- a category to which a word is assigned in accordance with its syntactic functions. In English the main 8 parts of speech are noun, pronoun, adjective, determiner, verb, adverb, preposition, conjunction, and interjection.
The document discusses gradient descent methods for unconstrained convex optimization problems. It introduces gradient descent as an iterative method to find the minimum of a differentiable function by taking steps proportional to the negative gradient. It describes the basic gradient descent update rule and discusses convergence conditions such as Lipschitz continuity, strong convexity, and condition number. It also covers techniques like exact line search, backtracking line search, coordinate descent, and steepest descent methods.
This document presents information on Hopfield networks through a slideshow presentation. It begins with an introduction to Hopfield networks, describing them as fully connected, single layer neural networks that can perform pattern recognition. It then discusses the properties of Hopfield networks, including their symmetric weights and binary neuron outputs. The document proceeds to provide derivations of the Hopfield network model based on an additive neuron model. It concludes by discussing applications of Hopfield networks.
This document provides an overview of associative memories and discrete Hopfield networks. It begins with introductions to basic concepts like autoassociative and heteroassociative memory. It then describes linear associative memory, which uses a Hebbian learning rule to form associations between input-output patterns. Next, it covers Hopfield's autoassociative memory, a recurrent neural network for associating patterns to themselves. Finally, it discusses performance analysis of recurrent autoassociative memories. The document presents key concepts in associative memory theory and different models like linear associative memory and Hopfield networks.
The document discusses Hopfield networks, which are neural networks with fixed weights and adaptive activations. It describes two types - discrete and continuous Hopfield nets. Discrete Hopfield nets use binary activations that are updated asynchronously, allowing an energy function to be defined. They can serve as associative memory. Continuous Hopfield nets have real-valued activations and can solve optimization problems like the travelling salesman problem. The document provides details on the architecture, energy functions, algorithms, and applications of both network types.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
hetero associative memory is a single layer neural network. However, in this network the input training vector and the output target vectors are not the same. The weights are determined so that the network stores a set of patterns. Hetero associative network is static in nature, hence, there would be no non-linear and delay operations.
1. Machine learning involves developing algorithms that can learn from data and improve their performance over time without being explicitly programmed. 2. Neural networks are a type of machine learning algorithm inspired by the human brain that can perform both supervised and unsupervised learning tasks. 3. Supervised learning involves using labeled training data to infer a function that maps inputs to outputs, while unsupervised learning involves discovering hidden patterns in unlabeled data through techniques like clustering.
The document provides an overview of perceptrons and neural networks. It discusses how neural networks are modeled after the human brain and consist of interconnected artificial neurons. The key aspects covered include the McCulloch-Pitts neuron model, Rosenblatt's perceptron, different types of learning (supervised, unsupervised, reinforcement), the backpropagation algorithm, and applications of neural networks such as pattern recognition and machine translation.
Part 1 of the Deep Learning Fundamentals Series, this session discusses the use cases and scenarios surrounding Deep Learning and AI; reviews the fundamentals of artificial neural networks (ANNs) and perceptrons; discuss the basics around optimization beginning with the cost function, gradient descent, and backpropagation; and activation functions (including Sigmoid, TanH, and ReLU). The demos included in these slides are running on Keras with TensorFlow backend on Databricks.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
The document discusses various types of Hebbian learning including:
1) Unsupervised Hebbian learning where weights are strengthened based on actual neural responses to stimuli without a target output.
2) Supervised Hebbian learning where weights are strengthened based on the desired neural response rather than the actual response to better approximate a target output.
3) Recognition networks like the instar rule which only updates weights when a neuron's output is active to recognize specific input patterns.
In machine learning, a convolutional neural network is a class of deep, feed-forward artificial neural networks that have successfully been applied fpr analyzing visual imagery.
Neural networks can be biological models of the brain or artificial models created through software and hardware. The human brain consists of interconnected neurons that transmit signals through connections called synapses. Artificial neural networks aim to mimic this structure using simple processing units called nodes that are connected by weighted links. A feed-forward neural network passes information in one direction from input to output nodes through hidden layers. Backpropagation is a common supervised learning method that uses gradient descent to minimize error by calculating error terms and adjusting weights between layers in the network backwards from output to input. Neural networks have been applied successfully to problems like speech recognition, character recognition, and autonomous vehicle navigation.
- The document introduces artificial neural networks, which aim to mimic the structure and functions of the human brain.
- It describes the basic components of artificial neurons and how they are modeled after biological neurons. It also explains different types of neural network architectures.
- The document discusses supervised and unsupervised learning in neural networks. It provides details on the backpropagation algorithm, a commonly used method for training multilayer feedforward neural networks using gradient descent.
An autoencoder is an artificial neural network that is trained to copy its input to its output. It consists of an encoder that compresses the input into a lower-dimensional latent-space encoding, and a decoder that reconstructs the output from this encoding. Autoencoders are useful for dimensionality reduction, feature learning, and generative modeling. When constrained by limiting the latent space or adding noise, autoencoders are forced to learn efficient representations of the input data. For example, a linear autoencoder trained with mean squared error performs principal component analysis.
The document discusses neural networks, including human neural networks and artificial neural networks (ANNs). It provides details on the key components of ANNs, such as the perceptron and backpropagation algorithm. ANNs are inspired by biological neural systems and are used for applications like pattern recognition, time series prediction, and control systems. The document also outlines some current uses of neural networks in areas like signal processing, anomaly detection, and soft sensors.
The document discusses the perceptron algorithm, which is a simple neural network used for binary classification. It was invented in 1957 and works by computing weighted inputs and applying a threshold activation function. The perceptron learns by adjusting its weights during the training process. It is computationally efficient but can only learn linearly separable problems and not more complex nonlinear relationships.
This document presents information on Hopfield networks through a slideshow presentation. It begins with an introduction to Hopfield networks, describing them as fully connected, single layer neural networks that can perform pattern recognition. It then discusses the properties of Hopfield networks, including their symmetric weights and binary neuron outputs. The document proceeds to provide derivations of the Hopfield network model based on an additive neuron model. It concludes by discussing applications of Hopfield networks.
This document provides an overview of associative memories and discrete Hopfield networks. It begins with introductions to basic concepts like autoassociative and heteroassociative memory. It then describes linear associative memory, which uses a Hebbian learning rule to form associations between input-output patterns. Next, it covers Hopfield's autoassociative memory, a recurrent neural network for associating patterns to themselves. Finally, it discusses performance analysis of recurrent autoassociative memories. The document presents key concepts in associative memory theory and different models like linear associative memory and Hopfield networks.
The document discusses Hopfield networks, which are neural networks with fixed weights and adaptive activations. It describes two types - discrete and continuous Hopfield nets. Discrete Hopfield nets use binary activations that are updated asynchronously, allowing an energy function to be defined. They can serve as associative memory. Continuous Hopfield nets have real-valued activations and can solve optimization problems like the travelling salesman problem. The document provides details on the architecture, energy functions, algorithms, and applications of both network types.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
hetero associative memory is a single layer neural network. However, in this network the input training vector and the output target vectors are not the same. The weights are determined so that the network stores a set of patterns. Hetero associative network is static in nature, hence, there would be no non-linear and delay operations.
1. Machine learning involves developing algorithms that can learn from data and improve their performance over time without being explicitly programmed. 2. Neural networks are a type of machine learning algorithm inspired by the human brain that can perform both supervised and unsupervised learning tasks. 3. Supervised learning involves using labeled training data to infer a function that maps inputs to outputs, while unsupervised learning involves discovering hidden patterns in unlabeled data through techniques like clustering.
The document provides an overview of perceptrons and neural networks. It discusses how neural networks are modeled after the human brain and consist of interconnected artificial neurons. The key aspects covered include the McCulloch-Pitts neuron model, Rosenblatt's perceptron, different types of learning (supervised, unsupervised, reinforcement), the backpropagation algorithm, and applications of neural networks such as pattern recognition and machine translation.
Part 1 of the Deep Learning Fundamentals Series, this session discusses the use cases and scenarios surrounding Deep Learning and AI; reviews the fundamentals of artificial neural networks (ANNs) and perceptrons; discuss the basics around optimization beginning with the cost function, gradient descent, and backpropagation; and activation functions (including Sigmoid, TanH, and ReLU). The demos included in these slides are running on Keras with TensorFlow backend on Databricks.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
The document discusses various types of Hebbian learning including:
1) Unsupervised Hebbian learning where weights are strengthened based on actual neural responses to stimuli without a target output.
2) Supervised Hebbian learning where weights are strengthened based on the desired neural response rather than the actual response to better approximate a target output.
3) Recognition networks like the instar rule which only updates weights when a neuron's output is active to recognize specific input patterns.
In machine learning, a convolutional neural network is a class of deep, feed-forward artificial neural networks that have successfully been applied fpr analyzing visual imagery.
Neural networks can be biological models of the brain or artificial models created through software and hardware. The human brain consists of interconnected neurons that transmit signals through connections called synapses. Artificial neural networks aim to mimic this structure using simple processing units called nodes that are connected by weighted links. A feed-forward neural network passes information in one direction from input to output nodes through hidden layers. Backpropagation is a common supervised learning method that uses gradient descent to minimize error by calculating error terms and adjusting weights between layers in the network backwards from output to input. Neural networks have been applied successfully to problems like speech recognition, character recognition, and autonomous vehicle navigation.
- The document introduces artificial neural networks, which aim to mimic the structure and functions of the human brain.
- It describes the basic components of artificial neurons and how they are modeled after biological neurons. It also explains different types of neural network architectures.
- The document discusses supervised and unsupervised learning in neural networks. It provides details on the backpropagation algorithm, a commonly used method for training multilayer feedforward neural networks using gradient descent.
An autoencoder is an artificial neural network that is trained to copy its input to its output. It consists of an encoder that compresses the input into a lower-dimensional latent-space encoding, and a decoder that reconstructs the output from this encoding. Autoencoders are useful for dimensionality reduction, feature learning, and generative modeling. When constrained by limiting the latent space or adding noise, autoencoders are forced to learn efficient representations of the input data. For example, a linear autoencoder trained with mean squared error performs principal component analysis.
The document discusses neural networks, including human neural networks and artificial neural networks (ANNs). It provides details on the key components of ANNs, such as the perceptron and backpropagation algorithm. ANNs are inspired by biological neural systems and are used for applications like pattern recognition, time series prediction, and control systems. The document also outlines some current uses of neural networks in areas like signal processing, anomaly detection, and soft sensors.
The document discusses the perceptron algorithm, which is a simple neural network used for binary classification. It was invented in 1957 and works by computing weighted inputs and applying a threshold activation function. The perceptron learns by adjusting its weights during the training process. It is computationally efficient but can only learn linearly separable problems and not more complex nonlinear relationships.
The document discusses artificial neural networks (ANNs) and summarizes key information about ANNs and related topics. It defines soft computing as a field that aims to build intelligent machines using techniques like ANNs, fuzzy logic, and evolutionary computing. ANNs are modeled after biological neural networks and consist of interconnected nodes that can learn from data. Early ANN models like the perceptron, ADALINE, and MADALINE are described along with their learning rules and architectures. Applications of ANNs in various domains are also listed.
The document discusses soft computing and artificial neural networks. It provides an overview of soft computing techniques including artificial neural networks (ANNs), fuzzy logic, and evolutionary computing. It then focuses on ANNs, describing their biological inspiration from neurons in the brain. The basic components of ANNs are discussed including network architecture, learning algorithms, and activation functions. Specific ANN models are then summarized, such as the perceptron, ADALINE, and their learning rules. Applications of ANNs are also briefly mentioned.
The document discusses artificial neural networks (ANNs) and summarizes key information about soft computing techniques, ANNs, and some specific ANN models including perceptrons, ADALINE, and MADALINE. It defines soft computing as a collection of computational techniques including neural networks, fuzzy logic, and evolutionary computing. ANNs are modeled after the human brain and consist of interconnected neurons that can learn from examples. Perceptrons, ADALINE, and MADALINE are early ANN models that use different learning rules to update weights and biases.
This document provides instructions for three exercises using artificial neural networks (ANNs) in Matlab: function fitting, pattern recognition, and clustering. It begins with background on ANNs including their structure, learning rules, training process, and common architectures. The exercises then guide using ANNs in Matlab for regression to predict house prices from data, classification of tumors as benign or malignant, and clustering of data. Instructions include loading data, creating and training networks, and evaluating results using both the GUI and command line. Improving results through retraining or adding neurons is also discussed.
This presentation discusses the following ANN concepts:
Introduction
Characteristics
Learning methods
Taxonomy
Evolution of neural networks
Basic models
Important technologies
Applications
This document provides an overview and literature review of unsupervised feature learning techniques. It begins with background on machine learning and the challenges of feature engineering. It then discusses unsupervised feature learning as a framework to learn representations from unlabeled data. The document specifically examines sparse autoencoders, PCA, whitening, and self-taught learning. It provides details on the mathematical concepts and implementations of these algorithms, including applying them to learn features from images. The goal is to use unsupervised learning to extract features that can enhance supervised models without requiring labeled training data.
Survey on Artificial Neural Network Learning Technique AlgorithmsIRJET Journal
This document discusses different types of learning algorithms used in artificial neural networks. It begins with an introduction to neural networks and their ability to learn from their environment through adjustments to synaptic weights. Four main learning algorithms are then described: error correction learning, which uses algorithms like backpropagation to minimize error; memory based learning, which stores all training examples and analyzes nearby examples to classify new inputs; Hebbian learning, where connection weights are adjusted based on the activity of neurons; and competitive learning, where neurons compete to respond to inputs to become specialized feature detectors through a winner-take-all mechanism. The document provides details on how each type of learning algorithm works.
This document discusses neural networks and multilayer feedforward neural network architectures. It describes how multilayer networks can solve nonlinear classification problems using hidden layers. The backpropagation algorithm is introduced as a way to train these networks by propagating error backwards from the output to adjust weights. The architecture of a neural network is explained, including input, hidden, and output nodes. Backpropagation is then described in more detail through its training process of forward passing input, calculating error at the output, and propagating this error backwards to update weights. Examples of backpropagation and its applications are also provided.
This document discusses how machines can make decisions using machine learning approaches. It provides an overview of machine learning vocabulary and techniques including supervised learning methods like regression and classification. It also discusses unsupervised learning and examples of clustering emails. The document then demonstrates simple linear and logistic regression models to predict outputs given inputs. It discusses evaluating models through error measurement and mentions several other machine learning techniques. Finally, it provides an overview of neural networks including feedforward networks and different types like convolutional and recurrent neural networks.
This document discusses how machines can make decisions using machine learning approaches. It provides an overview of machine learning vocabulary and techniques including supervised learning methods like regression and classification. It also discusses unsupervised learning and examples of clustering emails. The document then demonstrates simple linear and logistic regression models to predict outputs for given inputs. It discusses evaluating models through error measurement and mentions some other machine learning techniques. Finally, it provides an overview of neural networks including feedforward networks and different types like convolutional and recurrent neural networks.
An Artificial Neural Network (ANN) is a computational model inspired by the structure and functioning of the human brain's neural networks. It consists of interconnected nodes, often referred to as neurons or units, organized in layers. These layers typically include an input layer, one or more hidden layers, and an output layer.
The document compares the performance of an autoassociative memory with and without using a pseudoinverse weight matrix. It finds that using the pseudoinverse weight matrix improves performance in both noise-free conditions and when noise is present. Specifically, it finds that without the pseudoinverse, the weight matrix has a larger range of values and more cross-correlation, resulting in more character errors. With the pseudoinverse, the weight matrix range is limited to 0 to 1, improving performance both without and with noise. The autoassociative memory using the pseudoinverse weight matrix thus demonstrates much better performance.
This document provides an overview of running an image classification workload using IBM PowerAI and the MNIST dataset. It discusses deep learning concepts like neural networks and training flows. It then demonstrates how to set up TensorFlow on an IBM PowerAI trial server, load the MNIST dataset, build and train a basic neural network model for image classification, and evaluate the trained model's accuracy on test data.
The document presents a project on sentiment analysis of human emotions, specifically focusing on detecting emotions from babies' facial expressions using deep learning. It involves loading a facial expression dataset, training a convolutional neural network model to classify 7 emotions (anger, disgust, fear, happy, sad, surprise, neutral), and evaluating the model on test data. An emotion detection application is implemented using the trained model to analyze emotions in real-time images from a webcam with around 60-70% accuracy on random images.
This presentation discusses the following topics:
Basic features of R
Exploring R GUI
Data Frames & Lists
Handling Data in R Workspace
Reading Data Sets & Exporting Data from R
Manipulating & Processing Data in R
Association rule mining is used to find relationships between items in transaction data. It identifies rules that can predict the occurrence of an item based on other items purchased together frequently. Some key metrics used to evaluate rules include support, which measures how frequently an itemset occurs; confidence, which measures how often items in the predicted set occur given items in the predictor set; and lift, which compares the confidence to expected confidence if items were independent. An example association rule evaluated is {Milk, Diaper} -> {Beer} with support of 0.4, confidence of 0.67, and lift of 1.11.
This document discusses clustering, which is the task of grouping data points into clusters so that points within the same cluster are more similar to each other than points in other clusters. It describes different types of clustering methods, including density-based, hierarchical, partitioning, and grid-based methods. It provides examples of specific clustering algorithms like K-means, DBSCAN, and discusses applications of clustering in fields like marketing, biology, libraries, insurance, city planning, and earthquake studies.
Classification is a data analysis technique used to predict class membership for new observations based on a training set of previously labeled examples. It involves building a classification model during a training phase using an algorithm, then testing the model on new data to estimate accuracy. Some common classification algorithms include decision trees, Bayesian networks, neural networks, and support vector machines. Classification has applications in domains like medicine, retail, and entertainment.
The document discusses the assumptions and properties of ordinary least squares (OLS) estimators in linear regression analysis. It notes that OLS estimators are best linear unbiased estimators (BLUE) if the assumptions of the linear regression model are met. Specifically, it assumes errors have zero mean and constant variance, are uncorrelated, and are normally distributed. Violation of the assumption of constant variance is known as heteroscedasticity. The document outlines how heteroscedasticity impacts the properties of OLS estimators and their use in applications like econometrics.
This document provides an introduction to regression analysis. It discusses that regression analysis investigates the relationship between dependent and independent variables to model and analyze data. The document outlines different types of regressions including linear, polynomial, stepwise, ridge, lasso, and elastic net regressions. It explains that regression analysis is used for predictive modeling, forecasting, and determining the impact of variables. The benefits of regression analysis are that it indicates significant relationships and the strength of impact between variables.
MYCIN was an early expert system developed at Stanford University in 1972 to assist physicians in diagnosing and selecting treatment for bacterial and blood infections. It used over 600 production rules encoding the clinical decision criteria of infectious disease experts to diagnose patients based on reported symptoms and test results. While it could not replace human diagnosis due to computing limitations at the time, MYCIN demonstrated that expert knowledge could be represented computationally and established a foundation for more advanced machine learning and knowledge base systems.
The document discusses expert systems, which are computer applications that solve complex problems at a human expert level. It describes the characteristics and capabilities of expert systems, why they are useful, and their key components - knowledge base, inference engine, and user interface. The document also outlines common applications of expert systems and the general development process.
The Dempster-Shafer Theory was developed by Arthur Dempster in 1967 and Glenn Shafer in 1976 as an alternative to Bayesian probability. It allows one to combine evidence from different sources and obtain a degree of belief (or probability) for some event. The theory uses belief functions and plausibility functions to represent degrees of belief for various hypotheses given certain evidence. It was developed to describe ignorance and consider all possible outcomes, unlike Bayesian probability which only considers single evidence. An example is given of using the theory to determine the murderer in a room with 4 people where the lights went out.
A Bayesian network is a probabilistic graphical model that represents conditional dependencies among random variables using a directed acyclic graph. It consists of nodes representing variables and directed edges representing causal relationships. Each node contains a conditional probability table that quantifies the effect of its parent nodes on that variable. Bayesian networks can be used to calculate the probability of events occurring based on the network structure and conditional probability tables, such as computing the probability of an alarm sounding given that no burglary or earthquake occurred but two neighbors called.
This document discusses knowledge-based agents in artificial intelligence. It defines knowledge-based agents as agents that maintain an internal state of knowledge, reason over that knowledge, update their knowledge based on observations, and take actions. Knowledge-based agents have two main components: a knowledge base that stores facts about the world, and an inference system that applies logical rules to deduce new information from the knowledge base. The document also describes the architecture of knowledge-based agents and different approaches to designing them.
A rule-based system uses predefined rules to make logical deductions and choices to perform automated actions. It consists of a database of rules representing knowledge, a database of facts as inputs, and an inference engine that controls the process of deriving conclusions by applying rules to facts. A rule-based system mimics human decision making by applying rules in an "if-then" format to incoming data to perform actions, but unlike AI it does not learn or adapt on its own.
This document discusses formal logic and its applications in AI and machine learning. It begins by explaining why logic is useful in complex domains or with little data. It then describes logic-based approaches to AI that use symbolic reasoning as an alternative to machine learning. The document proceeds to explain propositional logic and first-order logic, noting how first-order logic improves on propositional logic by allowing variables. It also mentions other logics and their applications in areas like automated discovery, inductive programming, and verification of computer systems and machine learning models.
The document discusses production systems, which are rule-based systems used in artificial intelligence to model intelligent behavior. A production system consists of a global database, set of production rules, and control system. The rules fire to modify the database based on conditions. Different control strategies are used to determine which rules fire. Production systems are modular and allow knowledge representation as condition-action rules. Examples of applications in problem solving are provided.
The document discusses game playing in artificial intelligence. It describes how general game playing (GGP) involves designing AI that can play multiple games by learning the rules, rather than being programmed for a specific game. The document outlines how the minimax algorithm is commonly used for game playing, involving move generation and static evaluation functions to search game trees and determine the best move by maximizing or minimizing values at each level.
A study on “Diagnosis Test of Diabetics and Hypertension by AI”, Presentation slides for International Conference on "Life Sciences: Acceptance of the New Normal", St. Aloysius' College, Jabalpur, Madhya Pradesh, India, 27-28 August, 2021
A study on “impact of artificial intelligence in covid19 diagnosis”Dr. C.V. Suresh Babu
A study on “Impact of Artificial Intelligence in COVID-19 Diagnosis”, Presentation slides for International Conference on "Life Sciences: Acceptance of the New Normal", St. Aloysius' College, Jabalpur, Madhya Pradesh, India, 27-28 August, 2021
A study on “impact of artificial intelligence in covid19 diagnosis”Dr. C.V. Suresh Babu
Although the lungs are one of the most vital organs in the body, they are vulnerable to infection and injury. COVID-19 has put the entire world in an unprecedented difficult situation, bringing life to a halt and claiming thousands of lives all across the world. Medical imaging, such as X-rays and computed tomography (CT), is essential in the global fight against COVID-19, and newly emerging artificial intelligence (AI) technologies are boosting the power of imaging tools and assisting medical specialists. AI can improve job efficiency by precisely identifying infections in X-ray and CT images and allowing further measurement. We focus on the integration of AI with X-ray and CT, both of which are routinely used in frontline hospitals, to reflect the most recent progress in medical imaging and radiology combating COVID-19.
GDGLSPGCOER - Git and GitHub Workshop.pptxazeenhodekar
This presentation covers the fundamentals of Git and version control in a practical, beginner-friendly way. Learn key commands, the Git data model, commit workflows, and how to collaborate effectively using Git — all explained with visuals, examples, and relatable humor.
*Metamorphosis* is a biological process where an animal undergoes a dramatic transformation from a juvenile or larval stage to a adult stage, often involving significant changes in form and structure. This process is commonly seen in insects, amphibians, and some other animals.
The ever evoilving world of science /7th class science curiosity /samyans aca...Sandeep Swamy
The Ever-Evolving World of
Science
Welcome to Grade 7 Science4not just a textbook with facts, but an invitation to
question, experiment, and explore the beautiful world we live in. From tiny cells
inside a leaf to the movement of celestial bodies, from household materials to
underground water flows, this journey will challenge your thinking and expand
your knowledge.
Notice something special about this book? The page numbers follow the playful
flight of a butterfly and a soaring paper plane! Just as these objects take flight,
learning soars when curiosity leads the way. Simple observations, like paper
planes, have inspired scientific explorations throughout history.
How to Manage Opening & Closing Controls in Odoo 17 POSCeline George
In Odoo 17 Point of Sale, the opening and closing controls are key for cash management. At the start of a shift, cashiers log in and enter the starting cash amount, marking the beginning of financial tracking. Throughout the shift, every transaction is recorded, creating an audit trail.
The *nervous system of insects* is a complex network of nerve cells (neurons) and supporting cells that process and transmit information. Here's an overview:
Structure
1. *Brain*: The insect brain is a complex structure that processes sensory information, controls behavior, and integrates information.
2. *Ventral nerve cord*: A chain of ganglia (nerve clusters) that runs along the insect's body, controlling movement and sensory processing.
3. *Peripheral nervous system*: Nerves that connect the central nervous system to sensory organs and muscles.
Functions
1. *Sensory processing*: Insects can detect and respond to various stimuli, such as light, sound, touch, taste, and smell.
2. *Motor control*: The nervous system controls movement, including walking, flying, and feeding.
3. *Behavioral responThe *nervous system of insects* is a complex network of nerve cells (neurons) and supporting cells that process and transmit information. Here's an overview:
Structure
1. *Brain*: The insect brain is a complex structure that processes sensory information, controls behavior, and integrates information.
2. *Ventral nerve cord*: A chain of ganglia (nerve clusters) that runs along the insect's body, controlling movement and sensory processing.
3. *Peripheral nervous system*: Nerves that connect the central nervous system to sensory organs and muscles.
Functions
1. *Sensory processing*: Insects can detect and respond to various stimuli, such as light, sound, touch, taste, and smell.
2. *Motor control*: The nervous system controls movement, including walking, flying, and feeding.
3. *Behavioral responses*: Insects can exhibit complex behaviors, such as mating, foraging, and social interactions.
Characteristics
1. *Decentralized*: Insect nervous systems have some autonomy in different body parts.
2. *Specialized*: Different parts of the nervous system are specialized for specific functions.
3. *Efficient*: Insect nervous systems are highly efficient, allowing for rapid processing and response to stimuli.
The insect nervous system is a remarkable example of evolutionary adaptation, enabling insects to thrive in diverse environments.
The insect nervous system is a remarkable example of evolutionary adaptation, enabling insects to thrive
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsDrNidhiAgarwal
Unemployment is a major social problem, by which not only rural population have suffered but also urban population are suffered while they are literate having good qualification.The evil consequences like poverty, frustration, revolution
result in crimes and social disorganization. Therefore, it is
necessary that all efforts be made to have maximum.
employment facilities. The Government of India has already
announced that the question of payment of unemployment
allowance cannot be considered in India
Exploring Substances:
Acidic, Basic, and
Neutral
Welcome to the fascinating world of acids and bases! Join siblings Ashwin and
Keerthi as they explore the colorful world of substances at their school's
National Science Day fair. Their adventure begins with a mysterious white paper
that reveals hidden messages when sprayed with a special liquid.
In this presentation, we'll discover how different substances can be classified as
acidic, basic, or neutral. We'll explore natural indicators like litmus, red rose
extract, and turmeric that help us identify these substances through color
changes. We'll also learn about neutralization reactions and their applications in
our daily lives.
by sandeep swamy
INTRO TO STATISTICS
INTRO TO SPSS INTERFACE
CLEANING MULTIPLE CHOICE RESPONSE DATA WITH EXCEL
ANALYZING MULTIPLE CHOICE RESPONSE DATA
INTERPRETATION
Q & A SESSION
PRACTICAL HANDS-ON ACTIVITY
How to Subscribe Newsletter From Odoo 18 WebsiteCeline George
Newsletter is a powerful tool that effectively manage the email marketing . It allows us to send professional looking HTML formatted emails. Under the Mailing Lists in Email Marketing we can find all the Newsletter.
Odoo Inventory Rules and Routes v17 - Odoo SlidesCeline George
Odoo's inventory management system is highly flexible and powerful, allowing businesses to efficiently manage their stock operations through the use of Rules and Routes.
A measles outbreak originating in West Texas has been linked to confirmed cases in New Mexico, with additional cases reported in Oklahoma and Kansas. The current case count is 795 from Texas, New Mexico, Oklahoma, and Kansas. 95 individuals have required hospitalization, and 3 deaths, 2 children in Texas and one adult in New Mexico. These fatalities mark the first measles-related deaths in the United States since 2015 and the first pediatric measles death since 2003.
The YSPH Virtual Medical Operations Center Briefs (VMOC) were created as a service-learning project by faculty and graduate students at the Yale School of Public Health in response to the 2010 Haiti Earthquake. Each year, the VMOC Briefs are produced by students enrolled in Environmental Health Science Course 581 - Public Health Emergencies: Disaster Planning and Response. These briefs compile diverse information sources – including status reports, maps, news articles, and web content– into a single, easily digestible document that can be widely shared and used interactively. Key features of this report include:
- Comprehensive Overview: Provides situation updates, maps, relevant news, and web resources.
- Accessibility: Designed for easy reading, wide distribution, and interactive use.
- Collaboration: The “unlocked" format enables other responders to share, copy, and adapt seamlessly. The students learn by doing, quickly discovering how and where to find critical information and presenting it in an easily understood manner.
1. Department of Information Technology 1Soft Computing (ITC4256 )
Dr. C.V. Suresh Babu
Professor
Department of IT
Hindustan Institute of Science & Technology
Associative memory network
2. Department of Information Technology 2Soft Computing (ITC4256 )
Action Plan
• Associative Memory Networks
- Introduction to auto associative memory network
- Auto associative memory architecture
- Auto associative memory training & testing algorithm
- Introduction to hetero associative memory network
- Hetero associative memory architecture
- Hetero associative memory training & testing algorithm
• Quiz at the end of session
3. Department of Information Technology 3Soft Computing (ITC4256 )
Associative Memory Networks
• These kinds of neural networks work on the basis of pattern association, which means they can store
different patterns and at the time of giving an output they can produce one of the stored patterns by
matching them with the given input pattern.
• These types of memories are also called Content-Addressable Memory CAM.
4. Department of Information Technology 4Soft Computing (ITC4256 )
Auto Associative Memory - Architecture
• This is a single layer neural network in which the input training vector and the output target vectors
are the same.
• As shown in the following figure, the architecture of Auto Associative memory network has ‘n’
number of input training vectors and similar ‘n’ number of output target vectors.
5. Department of Information Technology 5Soft Computing (ITC4256 )
Auto Associative Memory – Training Algorithm
For training, this network is using the Hebb or Delta learning rule.
Step 1 − Initialize all the weights to zero as wij = 0, i = 1 to n, j = 1 to n
Step 2 − Perform steps 3-4 for each input vector.
Step 3 − Activate each input unit as follows −
xi = si (i = 1 to n)
Step 4 − Activate each output unit as follows −
yj = sj (j = 1 to n)
Step 5 − Adjust the weights as follows −
wij(new) = wij(old) + xiyj
6. Department of Information Technology 6Soft Computing (ITC4256 )
Auto Associative Memory – Testing Algorithm
Step 1 − Set the weights obtained during training for Hebb’s rule.
Step 2 − Perform steps 3-5 for each input vector.
Step 3 − Set the activation of the input units equal to that of the input vector.
Step 4 − Calculate the net input to each output unit j = 1 to n
n
yinj = ∑ xiwij
i=1
Step 5 − Apply the following activation function to calculate the output
yj = f(yinj) = +1 if yinj > 0
- 1 if yinj ⩽ 0
7. Department of Information Technology 7Soft Computing (ITC4256 )
Hetero Associative Memory
• Similar to Auto Associative Memory network, this is also a single layer
neural network.
• The weights are determined so that the network stores a set of patterns.
8. Department of Information Technology 8Soft Computing (ITC4256 )
Hetero Associative Memory - Architecture
• As shown in the following figure, the architecture of Hetero Associative Memory network has ‘n’
number of input training vectors and ‘m’ number of output target vectors.
9. Department of Information Technology 9Soft Computing (ITC4256 )
Hetero Associative Memory – Training Algorithm
For training, this network is using the Hebb or Delta learning rule.
Step 1 − Initialize all the weights to zero as wij = 0, i = 1 to n, j = 1 to m
Step 2 − Perform steps 3-4 for each input vector.
Step 3 − Activate each input unit as follows −
xi = si (i = 1 to n)
Step 4 − Activate each output unit as follows −
yj = sj (j = 1 to m)
Step 5 − Adjust the weights as follows −
wij(new) = wij(old) + xiyj
10. Department of Information Technology 10Soft Computing (ITC4256 )
Hetero Associative Memory – Testing Algorithm
Step 1 − Set the weights obtained during training for Hebb’s rule.
Step 2 − Perform steps 3-5 for each input vector.
Step 3 − Set the activation of the input units equal to that of the input vector.
Step 4 − Calculate the net input to each output unit j = 1 to m
n
yinj = ∑ xiwij
i=1
Step 5 − Apply the following activation function to calculate the output
+1 if yinj > 0
yj = f(yinj) = 0 if yinj = 0
- 1 if yinj < 0
11. Department of Information Technology 11Soft Computing (ITC4256 )
Quiz - Questions
1. What is the other name of associative memory?
2. In which associative memory network, the input training vector and the
output target vectors are the same?
a) auto b) hetero c) iterative d) noniterative
3. In which associative memory network, the input training vector and the
output target vectors are not the same?
a) auto b) hetero c) iterative d) noniterative
4. For which algorithm does the associative memory networks use the Hebb or
Delta learning rule?
a) training b) testing c) processing d) none
5. For which algorithm does the associative memory networks set the
activation of the input units equal to that of the input vector.
a) training b) testing c) processing d) none
12. Department of Information Technology 12Soft Computing (ITC4256 )
Quiz - Answers
1. What is the other name of associative memory?
Content-Addressable Memory (CAM)
2. In which associative memory network, the input training vector and the
output target vectors are the same?
a) auto
3. In which associative memory network, the input training vector and the
output target vectors are not the same?
b) hetero
4. For which algorithm does the associative memory networks use the Hebb or
Delta learning rule?
a) training
5. For which algorithm does the associative memory networks set the
activation of the input units equal to that of the input vector.
b) testing
13. Department of Information Technology 13Soft Computing (ITC4256 )
Action Plan
• Associative Memory Networks (Cont…)
- Introduction to iterative auto associative network
- Introduction to bidirectional associative network
- BAM operation
- BAM stability and storage capacity
• Quiz at the end of session
• Assignment – 2: Write a detailed note on iterative auto associative memory.
14. Department of Information Technology 14Soft Computing (ITC4256 )
Iterative Auto Associative Network
• Net does not respond to the input signal with the stored target pattern.
• Respond like stored pattern.
• Use the first response as input to the net again.
• Iterative auto associative network recover original stored vector when presented with test vector close
to it.
• It is also known as recurrent auto associative networks.
15. Department of Information Technology 15Soft Computing (ITC4256 )
Bidirectional Associative Memory (BAM)
• Bidirectional associative memory (BAM), first proposed by Bart Kosko, is a hetero associative
network.
• It associates patterns from one set, set A, to patterns from another set, set B, and vice versa.
• Human memory is essentially associative.
• We attempt to establish a chain of associations, and thereby to restore a lost memory.
17. Department of Information Technology 17Soft Computing (ITC4256 )
BAM Operation (Cont…)
• The correlation matrix is the matrix product of the input vector X, and the transpose of the output
vector YT.
• The BAM weight matrix is the sum of all correlation matrices, that is,
where M is the number of pattern pairs to be stored in the BAM.
T
m
M
m
m YXW
1
18. Department of Information Technology 18Soft Computing (ITC4256 )
BAM Operation (Cont…)
• The input vector X (p) is applied to the transpose of weight matrix WT to produce an output vector
Y(p).
• Then, the output vector Y(p) is applied to the weight matrix W to produce a new input vector X(p+1).
• This process is repeated until input and output vector become unchanged, or in other words, the BAM
reaches stable state.
19. Department of Information Technology 19Soft Computing (ITC4256 )
Stability and Storage Capacity of the BAM
• The BAM is unconditionally stable.
• The maximum number of associations to be stored in the BAM should not
exceed the number of neurons in the smaller layer.
• The more serious problem with the BAM is incorrect convergence.
• In fact, a stable association may be only slightly related to the initial input
vector.
20. Department of Information Technology 20Soft Computing (ITC4256 )
Quiz - Questions
1. What is the other name of iterative auto associative networks?
2. BAM is a ------------ associative network.
3. What has to be created for each pattern pair in order to develop BAM?
4. The major issue with BAM is ------------ .
5. Who first proposed BAM?
21. Department of Information Technology 21Soft Computing (ITC4256 )
Quiz - Answers
1. What is the other name of iterative auto associative networks?
Recurrent auto associative networks
2. BAM is a ------------ associative network.
Hetero
3. What has to be created for each pattern pair in order to develop BAM?
Correlation matrix
4. The major issue with BAM is ------------ .
Incorrect convergence
5. Who first proposed BAM?
Bart Kosko
22. Department of Information Technology 22Soft Computing (ITC4256 )
Action Plan
• Associative Memory Networks (Cont…)
- Introduction to Hopfield networks
- Introduction to Discrete Hopfield networks
- Discrete Hopfield networks training & testing algorithm
- Energy function evaluation
- Introduction to Continuous Hopfield networks
• Quiz at the end of session
23. Department of Information Technology 23Soft Computing (ITC4256 )
Hopfield Networks
• The Hopfield network represents an auto-associative type of memory.
• Hopfield neural network was invented by Dr. John J. Hopfield in 1982.
• It consists of a single layer which contains one or more fully connected
recurrent neurons.
24. Department of Information Technology 24Soft Computing (ITC4256 )
Discrete Hopfield Network
• The network has symmetrical weights with no self-connections i.e., wij =
wji and wii = 0.
Architecture
• Following are some important points to keep in mind about discrete
Hopfield network −
- This model consists of neurons with one inverting and one non-
inverting output.
- The output of each neuron should be the input of other neurons
but not the input of self.
25. Department of Information Technology 25Soft Computing (ITC4256 )
Discrete Hopfield Network (Cont…)
- Weight/connection strength is represented by wij.
- Weights should be symmetrical, i.e. wij = wji
• The output from Y1 going to Y2, Yi and Yn have the weights w12, w1i and
w1n respectively. Similarly, other arcs have the weights on them.
26. Department of Information Technology 26Soft Computing (ITC4256 )
Discrete Hopfield Network – Training Algorithm
• During training of discrete Hopfield network, weights will be updated.
• As we know that we can have the binary input vectors as well as bipolar
input vectors.
• Hence, in both the cases, weight updates can be done with the following
relation:
Case 1 − Binary input patterns
For a set of binary patterns s p, p = 1 to P
Here, s p = s1 p, s2 p,..., si p,..., sn p
Weight Matrix is given by
P
wij = ∑ [2si(p)−1][2sj(p)−1] for i ≠ j
p=1
27. Department of Information Technology 27Soft Computing (ITC4256 )
Discrete Hopfield Network – Training Algorithm
Case 2 − Bipolar input patterns
For a set of binary patterns s p, p = 1 to P
Here, s p = s1 p, s2 p,..., si p,..., sn p
Weight Matrix is given by
P
wij = ∑ [si(p)][sj(p)] for i ≠ j
p=1
28. Department of Information Technology 28Soft Computing (ITC4256 )
Discrete Hopfield Network – Testing Algorithm
Step 1 − Initialize the weights, which are obtained from training algorithm by
using Hebbian principle.
Step 2 − Perform steps 3-9, if the activations of the network is not
consolidated.
Step 3 − For each input vector X, perform steps 4-8.
Step 4 − Make initial activation of the network equal to the external input
vector X as follows −
yi = xi for i = 1 to n
Step 5 − For each unit Yi, perform steps 6-9.
29. Department of Information Technology 29Soft Computing (ITC4256 )
Discrete Hopfield Network – Testing Algorithm
Step 6 − Calculate the net input of the network as follows −
yini=xi+∑ yjwji
j
Step 7 − Apply the activation as follows over the net input to calculate the output −
1 if yini > θi
yi = yi if yini = θi
0 if yini < θi
Here θi is the threshold.
Step 8 − Broadcast this output yi to all other units.
Step 9 − Test the network for conjunction.
30. Department of Information Technology 30Soft Computing (ITC4256 )
Energy Function Evaluation
• An energy function is defined as a function that is bonded and non-
increasing function of the state of the system.
• Energy function Ef, also called Lyapunov function determines the stability
of discrete Hopfield network, and is characterized as follows −
n n n n
Ef = − 1 / 2 ∑ ∑ yi yj wij − ∑ xi yi + ∑ θi yi
i=1 j=1 i=1 i=1
31. Department of Information Technology 31Soft Computing (ITC4256 )
Continuous Hopfield Network
• Model − The model or architecture can be build up by adding electrical
components such as amplifiers which can map the input voltage to the output
voltage over a sigmoid activation function.
• Energy Function Evaluation
n n n n n yi
Ef = 1 / 2 ∑ ∑ yiyjwij − ∑ xiyi + 1 / λ ∑ ∑ wijgri ∫ a−1(y)dy
i=1 j=1 i=1 i=1 j=1 0
j≠i j≠i
• Here λ is gain parameter and gri input conductance.
32. Department of Information Technology 32Soft Computing (ITC4256 )
Quiz - Questions
1. The Hopfield network is an ---------- associative type of memory.
2. Hopfield consists of a -------- layer which contains one or more fully
connected recurrent neurons.
a) single b) double c) triple d) linear
3. Which principle is used to initialize weights in testing algorithm?
4. What is the other name of energy function?
5. Continuous Hopfield network has --------- as a continuous variable.
a) weight b) time c) bias d) none
33. Department of Information Technology 33Soft Computing (ITC4256 )
Quiz - Answers
1. The Hopfield network is an ---------- associative type of memory.
Auto
2. Hopfield consists of a -------- layer which contains one or more fully
connected recurrent neurons.
a) single
3. Which principle is used to initialize weights in testing algorithm?
Hebbian principle
4. What is the other name of energy function?
Lyapunov function
5. Continuous Hopfield network has --------- as a continuous variable.
b) time