SlideShare a Scribd company logo
Annual Conference2014 - IET-Sri Lanka
MODELING SCOCIAL NETWORKS IN MOBILE
TELECOMMUNICATIONS NETWORKS VIA
INFLUENCE DIFFUSION
Asoka Korale, Ph.D., MBA, CEng., MIET
Abstract: The identification of leaders and
communities of followers in Social Networks is
vital for implementing innovative business
strategies and marketing campaigns that can be
put in to effect by exploiting the hierarchical
relationships between individuals and their
consumption preferences.
This paper presents a novel approach for
analyzing the Social Network that arises as a
result of the hierarchical nature of communication
that occurs between the members of a particular
segment of the subscribers of a Mobile
Telecommunications Network. We identify leaders
and communities comprised of followers by
processing the way in which calls are initiated and
terminated between the subscribers. The call
pattern is translated in to a call graph using the
inherent properties of the interactions between
individual subscribers of the mobile network and
appropriately represented in an Adjacency matrix.
A community detection algorithm [2] is then
employed to identify those individuals with
significant influence in the network. The leaders
so identified are also validated using existing
notions about what constitutes a leader of a
subscriber segment in the context of a Mobile
Telecommunication Network.
Results from subscribers belonging to a Corporate
Telecommunications Network so analyzed are
presented identifying the leaders and the
communities formed around them. The
connectivity properties of the identified leaders are
then evaluated using existing methods to validate
the results of the new approach. A significant
innovation of this approach is the estimation of the
degree of membership of a given individual in a
particular community made possible by employing
this influence diffusion technique [2]. This leads
to the discovery of overlapping communities
populated by individuals who may display different
degrees of membership in more than one
community at a given time.
Business strategies a mobile network operator may
deploy by exploiting the underlying social network
discovered by this modeling to enhance revenues
through product promotions, advertisement
diffusion, churn reduction, and recommender
systems are also presented.
1. INTRODUCTION
It is often the case that networks exhibit hierarchical
properties and the analysis of such networks to
identify those nodes which lie at the root of the
hierarchy is important for many scientific and
business applications. It also the case that many of
these networks exhibit modularity properties where
the network may display natural partitions or
clustering of nodes which can be described and
understood as a process of community formation.
Thus under these conditions it would be possible to
partition the network so as to isolate the different
communities with the aim of identifying groups of
Annual Conference2014 - IET-Sri Lanka
nodes that belong to each of the community. This
partitioning is usually done in a way that the there is
a high density of links between members of a
particular community while the links between
communities are minimized.
Graph partitioning [6] and Spectral partitioning [7,
8] are the main techniques currently used for
dividing networks in to clusters or groups. Graph
partitioning algorithms however require as input the
number of partitions that need to be created and
thus do not automatically determine the optimum
way of segmenting a network.
Thus the partitions so estimated have analogies to
communities in social networks and the
communities are usually headed by a leaders that
are often the nodes near the root of the hierarchy. In
this way one is able to identify communities made
up of followers and leaders who have high
importance or influence.
In this paper we examine several methods for
modeling the Social Networks arising in Mobile
Telecommunications Networks by modeling the
mobile phone call pattern between subscribers. We
present results for a novel method for the analysis
of such Social Networks through the use an
algorithm [2] that displays superior performance to
the existing techniques employing modularity
function [3, 4], graph and spectral partitioning. This
algorithm performs automatic community detection
and does not suffer from the drawbacks of the
modularity approach related to resolution limit
which may give results that may not be in line with
the most intuitive partition of the network [5].
The algorithm also presents a method for estimating
the degree to which a node belongs to a particular
community by a membership vector with elements
associated with each detected community. In this
way it is possible to identify not only leaders of a
particular community but also their respective
followers who comprise the members of the
community. A novel feature is then the detection of
nodes that belong to more than one community to a
certain degree at a given time as expressed by the
membership function. Thus we are also able to
identify nodes or individuals that act as bridges
between communities.
2. SOCIAL NETWORK ANALYSIS
Social Network Analysis (SNA) is derived from the
study of the interactions between individuals and
groups and has its origins in the science of
Sociology, Sociometry and Psychology. In the
graphical representation of such a social network
the nodes are referred to as actors and the edges
which represent the interactions between the nodes
as ties or links.
While there is not much ambiguity in the definition
of the nodes in social networks the definition of the
edges however depends on the particular type of
problem being studied. As such the physical
meanings of the edges can be taken to signify
friendships between individuals, professional
relationships as found within certain organizations
for instance, communication patterns between
individuals in certain situations and even the
exchange of goods/money.
Other representations of social networks take the
form of “Affiliation Networks” (also referred to as
Bipartite graphs) where two types of vertices are
present with the links between the vertices
indicating membership of an individual in a
particular event / group.
An ego centric network on the other hand is the
study of the network surrounding a particular
individual, and thus does not encompass the entire
social network or depict the connections between all
actors. This is suitable when the network is very
large comprising of a vast number of nodes and the
aim is to picture the immediate neighborhood of the
ego or the individual under study and those around
it known in the literature as alters.
3. MODELING THE SOCIAL NETWORK
ARISING BETWEEN SUBSCRIBERS OF A
MOBILE TELECOMMUNICATION
NETWORK
The interactions between subscribers in a Mobile
Telecommunications Networks can be modeled as a
social network by utilizing the calling patterns
between the individual subscribers to construct a
“call graph” or a network of connections between
subscribers. The nodes in the graph are then the
subscribers or MSISDNs (Mobile Numbers
representing the subscribers) and the links are
indicative of calls between the nodes.
We believe that in such a scheme an edge can be
established between two nodes if there has been a
call between the respective MSISDNs. Often it is
the case that an edge is established between two
nodes only if there has been a reciprocal call (i.e.
Annual Conference2014 - IET-Sri Lanka
both MSISDNs have called one another). This is to
eliminate spurious links that may be formed by
external agents and weak and “unimportant”
relationships between subscribers. In such a
scheme the call graph may be a simple unweighted
and undirected one where a link is only established
between nodes that have made a reciprocal call or
exchanged a Short Message Service (SMS) message
between them. In other configurations the graph
may be a directed with the direction of the link
indicating the direction of the originating call or
SMS.
Unweighted call graphs of the nature described
above don’t account for the strength of the
relationship as expressed by the tie strength
between two nodes. The model can account for this
aspect by assigning a weight to each edge
depending on the number of calls exchanged
between two nodes or on the total amount of call
time (minutes of use) between the subscribers. The
total rupee value of the calls between two nodes can
also considered in determining the tie strength,
noting that this is a variable that may change with
the time of day and day of week in markets that
have differentiated pricing depending on the time
the call is made.
There is greater importance attached to incoming
calls as opposed to those outgoing in the social
networks of telecommunications. This follows from
an analogy taken from the World Wide Web, where
the importance of a web page is dependent on the
number of other web pages pointing to it. Thus web
pages that have many links to it are considered of a
higher rank than those that merely have many links
pointing to other pages. The Google page rank
algorithm utilizes this criterion and is based on the
premise that while one can create a page with a
large number of links to other pages it is the number
of references by other pages to the web page in
question that is indicative of its importance and
should determine its place in the network hierarchy
[10].
Considering the above inferences and arguments, in
the analysis presented in this paper we modeled the
Social Network of connections between the
subscribers of the Mobile Telecommunications
Network as a weighted undirected graph where a
connection is established between two subscribers
only if there are calls of a certain minimum duration
and if there is at least one call in the reverse
direction between the subscribers.
4. MATHEMATICS OF NETWORK
ANALYSIS [1]
Network theory is a vast discipline and only the
most important details necessary for identification
of leaders and community detection are presented
here. The adjacency Matrix is a common
mathematical representation of a network and in the
case of a directed graph takes the form below.
When the edges are weighted the value of the
weight will apply to the corresponding matrix entry
instead of unity
1ijA , if there is an edge from j to i
0ijA , otherwise
Centrality is a family of measures that seek to
quantify the importance of a particular node in a
network. As such there are many such centrality
measures of which Degree centrality, Katz
centrality, Page Rank and Eigen vector centrality
are perhaps most encountered. Katz and Page Rank
are closely related to and is a variant of the Eigen
Vector centrality used in this paper.
Eigen Vector centrality is based on the premise that
a node’s importance lies not only in the number of
connections it has but also on the connections of its
neighbors. So a node’s importance is measured by
the number of connections it has and this is
increased by having connections to other nodes that
are also important. Eigen vector centrality thus
assigns a score to each node that is the sum of the
scores of its neighbors, and mathematically this is
expressed as

j
jiji xAx'
, and when expressed as a vector
)1()(  nAxnx which implies that by iterating
)0()( xAnx n

It can be shown that in the limit for large n, x
approaches the principal Eigen vector of A
(corresponding to the largest Eigen value). An
important observation is that the Eigen values and
Eigen vectors of a matrix provide global
information about its structure. Thus the elements of
the principal Eigen vector also provide an indication
of the importance of each corresponding node.
Influence Diffusion, Spectral Clustering and
Spectral Graph Partitioning are a few of the many
techniques available for community detection.
Figure 2, depicts the results for the Spectral Graph
Partitioning of the “Highland Tribes” test network
Annual Conference2014 - IET-Sri Lanka
depicted in Figure 1, obtained by thresholding the
Eigen vector corresponding to the second smallest
Eigen value of the Laplacian matrix.
Figure 1: Highland Tribes Social Network
The Laplacian L, is defined as ADL  where
D is a diagonal matrix composed of the sum of the
corresponding columns of the Adjacency matrix

i
iji AD .
Figure 2: Detected Communities
The three communities and two components of the
social network are partitioned via the thresholds,
Figure 2.
Degree centrality measures the number of incoming
and outgoing connections at a particular node and is
a powerful measure of the importance of a node.
In-Degree 
j
iji ADin
Out-Degree 
i
iji ADout
5. ALGORITHM FOR LEADER
IDENTIFICATION AND COMMUNITY
DETECTION [2]
The algorithm implemented in the following
analysis is based on that which was derived by
Smilkov etal [2] and only the most salient points are
reproduced here.
An influence matrix '
A is defined using the
adjacency matrix A as

k
k
jijiji CAA'
where },min{ jkki
k
ji AAC  the
transitive link weight from node i to j and its
defined only for neighboring nodes.
To determine the overall influence at a node *
ix the
average influence of its neighbors are calculated via
an iterative procedure
)()1( txTtx  where


k
kj
ij
ij
A
A
T '
'
The identification of leaders is via the set of
neighbors with the largest influence on node i. The
neighborhood is defined }max|{ kikjii TTj 
and that node is denoted a leader if jjiiij xTxT 
for all ij  .
A significant innovation introduced by this
algorithm is the calculation of a membership
function that allows fuzzy boundaries between
communities, where one actor can belong to more
than one community to a different degree. Thus
each node has a membership vector where its
elements sum to one, each element indicating the
degree of membership of that node in a particular
community.
Considering consensus dynamics the membership
vector is determined via



j
jji
j
ji
i tyA
A
ty )(
1
)1( , at each iteration a
weighted average membership figure is calculated.
Thus each node will have a membership vector
giving its degree of participation in each community
where the sumof this vector is unity.
6. RESULTS FROM A CORPORATE
TELECOMMUNICATION NETWORK TO
VALIDATE TECHNIQUE
A well defined network of subscribers chosen from
a corporate network was chosen to illustrate and
validate the technique for community detection,
identifying leaders and their degree of membership
in a particular community. It is shown that the
leaders so identified belong almost exclusively to a
Annual Conference2014 - IET-Sri Lanka
single community and their followers exhibit a high
degree of membership in their leader’s community
while they may also have a lower degree of
involvement in other communities.
The In-Degree is a commonly used and direct
measure of the importance of a particular node
(subscriber) or actor in this type of communication
network with high degree measure indicating a
greater level of importance bestowed upon that
node. In the following analysis this In-Degree
measure is used to validate those individuals
identified as leaders by demonstrating that they
indeed display a high value when compared with
the other subscribers in the network.
The Adjacency matrix for the calls between the
members of the corporate mobile network was
constructed in such a way that only reciprocated
calls of total duration greater than 6 minutes for all
calls over the period were considered in establishing
a link between two nodes (subscribers). The
network was modeled as a weighted undirected
graph with link weight taken to be the total amount
of minutes of use between a particular pair of nodes.
The initial call records contained approximately
4000 incoming and outgoing calls between
members of the mobile network having 55 members
captured over a period of one week. The data was
parsed to meet the above eligibility criteria as it is
believed that meaningful relations exist between
members that have reasonably long calls and also
only when there is at least one call in the reverse
direction that meets the total cumulative minimum
duration criteria. Thus the link weight was taken to
be the sum of the total number of incoming and
outgoing minutes between two subscribers (nodes).
Figure 3: Degree of Membership
The degree of membership result (Figure 3)
indicates that most nodes in this analysis mostly
belong to one community and that the overlap of
communities is not so prevalent. A less stringent
requirement for the data parsing condition it was
observed resulted in a greater number of nodes that
exhibited greater overlap between several
communities. Thus when a link is established
between nodes for lower cumulative call duration
than the six minutes chosen, a greater degree of
overlap between communities was observed. Hence
this parameter is one that can tune the degree of
overlap by indirectly selecting the strength of the
relationship between a pair of subscribers.
Figure 4: Communities and Leaders
Figure 4, presents the leaders (nodes 3, 9, 23 and
36) and the corresponding number of followers
given by community size in their respective
communities. The red hatches indicate those nodes
that have not attached to a particular community or
leader, but are counted as part of community 1, for
sake of presentation. Figure 4, also indicates that
leaders with node numbers 3, 9, 23, and 36 belongs
to the communities 1, 2, 3 and 4 respectively.
It is also observed that the leaders (nodes) so
identified belong exclusively to one community by
having a membership value of unity (Figure 3).
Thus nodes 3, 9, 23, and 36 belong only to one
community and are not members of any other
community even to a lower degree. This also
validates their leadership position in the network. It
also is observed that there are a few nodes that have
membership values less than unity thus belonging
simultaneously to more than one community. It is
also observed that this degree of participation is
clustered mainly at the lower and upper regions of
the graph indicating that those nodes that have
multiple memberships still strongly associate with
one cluster (community) than the other.
0 10 20 30 40 50 60
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
MSIDN or Cx No
DegreeofMembershipinaCommunity
Degree of Membership in Communities
Community 1
Community 2
Community 3
Community 4
0 5 10 15 20 25 30 35 40 45 50 55
1
2
3
4
5
Communities
Leader Community Size
3
9
23
36
39
9
3
4
MSISDN or Cx No
CommunityID
Annual Conference2014 - IET-Sri Lanka
Figure 5: In-Degree at each node
Figure 5 depicts the In-Degree measure of each of
the nodes in the network participating in the
respective communities. There is strong correlation
between In-Degree and selection of a node as a
leader. Thus it is observed that nodes 3, 9, 23 and
36 do indeed exhibit a high In-Degree relative to the
other subscribers which is commensurate with their
elevation to the status of leader of a community. In-
Degree alone however does not make a leader as
it’s the connectivity of the neighboring nodes that
ultimately counts. There are a number of nodes with
zero In-Degree that are the result of the original
filtering to obtain only those relationships that are
meaningful and eliminate spurious links. Thus we
are able to validate the results of the Social Network
modeling of the Mobile Telecommunication
Network via the influence diffusion analysis
technique by utilizing the more traditional approach
of In-Degree.
7.0 BUSINESS AND MARKET STRATEGIES
FOR NETWORK OPERATORS
Increasingly businesses are aware of the value of
the “buzz” created by campaigns and watch social
media for signs of chatter that can help predict the
success or failure of a new product or initiative.
Social media then is an indicator as well as a
method for spreading the word or a particular
message across its communities. The ability to
identify those individuals within the network with
“social power” is key to implementing these
strategies.
The identification of corporate leaders such as
senior managers and CEOs for inclusion in ones
customer base is a less subtle form of the same
strategy that has the benefit of attracting those
subordinate connections froma particular institution
and is a well practiced approach. Thus diffusing an
advertisement, product idea or message across the
customer base and then to the wider public is more
efficiently done by targeting the message to these
key individuals in the social hierarchy in a network.
In this way the message is more likely to filter to
the larger communities lead by the “influential”
individuals. This is far more efficient and cost
effective than a blanket advertizing campaign or
broadcasting the message to a randomsample of the
base.
The increasing synergies that arise due to the
convergence between the mobile
telecommunications and the internet worlds give a
promoter the opportunity of spreading a message
between the two environments. Thus internet
products may be advertized through mobile and
vice versa. Additionally the social networks arising
from social media such as Facebook and Twitter
can readily be exploited by the social networks in
telecommunications networks provided care is
taken to match the “interest profile” of a potential
customer. In general those individuals that form
social networks do have many commonalities that
can take the form of common interests,
demographics, and lineage among other attributes.
Thus it may be construed that a mobile user who
accesses the internet and browsers news sites may
be a candidate for a subscription to a certain type of
online news magazine.
Further, the analysis of the attributes of the
members of a particular community formed around
a leader may lead to the discovery of common traits
that can exploited by a shrewd marketer. Thus the
identification of a leader of a community combined
with the knowledge of some overall characteristics
of the followers will enable the creation of a well
tailored message targeting the leader but aimed to
be also appealing to the followers of that segment
and the community at large.
Sentiment analysis of twitter feeds and postings on
social media plays an increasingly larger role in a
company’s communications strategy providing
almost immediate feedback on an organization’s
initiatives and corporate image. As influencing the
opinions of existing and potential new customers is
important to the success ofa business in the internet
age, the corporate image usually built on
fundamentals such as service quality, customer
service and reliability benefits from managing and
influencing the conversations taking place on social
media. In this regard well designed messages
directed to “influential” individuals in the social
hierarchy can help burnish a company’s image,
0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9
In Degree
MSIDN or Cx No
Degree
Annual Conference2014 - IET-Sri Lanka
create awareness and push products, raising the
profile of a company.
Product bundling and opportunities for cross sell
and up sell are all made more effective through the
utilization of social networks, so much so that social
media marketing is a vital part of many innovative
organizations. These promotional initiatives can be
considered as being the result of a chain process and
when triggered by individuals with influence and
social power can have the effect of rippling through
the network triggering other individuals to perform
similar actions. Churn events is a prime example of
this phenomena where the loss of an important
customer can result in the loss of a whole host of
other “followers” [9]. Thus the retention of key
individuals in the network hierarchy is crucial to a
business as it lowers churn rates, reduces negative
vibes and rationalizes customer acquisition costs.
Additionally segmentation of the customer base and
can also be made more effective when based on
communities combined with other profiling
attributes of interest.
Product and service recommendations derived from
Recommender systems are a very common part of
the internet experience. Essentially the
recommender algorithm determines the
combinations of services and products a customer
has purchased and makes a recommendation on a
product not already in the portfolio of the consumer
based on the consumption pattern of products of
other customers who have a very similar profile to
the customer. This profile will take in to account a
number of attributes such as demographics, income
and spending, and product preferences. Social
networks enhance this process as recommendations
from friends and those with social influence go
further than mere advertisements or ratings. Thus
for example a hotel / service recommendation from
a friend, colleague or someone with influence will
make a significant difference in influencing a
choice than a mere banner / pop up advertisement or
ratings service [11].
Finally, the single view of the customer envisaged
by business to arrive at a complete understanding of
the needs and worth of a customer will also depend
on that person’s position in the social hierarchy. As
examined earlier, the importance of a customer or
subscriber cannot be determined solely on revenue
contributions but also should take in to account that
person’s position in the social network, which is a
measure of the ability to act as an attractor for other
customers, products, services and the spread of
influence.
8. CONCLUSION
This paper presented a novel technique for the
analysis of the Social Networks that arise in Mobile
Telecommunications Networks. In this technique
we modeled the call pattern between the subscribers
of the mobile network as a weighted undirected
graph using an influence diffusion algorithm to
estimate the key actors and their properties in the
network. Several schemes for modeling the mobile
phone call patterns between the subscribers in the
network as call graphs were studied and the impact
on the resulting social network analyzed.
Leaders and followers of communities formed
among the mobile subscribers of a corporate
network were identified via this technique and
validated using In-Degree measure. Their more
significant attributes such as connectivity, centrality
were also analyzed to understand the role they play
in the communities. The degree of membership in a
particular community was presented as a measure to
determine those subscribers that may act as links
between two or more communities of subscribers
instead of merely belonging exclusively to one
community and in that respect play an important
role.
In conclusion the strategies a mobile operator
should adopt to enhance its competitive position in
the industry through the deeper understanding ofthe
interactions and relationships of its key subscribers
and the communities they represent were discussed.
The modeling thus illustrates the significance,
relevance and power of social network analysis in
mobile telecommunications.
9. ACKNOWLEDGEMENTS
N.S. Ekanayake, BSc. (Hons) for providing
business intelligence and detailed call data records
from a live corporate mobile telecommunication
network.
10. REFERENCES
[1] Newman, MEJ, Networks, Oxford University
Press, 2013, pp 109-149.
[2] D. Smilkov, A. Stanoev, L. Kocarev, Identifying
communities by influence dynamics in social
networks, Physical review E, 2011.
[3] M. E. J Newman and M. Girvan. Physical
Review E 69, (2004).
Annual Conference2014 - IET-Sri Lanka
[4] A. Clauset, M. E. J. Newman and C. Moore.
Finding community structure in very large
networks. Phys. Rev. E 70, (2004).
[5] B. H. Good, Y. A. Montjoye and A. Clauset,
Performance of modularity maximization in
practical contexts, Phys. Rev. E 81, (2010).
[6] Kernighan, B. W. and Lin, S., An efficient
heuristic procedure for portioning graphs, Bell
System Journal, (2010).
[7] Fiedler, M., algebraic connectivity of graphs,
Czech. Math. J. 23, 298-305, (1973).
[8] Pothen, A., Simon, H., and Liou, K-P.,
Partitioning sparse matrices with eigenvectors of
graphs, SIAM J Matrix anal. Appl. 11, 430-452,
(1990).
[9] Dasgupta, K., Singh, B., Social ties and their
relevance to churn in mobile telcom networks,
EBDT, (2008).
[10] Brin, S., Page, L., The anatomy of a large scale
hypertextual web search engine., Proceedings of 7th
International WWW Conference, (1998).
[11] Mahajan, V., Muller, E., Bass, F., New product
diffusion models in marketing: A review and
directions for research., Journal of marketing,
(1990).

More Related Content

PPTX
Social Network Analysis
Wael Elrifai
 
PDF
Social Friend Overlying Communities Based on Social Network Context
IRJET Journal
 
PDF
05 20275 computational solution...
IAESIJEECS
 
PDF
2009-Social computing-Analyzing social media networks
Marc Smith
 
PDF
Taxonomy and survey of community
IJCSES Journal
 
PPTX
Dissemination of Awareness Evolution “What is really going on?” Pilkada 2015 ...
Andry Alamsyah
 
PDF
Socially Aware Device To Device Communications
ijtsrd
 
PDF
A scalable server architecture for mobile presence services in social network...
Bijoy L
 
Social Network Analysis
Wael Elrifai
 
Social Friend Overlying Communities Based on Social Network Context
IRJET Journal
 
05 20275 computational solution...
IAESIJEECS
 
2009-Social computing-Analyzing social media networks
Marc Smith
 
Taxonomy and survey of community
IJCSES Journal
 
Dissemination of Awareness Evolution “What is really going on?” Pilkada 2015 ...
Andry Alamsyah
 
Socially Aware Device To Device Communications
ijtsrd
 
A scalable server architecture for mobile presence services in social network...
Bijoy L
 

What's hot (20)

PPTX
Social network analysis
Emma Brear
 
DOC
Poster Abstracts
butest
 
PDF
An improvised model for identifying influential nodes in multi parameter soci...
csandit
 
DOC
Setting The Stage For Empirical Research In Virtual Social Networks
via fCh
 
PDF
Sna based reasoning for multiagent
ijaia
 
PDF
2000 - CSCW - Conversation Trees and Threaded Chats
Marc Smith
 
PPTX
Literature Review on Social Networking in Supply chain
Sujoy Bag
 
PDF
Periphery authors, network embeddedness, and research impact: The case of Chi...
The International Journal of Business Management and Technology
 
PDF
Pilkada DKI 2017 Social Network Model (Early Report)
Andry Alamsyah
 
PDF
Multiple Regression to Analyse Social Graph of Brand Awareness
TELKOMNIKA JOURNAL
 
PDF
2007-JOSS-Visualizing the signatures of social roles in online discussion groups
Marc Smith
 
PPT
3 Centrality
Maksim Tsvetovat
 
DOCX
Rep on the Roll A peer to peer reputation system based on a rolling blockchain
Richard Dennis
 
PDF
A Game theoretic approach for competition over visibility in social networks
journalBEEI
 
PDF
Energy Awareness and the Role of “Critical Mass” In Smart Cities
irjes
 
PDF
MODELING SOCIAL GAUSS-MARKOV MOBILITY FOR OPPORTUNISTIC NETWORK
csandit
 
PDF
AN GROUP BEHAVIOR MOBILITY MODEL FOR OPPORTUNISTIC NETWORKS
csandit
 
KEY
Eugenio S Final Presentation Material Results Of Annotated Bibliography Apr12
shirin0809
 
PDF
thesis
Jihad Labban
 
PDF
IRJET- Cross System User Modeling and Personalization on the Social Web
IRJET Journal
 
Social network analysis
Emma Brear
 
Poster Abstracts
butest
 
An improvised model for identifying influential nodes in multi parameter soci...
csandit
 
Setting The Stage For Empirical Research In Virtual Social Networks
via fCh
 
Sna based reasoning for multiagent
ijaia
 
2000 - CSCW - Conversation Trees and Threaded Chats
Marc Smith
 
Literature Review on Social Networking in Supply chain
Sujoy Bag
 
Periphery authors, network embeddedness, and research impact: The case of Chi...
The International Journal of Business Management and Technology
 
Pilkada DKI 2017 Social Network Model (Early Report)
Andry Alamsyah
 
Multiple Regression to Analyse Social Graph of Brand Awareness
TELKOMNIKA JOURNAL
 
2007-JOSS-Visualizing the signatures of social roles in online discussion groups
Marc Smith
 
3 Centrality
Maksim Tsvetovat
 
Rep on the Roll A peer to peer reputation system based on a rolling blockchain
Richard Dennis
 
A Game theoretic approach for competition over visibility in social networks
journalBEEI
 
Energy Awareness and the Role of “Critical Mass” In Smart Cities
irjes
 
MODELING SOCIAL GAUSS-MARKOV MOBILITY FOR OPPORTUNISTIC NETWORK
csandit
 
AN GROUP BEHAVIOR MOBILITY MODEL FOR OPPORTUNISTIC NETWORKS
csandit
 
Eugenio S Final Presentation Material Results Of Annotated Bibliography Apr12
shirin0809
 
thesis
Jihad Labban
 
IRJET- Cross System User Modeling and Personalization on the Social Web
IRJET Journal
 
Ad

Viewers also liked (14)

PDF
Gandhi ji
Ashutosh Tiwari
 
PDF
Croissant z prosciutto i figami
Phoo - Kuchnia / Ciekawostki / Podróże
 
PPTX
US Smartphone Search - Post iPhone 5S/C Launch
Luigi Ferguson
 
PPTX
Gebeurtenis
Joris Janssens
 
PDF
MyPortfolio
isaac mongcal
 
DOCX
WRY-Managment Certificates
Warren Yadon
 
PDF
ENG Final research report pdf
Madeline Liew
 
PPTX
Altus Alliance 2016 - What's New in Altus Dynamics CRM
Sparkrock
 
DOCX
A novel recommender for mobile telecom alert services - linkedin
Asoka Korale
 
PDF
Evaluación módulo 2 ¿cómo esta planificado el buen vivir
Jorge Piedra Luna
 
DOC
Sab manana instrucciones representante pepe nocaut synergy
PTF
 
PPTX
Cryptography
jayashri kolekar
 
PPTX
Object oriented modeling and design
jayashri kolekar
 
Gandhi ji
Ashutosh Tiwari
 
Croissant z prosciutto i figami
Phoo - Kuchnia / Ciekawostki / Podróże
 
US Smartphone Search - Post iPhone 5S/C Launch
Luigi Ferguson
 
Gebeurtenis
Joris Janssens
 
MyPortfolio
isaac mongcal
 
WRY-Managment Certificates
Warren Yadon
 
ENG Final research report pdf
Madeline Liew
 
Altus Alliance 2016 - What's New in Altus Dynamics CRM
Sparkrock
 
A novel recommender for mobile telecom alert services - linkedin
Asoka Korale
 
Evaluación módulo 2 ¿cómo esta planificado el buen vivir
Jorge Piedra Luna
 
Sab manana instrucciones representante pepe nocaut synergy
PTF
 
Cryptography
jayashri kolekar
 
Object oriented modeling and design
jayashri kolekar
 
Ad

Similar to ATC full paper format-2014 Social Networks in Telecommunications Asoka Korale - Review (20)

PDF
Dv31821825
IJERA Editor
 
PDF
An updated look at social network extraction system a personal data analysis ...
eSAT Publishing House
 
PDF
New Similarity Index for Finding Followers in Leaders Based Community Detection
IRJET Journal
 
PDF
APPLICATION OF CLUSTERING TO ANALYZE ACADEMIC SOCIAL NETWORKS
IJwest
 
PDF
The Mathematics of Social Network Analysis: Metrics for Academic Social Networks
Editor IJCATR
 
PDF
BIA 658 – Social Network Analysis - Final report Kanad Chatterjee
Kanad Chatterjee
 
PDF
Learner Centered Network Models: A Survey
IJITE
 
PDF
LEARNER CENTERED NETWORK MODELS: A SURVEY
IJITE
 
PPTX
SNA of M2M Organisations
Lee Cox
 
DOC
Entrepreneuring In Social Networks
via fCh
 
PDF
An Sna-Bi Based System for Evaluating Virtual Teams: A Software Development P...
ijcsit
 
PDF
IRJET- Predicting Social Network Communities Structure Changes and Detection ...
IRJET Journal
 
PDF
Sampling of User Behavior Using Online Social Network
Editor IJCATR
 
PDF
Q046049397
IJERA Editor
 
PDF
Current trends of opinion mining and sentiment analysis in social networks
eSAT Publishing House
 
PDF
Least Cost Influence by Mapping Online Social Networks
paperpublications3
 
PDF
Multimode network based efficient and scalable learning of collective behavior
IAEME Publication
 
PPT
Sharma social crear red
keuvoh7883
 
PPT
Sharma social networks
keuvoh7883
 
PPT
Sharma Social Networks (Tin180 Com)
Tin180 VietNam
 
Dv31821825
IJERA Editor
 
An updated look at social network extraction system a personal data analysis ...
eSAT Publishing House
 
New Similarity Index for Finding Followers in Leaders Based Community Detection
IRJET Journal
 
APPLICATION OF CLUSTERING TO ANALYZE ACADEMIC SOCIAL NETWORKS
IJwest
 
The Mathematics of Social Network Analysis: Metrics for Academic Social Networks
Editor IJCATR
 
BIA 658 – Social Network Analysis - Final report Kanad Chatterjee
Kanad Chatterjee
 
Learner Centered Network Models: A Survey
IJITE
 
LEARNER CENTERED NETWORK MODELS: A SURVEY
IJITE
 
SNA of M2M Organisations
Lee Cox
 
Entrepreneuring In Social Networks
via fCh
 
An Sna-Bi Based System for Evaluating Virtual Teams: A Software Development P...
ijcsit
 
IRJET- Predicting Social Network Communities Structure Changes and Detection ...
IRJET Journal
 
Sampling of User Behavior Using Online Social Network
Editor IJCATR
 
Q046049397
IJERA Editor
 
Current trends of opinion mining and sentiment analysis in social networks
eSAT Publishing House
 
Least Cost Influence by Mapping Online Social Networks
paperpublications3
 
Multimode network based efficient and scalable learning of collective behavior
IAEME Publication
 
Sharma social crear red
keuvoh7883
 
Sharma social networks
keuvoh7883
 
Sharma Social Networks (Tin180 Com)
Tin180 VietNam
 

More from Asoka Korale (20)

DOCX
Improving predictability and performance by relating the number of events and...
Asoka Korale
 
PPTX
Improving predictability and performance by relating the number of events and...
Asoka Korale
 
PPTX
Novel price models in the capital market
Asoka Korale
 
PDF
Modeling prices for capital market surveillance
Asoka Korale
 
DOCX
Entity profling and collusion detection
Asoka Korale
 
PDF
Entity Profiling and Collusion Detection
Asoka Korale
 
PDF
Markov Decision Processes in Market Surveillance
Asoka Korale
 
PDF
A framework for dynamic pricing electricity consumption patterns via time ser...
Asoka Korale
 
PDF
A framework for dynamic pricing electricity consumption patterns via time ser...
Asoka Korale
 
DOC
Customer Lifetime Value Modeling
Asoka Korale
 
DOCX
Forecasting models for Customer Lifetime Value
Asoka Korale
 
DOC
Capacity and utilization enhancement
Asoka Korale
 
DOC
Cell load KPIs in support of event triggered Cellular Yield Maximization
Asoka Korale
 
DOCX
Vehicular Traffic Monitoring Scenarios
Asoka Korale
 
PPTX
Mixed Numeric and Categorical Attribute Clustering Algorithm
Asoka Korale
 
PPTX
Introduction to Bit Coin Model
Asoka Korale
 
PPTX
Estimating Gaussian Mixture Densities via an implemetation of the Expectaatio...
Asoka Korale
 
PPTX
Mapping Mobile Average Revenue per User to Personal Income level via Househol...
Asoka Korale
 
DOCX
Asoka_Korale_Event_based_CYM_IET_2013_submitted linkedin
Asoka Korale
 
PPTX
event tiggered cellular yield enhancement linkedin
Asoka Korale
 
Improving predictability and performance by relating the number of events and...
Asoka Korale
 
Improving predictability and performance by relating the number of events and...
Asoka Korale
 
Novel price models in the capital market
Asoka Korale
 
Modeling prices for capital market surveillance
Asoka Korale
 
Entity profling and collusion detection
Asoka Korale
 
Entity Profiling and Collusion Detection
Asoka Korale
 
Markov Decision Processes in Market Surveillance
Asoka Korale
 
A framework for dynamic pricing electricity consumption patterns via time ser...
Asoka Korale
 
A framework for dynamic pricing electricity consumption patterns via time ser...
Asoka Korale
 
Customer Lifetime Value Modeling
Asoka Korale
 
Forecasting models for Customer Lifetime Value
Asoka Korale
 
Capacity and utilization enhancement
Asoka Korale
 
Cell load KPIs in support of event triggered Cellular Yield Maximization
Asoka Korale
 
Vehicular Traffic Monitoring Scenarios
Asoka Korale
 
Mixed Numeric and Categorical Attribute Clustering Algorithm
Asoka Korale
 
Introduction to Bit Coin Model
Asoka Korale
 
Estimating Gaussian Mixture Densities via an implemetation of the Expectaatio...
Asoka Korale
 
Mapping Mobile Average Revenue per User to Personal Income level via Househol...
Asoka Korale
 
Asoka_Korale_Event_based_CYM_IET_2013_submitted linkedin
Asoka Korale
 
event tiggered cellular yield enhancement linkedin
Asoka Korale
 

ATC full paper format-2014 Social Networks in Telecommunications Asoka Korale - Review

  • 1. Annual Conference2014 - IET-Sri Lanka MODELING SCOCIAL NETWORKS IN MOBILE TELECOMMUNICATIONS NETWORKS VIA INFLUENCE DIFFUSION Asoka Korale, Ph.D., MBA, CEng., MIET Abstract: The identification of leaders and communities of followers in Social Networks is vital for implementing innovative business strategies and marketing campaigns that can be put in to effect by exploiting the hierarchical relationships between individuals and their consumption preferences. This paper presents a novel approach for analyzing the Social Network that arises as a result of the hierarchical nature of communication that occurs between the members of a particular segment of the subscribers of a Mobile Telecommunications Network. We identify leaders and communities comprised of followers by processing the way in which calls are initiated and terminated between the subscribers. The call pattern is translated in to a call graph using the inherent properties of the interactions between individual subscribers of the mobile network and appropriately represented in an Adjacency matrix. A community detection algorithm [2] is then employed to identify those individuals with significant influence in the network. The leaders so identified are also validated using existing notions about what constitutes a leader of a subscriber segment in the context of a Mobile Telecommunication Network. Results from subscribers belonging to a Corporate Telecommunications Network so analyzed are presented identifying the leaders and the communities formed around them. The connectivity properties of the identified leaders are then evaluated using existing methods to validate the results of the new approach. A significant innovation of this approach is the estimation of the degree of membership of a given individual in a particular community made possible by employing this influence diffusion technique [2]. This leads to the discovery of overlapping communities populated by individuals who may display different degrees of membership in more than one community at a given time. Business strategies a mobile network operator may deploy by exploiting the underlying social network discovered by this modeling to enhance revenues through product promotions, advertisement diffusion, churn reduction, and recommender systems are also presented. 1. INTRODUCTION It is often the case that networks exhibit hierarchical properties and the analysis of such networks to identify those nodes which lie at the root of the hierarchy is important for many scientific and business applications. It also the case that many of these networks exhibit modularity properties where the network may display natural partitions or clustering of nodes which can be described and understood as a process of community formation. Thus under these conditions it would be possible to partition the network so as to isolate the different communities with the aim of identifying groups of
  • 2. Annual Conference2014 - IET-Sri Lanka nodes that belong to each of the community. This partitioning is usually done in a way that the there is a high density of links between members of a particular community while the links between communities are minimized. Graph partitioning [6] and Spectral partitioning [7, 8] are the main techniques currently used for dividing networks in to clusters or groups. Graph partitioning algorithms however require as input the number of partitions that need to be created and thus do not automatically determine the optimum way of segmenting a network. Thus the partitions so estimated have analogies to communities in social networks and the communities are usually headed by a leaders that are often the nodes near the root of the hierarchy. In this way one is able to identify communities made up of followers and leaders who have high importance or influence. In this paper we examine several methods for modeling the Social Networks arising in Mobile Telecommunications Networks by modeling the mobile phone call pattern between subscribers. We present results for a novel method for the analysis of such Social Networks through the use an algorithm [2] that displays superior performance to the existing techniques employing modularity function [3, 4], graph and spectral partitioning. This algorithm performs automatic community detection and does not suffer from the drawbacks of the modularity approach related to resolution limit which may give results that may not be in line with the most intuitive partition of the network [5]. The algorithm also presents a method for estimating the degree to which a node belongs to a particular community by a membership vector with elements associated with each detected community. In this way it is possible to identify not only leaders of a particular community but also their respective followers who comprise the members of the community. A novel feature is then the detection of nodes that belong to more than one community to a certain degree at a given time as expressed by the membership function. Thus we are also able to identify nodes or individuals that act as bridges between communities. 2. SOCIAL NETWORK ANALYSIS Social Network Analysis (SNA) is derived from the study of the interactions between individuals and groups and has its origins in the science of Sociology, Sociometry and Psychology. In the graphical representation of such a social network the nodes are referred to as actors and the edges which represent the interactions between the nodes as ties or links. While there is not much ambiguity in the definition of the nodes in social networks the definition of the edges however depends on the particular type of problem being studied. As such the physical meanings of the edges can be taken to signify friendships between individuals, professional relationships as found within certain organizations for instance, communication patterns between individuals in certain situations and even the exchange of goods/money. Other representations of social networks take the form of “Affiliation Networks” (also referred to as Bipartite graphs) where two types of vertices are present with the links between the vertices indicating membership of an individual in a particular event / group. An ego centric network on the other hand is the study of the network surrounding a particular individual, and thus does not encompass the entire social network or depict the connections between all actors. This is suitable when the network is very large comprising of a vast number of nodes and the aim is to picture the immediate neighborhood of the ego or the individual under study and those around it known in the literature as alters. 3. MODELING THE SOCIAL NETWORK ARISING BETWEEN SUBSCRIBERS OF A MOBILE TELECOMMUNICATION NETWORK The interactions between subscribers in a Mobile Telecommunications Networks can be modeled as a social network by utilizing the calling patterns between the individual subscribers to construct a “call graph” or a network of connections between subscribers. The nodes in the graph are then the subscribers or MSISDNs (Mobile Numbers representing the subscribers) and the links are indicative of calls between the nodes. We believe that in such a scheme an edge can be established between two nodes if there has been a call between the respective MSISDNs. Often it is the case that an edge is established between two nodes only if there has been a reciprocal call (i.e.
  • 3. Annual Conference2014 - IET-Sri Lanka both MSISDNs have called one another). This is to eliminate spurious links that may be formed by external agents and weak and “unimportant” relationships between subscribers. In such a scheme the call graph may be a simple unweighted and undirected one where a link is only established between nodes that have made a reciprocal call or exchanged a Short Message Service (SMS) message between them. In other configurations the graph may be a directed with the direction of the link indicating the direction of the originating call or SMS. Unweighted call graphs of the nature described above don’t account for the strength of the relationship as expressed by the tie strength between two nodes. The model can account for this aspect by assigning a weight to each edge depending on the number of calls exchanged between two nodes or on the total amount of call time (minutes of use) between the subscribers. The total rupee value of the calls between two nodes can also considered in determining the tie strength, noting that this is a variable that may change with the time of day and day of week in markets that have differentiated pricing depending on the time the call is made. There is greater importance attached to incoming calls as opposed to those outgoing in the social networks of telecommunications. This follows from an analogy taken from the World Wide Web, where the importance of a web page is dependent on the number of other web pages pointing to it. Thus web pages that have many links to it are considered of a higher rank than those that merely have many links pointing to other pages. The Google page rank algorithm utilizes this criterion and is based on the premise that while one can create a page with a large number of links to other pages it is the number of references by other pages to the web page in question that is indicative of its importance and should determine its place in the network hierarchy [10]. Considering the above inferences and arguments, in the analysis presented in this paper we modeled the Social Network of connections between the subscribers of the Mobile Telecommunications Network as a weighted undirected graph where a connection is established between two subscribers only if there are calls of a certain minimum duration and if there is at least one call in the reverse direction between the subscribers. 4. MATHEMATICS OF NETWORK ANALYSIS [1] Network theory is a vast discipline and only the most important details necessary for identification of leaders and community detection are presented here. The adjacency Matrix is a common mathematical representation of a network and in the case of a directed graph takes the form below. When the edges are weighted the value of the weight will apply to the corresponding matrix entry instead of unity 1ijA , if there is an edge from j to i 0ijA , otherwise Centrality is a family of measures that seek to quantify the importance of a particular node in a network. As such there are many such centrality measures of which Degree centrality, Katz centrality, Page Rank and Eigen vector centrality are perhaps most encountered. Katz and Page Rank are closely related to and is a variant of the Eigen Vector centrality used in this paper. Eigen Vector centrality is based on the premise that a node’s importance lies not only in the number of connections it has but also on the connections of its neighbors. So a node’s importance is measured by the number of connections it has and this is increased by having connections to other nodes that are also important. Eigen vector centrality thus assigns a score to each node that is the sum of the scores of its neighbors, and mathematically this is expressed as  j jiji xAx' , and when expressed as a vector )1()(  nAxnx which implies that by iterating )0()( xAnx n  It can be shown that in the limit for large n, x approaches the principal Eigen vector of A (corresponding to the largest Eigen value). An important observation is that the Eigen values and Eigen vectors of a matrix provide global information about its structure. Thus the elements of the principal Eigen vector also provide an indication of the importance of each corresponding node. Influence Diffusion, Spectral Clustering and Spectral Graph Partitioning are a few of the many techniques available for community detection. Figure 2, depicts the results for the Spectral Graph Partitioning of the “Highland Tribes” test network
  • 4. Annual Conference2014 - IET-Sri Lanka depicted in Figure 1, obtained by thresholding the Eigen vector corresponding to the second smallest Eigen value of the Laplacian matrix. Figure 1: Highland Tribes Social Network The Laplacian L, is defined as ADL  where D is a diagonal matrix composed of the sum of the corresponding columns of the Adjacency matrix  i iji AD . Figure 2: Detected Communities The three communities and two components of the social network are partitioned via the thresholds, Figure 2. Degree centrality measures the number of incoming and outgoing connections at a particular node and is a powerful measure of the importance of a node. In-Degree  j iji ADin Out-Degree  i iji ADout 5. ALGORITHM FOR LEADER IDENTIFICATION AND COMMUNITY DETECTION [2] The algorithm implemented in the following analysis is based on that which was derived by Smilkov etal [2] and only the most salient points are reproduced here. An influence matrix ' A is defined using the adjacency matrix A as  k k jijiji CAA' where },min{ jkki k ji AAC  the transitive link weight from node i to j and its defined only for neighboring nodes. To determine the overall influence at a node * ix the average influence of its neighbors are calculated via an iterative procedure )()1( txTtx  where   k kj ij ij A A T ' ' The identification of leaders is via the set of neighbors with the largest influence on node i. The neighborhood is defined }max|{ kikjii TTj  and that node is denoted a leader if jjiiij xTxT  for all ij  . A significant innovation introduced by this algorithm is the calculation of a membership function that allows fuzzy boundaries between communities, where one actor can belong to more than one community to a different degree. Thus each node has a membership vector where its elements sum to one, each element indicating the degree of membership of that node in a particular community. Considering consensus dynamics the membership vector is determined via    j jji j ji i tyA A ty )( 1 )1( , at each iteration a weighted average membership figure is calculated. Thus each node will have a membership vector giving its degree of participation in each community where the sumof this vector is unity. 6. RESULTS FROM A CORPORATE TELECOMMUNICATION NETWORK TO VALIDATE TECHNIQUE A well defined network of subscribers chosen from a corporate network was chosen to illustrate and validate the technique for community detection, identifying leaders and their degree of membership in a particular community. It is shown that the leaders so identified belong almost exclusively to a
  • 5. Annual Conference2014 - IET-Sri Lanka single community and their followers exhibit a high degree of membership in their leader’s community while they may also have a lower degree of involvement in other communities. The In-Degree is a commonly used and direct measure of the importance of a particular node (subscriber) or actor in this type of communication network with high degree measure indicating a greater level of importance bestowed upon that node. In the following analysis this In-Degree measure is used to validate those individuals identified as leaders by demonstrating that they indeed display a high value when compared with the other subscribers in the network. The Adjacency matrix for the calls between the members of the corporate mobile network was constructed in such a way that only reciprocated calls of total duration greater than 6 minutes for all calls over the period were considered in establishing a link between two nodes (subscribers). The network was modeled as a weighted undirected graph with link weight taken to be the total amount of minutes of use between a particular pair of nodes. The initial call records contained approximately 4000 incoming and outgoing calls between members of the mobile network having 55 members captured over a period of one week. The data was parsed to meet the above eligibility criteria as it is believed that meaningful relations exist between members that have reasonably long calls and also only when there is at least one call in the reverse direction that meets the total cumulative minimum duration criteria. Thus the link weight was taken to be the sum of the total number of incoming and outgoing minutes between two subscribers (nodes). Figure 3: Degree of Membership The degree of membership result (Figure 3) indicates that most nodes in this analysis mostly belong to one community and that the overlap of communities is not so prevalent. A less stringent requirement for the data parsing condition it was observed resulted in a greater number of nodes that exhibited greater overlap between several communities. Thus when a link is established between nodes for lower cumulative call duration than the six minutes chosen, a greater degree of overlap between communities was observed. Hence this parameter is one that can tune the degree of overlap by indirectly selecting the strength of the relationship between a pair of subscribers. Figure 4: Communities and Leaders Figure 4, presents the leaders (nodes 3, 9, 23 and 36) and the corresponding number of followers given by community size in their respective communities. The red hatches indicate those nodes that have not attached to a particular community or leader, but are counted as part of community 1, for sake of presentation. Figure 4, also indicates that leaders with node numbers 3, 9, 23, and 36 belongs to the communities 1, 2, 3 and 4 respectively. It is also observed that the leaders (nodes) so identified belong exclusively to one community by having a membership value of unity (Figure 3). Thus nodes 3, 9, 23, and 36 belong only to one community and are not members of any other community even to a lower degree. This also validates their leadership position in the network. It also is observed that there are a few nodes that have membership values less than unity thus belonging simultaneously to more than one community. It is also observed that this degree of participation is clustered mainly at the lower and upper regions of the graph indicating that those nodes that have multiple memberships still strongly associate with one cluster (community) than the other. 0 10 20 30 40 50 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MSIDN or Cx No DegreeofMembershipinaCommunity Degree of Membership in Communities Community 1 Community 2 Community 3 Community 4 0 5 10 15 20 25 30 35 40 45 50 55 1 2 3 4 5 Communities Leader Community Size 3 9 23 36 39 9 3 4 MSISDN or Cx No CommunityID
  • 6. Annual Conference2014 - IET-Sri Lanka Figure 5: In-Degree at each node Figure 5 depicts the In-Degree measure of each of the nodes in the network participating in the respective communities. There is strong correlation between In-Degree and selection of a node as a leader. Thus it is observed that nodes 3, 9, 23 and 36 do indeed exhibit a high In-Degree relative to the other subscribers which is commensurate with their elevation to the status of leader of a community. In- Degree alone however does not make a leader as it’s the connectivity of the neighboring nodes that ultimately counts. There are a number of nodes with zero In-Degree that are the result of the original filtering to obtain only those relationships that are meaningful and eliminate spurious links. Thus we are able to validate the results of the Social Network modeling of the Mobile Telecommunication Network via the influence diffusion analysis technique by utilizing the more traditional approach of In-Degree. 7.0 BUSINESS AND MARKET STRATEGIES FOR NETWORK OPERATORS Increasingly businesses are aware of the value of the “buzz” created by campaigns and watch social media for signs of chatter that can help predict the success or failure of a new product or initiative. Social media then is an indicator as well as a method for spreading the word or a particular message across its communities. The ability to identify those individuals within the network with “social power” is key to implementing these strategies. The identification of corporate leaders such as senior managers and CEOs for inclusion in ones customer base is a less subtle form of the same strategy that has the benefit of attracting those subordinate connections froma particular institution and is a well practiced approach. Thus diffusing an advertisement, product idea or message across the customer base and then to the wider public is more efficiently done by targeting the message to these key individuals in the social hierarchy in a network. In this way the message is more likely to filter to the larger communities lead by the “influential” individuals. This is far more efficient and cost effective than a blanket advertizing campaign or broadcasting the message to a randomsample of the base. The increasing synergies that arise due to the convergence between the mobile telecommunications and the internet worlds give a promoter the opportunity of spreading a message between the two environments. Thus internet products may be advertized through mobile and vice versa. Additionally the social networks arising from social media such as Facebook and Twitter can readily be exploited by the social networks in telecommunications networks provided care is taken to match the “interest profile” of a potential customer. In general those individuals that form social networks do have many commonalities that can take the form of common interests, demographics, and lineage among other attributes. Thus it may be construed that a mobile user who accesses the internet and browsers news sites may be a candidate for a subscription to a certain type of online news magazine. Further, the analysis of the attributes of the members of a particular community formed around a leader may lead to the discovery of common traits that can exploited by a shrewd marketer. Thus the identification of a leader of a community combined with the knowledge of some overall characteristics of the followers will enable the creation of a well tailored message targeting the leader but aimed to be also appealing to the followers of that segment and the community at large. Sentiment analysis of twitter feeds and postings on social media plays an increasingly larger role in a company’s communications strategy providing almost immediate feedback on an organization’s initiatives and corporate image. As influencing the opinions of existing and potential new customers is important to the success ofa business in the internet age, the corporate image usually built on fundamentals such as service quality, customer service and reliability benefits from managing and influencing the conversations taking place on social media. In this regard well designed messages directed to “influential” individuals in the social hierarchy can help burnish a company’s image, 0 10 20 30 40 50 60 0 1 2 3 4 5 6 7 8 9 In Degree MSIDN or Cx No Degree
  • 7. Annual Conference2014 - IET-Sri Lanka create awareness and push products, raising the profile of a company. Product bundling and opportunities for cross sell and up sell are all made more effective through the utilization of social networks, so much so that social media marketing is a vital part of many innovative organizations. These promotional initiatives can be considered as being the result of a chain process and when triggered by individuals with influence and social power can have the effect of rippling through the network triggering other individuals to perform similar actions. Churn events is a prime example of this phenomena where the loss of an important customer can result in the loss of a whole host of other “followers” [9]. Thus the retention of key individuals in the network hierarchy is crucial to a business as it lowers churn rates, reduces negative vibes and rationalizes customer acquisition costs. Additionally segmentation of the customer base and can also be made more effective when based on communities combined with other profiling attributes of interest. Product and service recommendations derived from Recommender systems are a very common part of the internet experience. Essentially the recommender algorithm determines the combinations of services and products a customer has purchased and makes a recommendation on a product not already in the portfolio of the consumer based on the consumption pattern of products of other customers who have a very similar profile to the customer. This profile will take in to account a number of attributes such as demographics, income and spending, and product preferences. Social networks enhance this process as recommendations from friends and those with social influence go further than mere advertisements or ratings. Thus for example a hotel / service recommendation from a friend, colleague or someone with influence will make a significant difference in influencing a choice than a mere banner / pop up advertisement or ratings service [11]. Finally, the single view of the customer envisaged by business to arrive at a complete understanding of the needs and worth of a customer will also depend on that person’s position in the social hierarchy. As examined earlier, the importance of a customer or subscriber cannot be determined solely on revenue contributions but also should take in to account that person’s position in the social network, which is a measure of the ability to act as an attractor for other customers, products, services and the spread of influence. 8. CONCLUSION This paper presented a novel technique for the analysis of the Social Networks that arise in Mobile Telecommunications Networks. In this technique we modeled the call pattern between the subscribers of the mobile network as a weighted undirected graph using an influence diffusion algorithm to estimate the key actors and their properties in the network. Several schemes for modeling the mobile phone call patterns between the subscribers in the network as call graphs were studied and the impact on the resulting social network analyzed. Leaders and followers of communities formed among the mobile subscribers of a corporate network were identified via this technique and validated using In-Degree measure. Their more significant attributes such as connectivity, centrality were also analyzed to understand the role they play in the communities. The degree of membership in a particular community was presented as a measure to determine those subscribers that may act as links between two or more communities of subscribers instead of merely belonging exclusively to one community and in that respect play an important role. In conclusion the strategies a mobile operator should adopt to enhance its competitive position in the industry through the deeper understanding ofthe interactions and relationships of its key subscribers and the communities they represent were discussed. The modeling thus illustrates the significance, relevance and power of social network analysis in mobile telecommunications. 9. ACKNOWLEDGEMENTS N.S. Ekanayake, BSc. (Hons) for providing business intelligence and detailed call data records from a live corporate mobile telecommunication network. 10. REFERENCES [1] Newman, MEJ, Networks, Oxford University Press, 2013, pp 109-149. [2] D. Smilkov, A. Stanoev, L. Kocarev, Identifying communities by influence dynamics in social networks, Physical review E, 2011. [3] M. E. J Newman and M. Girvan. Physical Review E 69, (2004).
  • 8. Annual Conference2014 - IET-Sri Lanka [4] A. Clauset, M. E. J. Newman and C. Moore. Finding community structure in very large networks. Phys. Rev. E 70, (2004). [5] B. H. Good, Y. A. Montjoye and A. Clauset, Performance of modularity maximization in practical contexts, Phys. Rev. E 81, (2010). [6] Kernighan, B. W. and Lin, S., An efficient heuristic procedure for portioning graphs, Bell System Journal, (2010). [7] Fiedler, M., algebraic connectivity of graphs, Czech. Math. J. 23, 298-305, (1973). [8] Pothen, A., Simon, H., and Liou, K-P., Partitioning sparse matrices with eigenvectors of graphs, SIAM J Matrix anal. Appl. 11, 430-452, (1990). [9] Dasgupta, K., Singh, B., Social ties and their relevance to churn in mobile telcom networks, EBDT, (2008). [10] Brin, S., Page, L., The anatomy of a large scale hypertextual web search engine., Proceedings of 7th International WWW Conference, (1998). [11] Mahajan, V., Muller, E., Bass, F., New product diffusion models in marketing: A review and directions for research., Journal of marketing, (1990).