This document discusses using a random forest classifier with feature selection to improve intrusion detection. It begins with background on intrusion detection systems and challenges. It then proposes using genetic algorithms for feature selection to identify the most important features from a dataset. A random forest classifier is used for classification, which combines decision trees to improve accuracy. The methodology involves feature selection, classification with random forest, and detection. Feature weights are calculated and cross-validation is used to analyze detection rates for individual attacks. The goal is to improve accuracy, reduce training time, and better detect minority attacks through this approach.