SlideShare a Scribd company logo
Auto Encoders
In the name of God
Mehrnaz Faraz
Faculty of Electrical Engineering
K. N. Toosi University of Technology
Milad Abbasi
Faculty of Electrical Engineering
Sharif University of Technology
1
Auto Encoders
• An unsupervised deep learning algorithm
• Are artificial neural networks
• Useful for dimensionality reduction and clustering
Unlabeled data
𝑧 = 𝑠 𝑤𝑥 + 𝑏
𝑥
^= 𝑠 𝑤′z + 𝑏′
𝑥
^is 𝑥’s reconstruction
𝑧 is some latent representation or code and 𝑠 is a non-linearity such
as the sigmoid
𝑧 𝑥
^
𝑥
2
Encoder Decoder
Auto Encoders
• Simple structure:
𝒙𝟏
𝒙𝟑
𝒙𝟐
𝒙˜𝟏
𝒙˜𝟑
𝒙˜𝟐
Input
Reconstructed
Output
Hidden
Encoder
3
Decoder
Undercomplete AE
• Hidden layer is Undercomplete if smaller than the input
layer
– Compresses the input
– Hidden nodes will be Good features for the training
𝑥
^
𝑤′
𝑧
𝑤
𝑥
4
Overcomplete AE
• Hidden layer is Overcomplete if greater than the input layer
– No compression in hidden layer.
– Each hidden unit could copy a different input component.
𝑥
^
𝑤′
𝑧
𝑤
𝑥
5
Deep Auto Encoders
• Deep Auto Encoders (DAE)
• Stacked Auto Encoders (SAE)
6
Training Deep Auto Encoder
• First layer:
𝒙𝟏
𝒙𝟒
𝒙𝟑
𝒙𝟐
𝒙^𝟏
𝒙^𝟒
𝒙^𝟑
𝒙^𝟐
𝒂𝟑
𝒂𝟐
𝒂𝟏
Encoder Decoder
7
Training Deep Auto Encoder
• Features of first layer:
𝒙𝟏
𝒙𝟒
𝒙𝟑
𝒙𝟐
𝒂𝟑
𝒂𝟐
𝒂𝟏
𝑎1
𝑎2
𝑎3
8
Training Deep Auto Encoder
• Second layer:
𝒂𝟑
𝒂𝟐
𝒂𝟏 𝒂^𝟏
𝒂^𝟑
𝒂^𝟐
𝒃𝟐
𝒃𝟏
9
Training Deep Auto Encoder
• Features of second layer:
𝒙𝟏
𝒙𝟒
𝒙𝟑
𝒙𝟐
𝒂𝟑
𝒂𝟐
𝒂𝟏
𝒃𝟐
𝒃𝟏
𝑏1
𝑏2
10
Using Deep Auto Encoder
𝒙𝟑
𝒙𝟐
𝒂𝟑
𝒂𝟐
• Feature extraction
• Dimensionality reduction
• Classification
𝒙𝟏
𝒂𝟏
𝒃𝟐
𝒃𝟏
Inputs Features
𝒙𝟒
Encoder
11
Using Deep Auto Encoder
• Reconstruction
𝒙𝟏
𝒙𝟒
𝒙𝟑
𝒙𝟐
𝒂𝟑
𝒂𝟐
𝒂𝟏
𝒃𝟐
𝒃𝟏
𝒂^𝟏
𝒂^𝟑
𝒂^𝟐
𝒙^𝟒
𝒙^𝟑
𝒙^𝟐
𝒙^𝟏
Encoder Decoder
12
Using AE
• Denoising
• Data compression
• Unsupervised learning
• Manifold learning
• Generative model
13
Types of Auto Encoder
• Stacked auto encoder (SAE)
• Denoising auto encoder (DAE)
• Sparse Auto Encoder (SAE)
• Contractive Auto Encoder (CAE)
• Convolutional Auto Encoder (CAE)
• Variational Auto Encoder (VAE)
14
Generative Models
• Given training data, generate new samples from same
distribution
– Variational Auto Encoder (VAE)
– Generative Adversarial Network (GAN)
15
Variational Auto Encoder
Encoder Decoder
Output
𝐱˜
∅
𝒒 𝒛|𝒙 𝒑𝜽 𝒙|𝒛
𝒙𝟏
16
𝒙𝟒
Input
x
𝒙𝟑
𝒙𝟐
𝒙˜𝟏
𝒙˜𝟒
𝒙˜𝟑
𝒙˜𝟐
𝒛𝟏
𝒛𝟐
Variational Auto Encoder
• Use probabilistic encoding and decoding
– Encoder:
– Decoder:
• x: Unknown probability distribution
• z: Gaussian probability distribution
𝑞∅ 𝑧|𝑥
𝑝𝜃 𝑥|𝑧
17
Training Variational Auto Encoder
• Latent space:
𝒙𝟏
𝒙𝟒
𝒙𝟑
𝒙𝟐
𝒉𝟏
𝒉𝟐
𝒉𝟑
𝝈
𝝁
𝒛 𝑞∅ 𝑧|𝑥
18
Mean
Variance
1 dimensional
Gaussian probability distribution
If we have n neurons for 𝝈 and 𝝁 then
we have n dimensional distribution
Training Variational Auto Encoder
• Generating new data:
– Example: MNIST Database
𝐱
Encoder
Latent space
Decoder
19
Generative Adversarial Network
• VAE:
• GAN:
– Can generate samples
– Trained by competing each other
– Use neural network
– Z is some random noise (Gaussian/Uniform).
– Z can be thought as the latent representation of the
image.
x Decoder 𝐱
˜
z
Encoder
z Generator 𝐱
˜
x
Discriminator
Fake or real?
20
Loss
GAN’s Architecture
Discriminator
Generated
fake
samples
Fine tune training
Latent space
Noise
Is D
correct?
Generator
• Overview:
Real samples
Using GAN
• Image generation:
22
Using GAN
• Data manipulation:
23
Denoising Auto Encoder
• Add noise to its input, and train it to recover this original.
24
Denoising Auto Encoder
Input
Output
Hidden 3
Hidden 2
Hidden 1
+
Noise
Input
Output
Hidden 3
Hidden 2
Hidden 1
Dropout
25
Randomly switched input
Gaussian noise
Sparse Auto Encoder
• Reduce the number of active neurons in the coding layer.
– Add sparsity loss into the cost function.
• Sparsity loss:
– Kullback-Leibler(KL) divergence is commonly used.
26
Sparse Auto Encoder
j
j j

ˆ
KL  ̂  log
  1  log
1  
1  ̂
Jsparse w,b J w,b
KL ̂j 
j1
27
Ad

More Related Content

What's hot (20)

Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for Retrieval
Bhaskar Mitra
 
Regularization in deep learning
Regularization in deep learningRegularization in deep learning
Regularization in deep learning
Kien Le
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
Hojin Yang
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
Mark Chang
 
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
Hosein Mohebbi
 
Feature selection
Feature selectionFeature selection
Feature selection
Dong Guo
 
3 tier data warehouse
3 tier data warehouse3 tier data warehouse
3 tier data warehouse
J M
 
Classification in data mining
Classification in data mining Classification in data mining
Classification in data mining
Sulman Ahmed
 
Wasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 IWasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 I
Sungbin Lim
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012
Jinwon Lee
 
Visualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networksVisualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networks
SungminYou
 
Introduction of Xgboost
Introduction of XgboostIntroduction of Xgboost
Introduction of Xgboost
michiaki ito
 
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
Deep Learning JP
 
Graph Analytics for big data
Graph Analytics for big dataGraph Analytics for big data
Graph Analytics for big data
Sigmoid
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
deepseaswjh
 
XGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competitionXGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competition
Jaroslaw Szymczak
 
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
JungHyun Hong
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
Vgg
VggVgg
Vgg
heedaeKwon
 
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
Deep Visual Understanding from Deep Learning by Prof. Jitendra MalikDeep Visual Understanding from Deep Learning by Prof. Jitendra Malik
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
The Hive
 
Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for Retrieval
Bhaskar Mitra
 
Regularization in deep learning
Regularization in deep learningRegularization in deep learning
Regularization in deep learning
Kien Le
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
Hojin Yang
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
Mark Chang
 
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
Hosein Mohebbi
 
Feature selection
Feature selectionFeature selection
Feature selection
Dong Guo
 
3 tier data warehouse
3 tier data warehouse3 tier data warehouse
3 tier data warehouse
J M
 
Classification in data mining
Classification in data mining Classification in data mining
Classification in data mining
Sulman Ahmed
 
Wasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 IWasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 I
Sungbin Lim
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012
Jinwon Lee
 
Visualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networksVisualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networks
SungminYou
 
Introduction of Xgboost
Introduction of XgboostIntroduction of Xgboost
Introduction of Xgboost
michiaki ito
 
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
[DL輪読会]Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs (CV...
Deep Learning JP
 
Graph Analytics for big data
Graph Analytics for big dataGraph Analytics for big data
Graph Analytics for big data
Sigmoid
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
deepseaswjh
 
XGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competitionXGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competition
Jaroslaw Szymczak
 
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
[GomGuard] 뉴런부터 YOLO 까지 - 딥러닝 전반에 대한 이야기
JungHyun Hong
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
Deep Visual Understanding from Deep Learning by Prof. Jitendra MalikDeep Visual Understanding from Deep Learning by Prof. Jitendra Malik
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
The Hive
 

Similar to autoencoder-190813144108.pptx (20)

autoencoder-190813145130.pdf
autoencoder-190813145130.pdfautoencoder-190813145130.pdf
autoencoder-190813145130.pdf
Sameer Gulshan
 
Autoencoder
AutoencoderAutoencoder
Autoencoder
Mehrnaz Faraz
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 
Lecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptxLecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptx
yosrghozzi2023
 
Lecture 7-8 From Autoencoder to VAE.pdf
Lecture 7-8 From   Autoencoder to VAE.pdfLecture 7-8 From   Autoencoder to VAE.pdf
Lecture 7-8 From Autoencoder to VAE.pdf
EmadAbdelkader5
 
Explanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto EncoderExplanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto Encoder
seshathirid
 
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
ShubhamMittal569818
 
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
ShubhamMittal569818
 
DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............
kirankamblecoin03
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
UNIT-4.pptx
UNIT-4.pptxUNIT-4.pptx
UNIT-4.pptx
NiharikaThakur32
 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
NiharikaThakur32
 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
NiharikaThakur32
 
Lec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptxLec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptx
Sameer Gulshan
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networks
ananth
 
InfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial NetworksInfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial Networks
Zak Jost
 
Autoencoders
AutoencodersAutoencoders
Autoencoders
CloudxLab
 
Variational Autoencoders For Image Generation
Variational Autoencoders For Image GenerationVariational Autoencoders For Image Generation
Variational Autoencoders For Image Generation
Jason Anderson
 
Autoencoder
AutoencoderAutoencoder
Autoencoder
Wataru Hirota
 
AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)
aayanshsingh0401
 
autoencoder-190813145130.pdf
autoencoder-190813145130.pdfautoencoder-190813145130.pdf
autoencoder-190813145130.pdf
Sameer Gulshan
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 
Lecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptxLecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptx
yosrghozzi2023
 
Lecture 7-8 From Autoencoder to VAE.pdf
Lecture 7-8 From   Autoencoder to VAE.pdfLecture 7-8 From   Autoencoder to VAE.pdf
Lecture 7-8 From Autoencoder to VAE.pdf
EmadAbdelkader5
 
Explanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto EncoderExplanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto Encoder
seshathirid
 
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
ShubhamMittal569818
 
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
ShubhamMittal569818
 
DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............
kirankamblecoin03
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
Lec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptxLec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptx
Sameer Gulshan
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networks
ananth
 
InfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial NetworksInfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial Networks
Zak Jost
 
Autoencoders
AutoencodersAutoencoders
Autoencoders
CloudxLab
 
Variational Autoencoders For Image Generation
Variational Autoencoders For Image GenerationVariational Autoencoders For Image Generation
Variational Autoencoders For Image Generation
Jason Anderson
 
AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)
aayanshsingh0401
 
Ad

More from kiran814572 (6)

seminar ppt blue eyes.pptx
seminar ppt blue eyes.pptxseminar ppt blue eyes.pptx
seminar ppt blue eyes.pptx
kiran814572
 
dokumen.tips_mind-reading-computer-ppt.pptx
dokumen.tips_mind-reading-computer-ppt.pptxdokumen.tips_mind-reading-computer-ppt.pptx
dokumen.tips_mind-reading-computer-ppt.pptx
kiran814572
 
brainchips-170420163645.pptx
brainchips-170420163645.pptxbrainchips-170420163645.pptx
brainchips-170420163645.pptx
kiran814572
 
gan-190318135433 (1).pptx
gan-190318135433 (1).pptxgan-190318135433 (1).pptx
gan-190318135433 (1).pptx
kiran814572
 
VIOLENCE.pptx
VIOLENCE.pptxVIOLENCE.pptx
VIOLENCE.pptx
kiran814572
 
Cognitive-approaches-to-learning-powerpoint.ppt
Cognitive-approaches-to-learning-powerpoint.pptCognitive-approaches-to-learning-powerpoint.ppt
Cognitive-approaches-to-learning-powerpoint.ppt
kiran814572
 
seminar ppt blue eyes.pptx
seminar ppt blue eyes.pptxseminar ppt blue eyes.pptx
seminar ppt blue eyes.pptx
kiran814572
 
dokumen.tips_mind-reading-computer-ppt.pptx
dokumen.tips_mind-reading-computer-ppt.pptxdokumen.tips_mind-reading-computer-ppt.pptx
dokumen.tips_mind-reading-computer-ppt.pptx
kiran814572
 
brainchips-170420163645.pptx
brainchips-170420163645.pptxbrainchips-170420163645.pptx
brainchips-170420163645.pptx
kiran814572
 
gan-190318135433 (1).pptx
gan-190318135433 (1).pptxgan-190318135433 (1).pptx
gan-190318135433 (1).pptx
kiran814572
 
Cognitive-approaches-to-learning-powerpoint.ppt
Cognitive-approaches-to-learning-powerpoint.pptCognitive-approaches-to-learning-powerpoint.ppt
Cognitive-approaches-to-learning-powerpoint.ppt
kiran814572
 
Ad

Recently uploaded (20)

HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 

autoencoder-190813144108.pptx

  • 1. Auto Encoders In the name of God Mehrnaz Faraz Faculty of Electrical Engineering K. N. Toosi University of Technology Milad Abbasi Faculty of Electrical Engineering Sharif University of Technology 1
  • 2. Auto Encoders • An unsupervised deep learning algorithm • Are artificial neural networks • Useful for dimensionality reduction and clustering Unlabeled data 𝑧 = 𝑠 𝑤𝑥 + 𝑏 𝑥 ^= 𝑠 𝑤′z + 𝑏′ 𝑥 ^is 𝑥’s reconstruction 𝑧 is some latent representation or code and 𝑠 is a non-linearity such as the sigmoid 𝑧 𝑥 ^ 𝑥 2 Encoder Decoder
  • 3. Auto Encoders • Simple structure: 𝒙𝟏 𝒙𝟑 𝒙𝟐 𝒙˜𝟏 𝒙˜𝟑 𝒙˜𝟐 Input Reconstructed Output Hidden Encoder 3 Decoder
  • 4. Undercomplete AE • Hidden layer is Undercomplete if smaller than the input layer – Compresses the input – Hidden nodes will be Good features for the training 𝑥 ^ 𝑤′ 𝑧 𝑤 𝑥 4
  • 5. Overcomplete AE • Hidden layer is Overcomplete if greater than the input layer – No compression in hidden layer. – Each hidden unit could copy a different input component. 𝑥 ^ 𝑤′ 𝑧 𝑤 𝑥 5
  • 6. Deep Auto Encoders • Deep Auto Encoders (DAE) • Stacked Auto Encoders (SAE) 6
  • 7. Training Deep Auto Encoder • First layer: 𝒙𝟏 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒙^𝟏 𝒙^𝟒 𝒙^𝟑 𝒙^𝟐 𝒂𝟑 𝒂𝟐 𝒂𝟏 Encoder Decoder 7
  • 8. Training Deep Auto Encoder • Features of first layer: 𝒙𝟏 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝑎1 𝑎2 𝑎3 8
  • 9. Training Deep Auto Encoder • Second layer: 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂^𝟏 𝒂^𝟑 𝒂^𝟐 𝒃𝟐 𝒃𝟏 9
  • 10. Training Deep Auto Encoder • Features of second layer: 𝒙𝟏 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒃𝟐 𝒃𝟏 𝑏1 𝑏2 10
  • 11. Using Deep Auto Encoder 𝒙𝟑 𝒙𝟐 𝒂𝟑 𝒂𝟐 • Feature extraction • Dimensionality reduction • Classification 𝒙𝟏 𝒂𝟏 𝒃𝟐 𝒃𝟏 Inputs Features 𝒙𝟒 Encoder 11
  • 12. Using Deep Auto Encoder • Reconstruction 𝒙𝟏 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒃𝟐 𝒃𝟏 𝒂^𝟏 𝒂^𝟑 𝒂^𝟐 𝒙^𝟒 𝒙^𝟑 𝒙^𝟐 𝒙^𝟏 Encoder Decoder 12
  • 13. Using AE • Denoising • Data compression • Unsupervised learning • Manifold learning • Generative model 13
  • 14. Types of Auto Encoder • Stacked auto encoder (SAE) • Denoising auto encoder (DAE) • Sparse Auto Encoder (SAE) • Contractive Auto Encoder (CAE) • Convolutional Auto Encoder (CAE) • Variational Auto Encoder (VAE) 14
  • 15. Generative Models • Given training data, generate new samples from same distribution – Variational Auto Encoder (VAE) – Generative Adversarial Network (GAN) 15
  • 16. Variational Auto Encoder Encoder Decoder Output 𝐱˜ ∅ 𝒒 𝒛|𝒙 𝒑𝜽 𝒙|𝒛 𝒙𝟏 16 𝒙𝟒 Input x 𝒙𝟑 𝒙𝟐 𝒙˜𝟏 𝒙˜𝟒 𝒙˜𝟑 𝒙˜𝟐 𝒛𝟏 𝒛𝟐
  • 17. Variational Auto Encoder • Use probabilistic encoding and decoding – Encoder: – Decoder: • x: Unknown probability distribution • z: Gaussian probability distribution 𝑞∅ 𝑧|𝑥 𝑝𝜃 𝑥|𝑧 17
  • 18. Training Variational Auto Encoder • Latent space: 𝒙𝟏 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝝈 𝝁 𝒛 𝑞∅ 𝑧|𝑥 18 Mean Variance 1 dimensional Gaussian probability distribution If we have n neurons for 𝝈 and 𝝁 then we have n dimensional distribution
  • 19. Training Variational Auto Encoder • Generating new data: – Example: MNIST Database 𝐱 Encoder Latent space Decoder 19
  • 20. Generative Adversarial Network • VAE: • GAN: – Can generate samples – Trained by competing each other – Use neural network – Z is some random noise (Gaussian/Uniform). – Z can be thought as the latent representation of the image. x Decoder 𝐱 ˜ z Encoder z Generator 𝐱 ˜ x Discriminator Fake or real? 20 Loss
  • 21. GAN’s Architecture Discriminator Generated fake samples Fine tune training Latent space Noise Is D correct? Generator • Overview: Real samples
  • 22. Using GAN • Image generation: 22
  • 23. Using GAN • Data manipulation: 23
  • 24. Denoising Auto Encoder • Add noise to its input, and train it to recover this original. 24
  • 25. Denoising Auto Encoder Input Output Hidden 3 Hidden 2 Hidden 1 + Noise Input Output Hidden 3 Hidden 2 Hidden 1 Dropout 25 Randomly switched input Gaussian noise
  • 26. Sparse Auto Encoder • Reduce the number of active neurons in the coding layer. – Add sparsity loss into the cost function. • Sparsity loss: – Kullback-Leibler(KL) divergence is commonly used. 26
  • 27. Sparse Auto Encoder j j j  ˆ KL  ̂  log   1  log 1   1  ̂ Jsparse w,b J w,b KL ̂j  j1 27