SlideShare a Scribd company logo
Auto Encoders
1
In the name of God
Mehrnaz Faraz
Faculty of Electrical Engineering
K. N. Toosi University of Technology
Milad Abbasi
Faculty of Electrical Engineering
Sharif University of Technology
Auto Encoders
2
• An unsupervised deep learning algorithm
• Are artificial neural networks
• Useful for dimensionality reduction and clustering
Unlabeled data
𝑧 = 𝑠 𝑤𝑥 + 𝑏
𝑥 = 𝑠 𝑤′
z + 𝑏′
𝑥 is 𝑥’s reconstruction
𝑧 is some latent representation or code and 𝑠 is a non-linearity such
as the sigmoid
𝑧 𝑥𝑥 Encoder Decoder
Auto Encoders
• Simple structure:
3
𝒙 𝟏
𝒙 𝟑
𝒙 𝟐
𝒙 𝟏
𝒙 𝟑
𝒙 𝟐
Input
ReconstructedOutput
Hidden
Encoder Decoder
Undercomplete AE
• Hidden layer is Undercomplete if smaller than the input
layer
– Compresses the input
– Hidden nodes will be Good features for the training
4
𝑥
𝑥
𝑤
𝑤′
𝑧
Overcomplete AE
• Hidden layer is Overcomplete if greater than the input layer
– No compression in hidden layer.
– Each hidden unit could copy a different input component.
5
𝑥
𝑥
𝑤
𝑤′
𝑧
Deep Auto Encoders
• Deep Auto Encoders (DAE)
• Stacked Auto Encoders (SAE)
6
Training Deep Auto Encoder
• First layer:
7
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏
Encoder Decoder
Training Deep Auto Encoder
• Features of first layer:
8
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏
𝑎1
𝑎2
𝑎3
Training Deep Auto Encoder
• Second layer:
9
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏 𝒂 𝟏
𝒂 𝟑
𝒂 𝟐
𝒃 𝟐
𝒃 𝟏
Training Deep Auto Encoder
• Features of second layer:
10
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏
𝒃 𝟐
𝒃 𝟏
𝑏1
𝑏2
Using Deep Auto Encoder
• Feature extraction
• Dimensionality reduction
• Classification
11
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏
𝒃 𝟐
𝒃 𝟏
Inputs Features
Encoder
Using Deep Auto Encoder
• Reconstruction
12
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒂 𝟑
𝒂 𝟐
𝒂 𝟏
𝒃 𝟐
𝒃 𝟏
𝒂 𝟏
𝒂 𝟑
𝒂 𝟐
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒙 𝟏
Encoder Decoder
Using AE
• Denoising
• Data compression
• Unsupervised learning
• Manifold learning
• Generative model
13
Types of Auto Encoder
• Stacked auto encoder (SAE)
• Denoising auto encoder (DAE)
• Sparse Auto Encoder (SAE)
• Contractive Auto Encoder (CAE)
• Convolutional Auto Encoder (CAE)
• Variational Auto Encoder (VAE)
14
Generative Models
• Given training data, generate new samples from same
distribution
– Variational Auto Encoder (VAE)
– Generative Adversarial Network (GAN)
15
Variational Auto Encoder
16
Encoder Decoder
Input
x Output
𝐱𝒒∅ 𝒛|𝒙 𝒑 𝜽 𝒙|𝒛
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒛 𝟏
𝒛 𝟐
Variational Auto Encoder
• Use probabilistic encoding and decoding
– Encoder:
– Decoder:
• x: Unknown probability distribution
• z: Gaussian probability distribution
17
𝑞∅ 𝑧|𝑥
𝑝 𝜃 𝑥|𝑧
Training Variational Auto Encoder
• Latent space:
18
𝒙 𝟏
𝒙 𝟒
𝒙 𝟑
𝒙 𝟐
𝒉 𝟏
𝒉 𝟐
𝒉 𝟑
𝝈
𝝁
𝒛 𝑞∅ 𝑧|𝑥
Mean
Variance
1 dimensional
Gaussian probability distribution
If we have n neurons for 𝝈 and 𝝁 then
we have n dimensional distribution
Training Variational Auto Encoder
• Generating new data:
– Example: MNIST Database
19
𝐱
Encoder
Latent space
Decoder
Generative Adversarial Network
• VAE:
• GAN:
– Can generate samples
– Trained by competing each other
– Use neural network
– Z is some random noise (Gaussian/Uniform).
– Z can be thought as the latent representation of the
image.
20
x Decoder 𝐱zEncoder
z Generator 𝐱
x
Discriminator
Fake or real?
Loss
GAN’s Architecture
Real samples
Discriminator
Generated
fake
samples
Fine tune training
Latent space
Noise
Is D
correct?Generator
• Overview:
Using GAN
• Image generation:
22
Using GAN
• Data manipulation:
23
Denoising Auto Encoder
• Add noise to its input, and train it to recover this original.
24
Denoising Auto Encoder
25
Input
Output
Hidden 3
Hidden 2
Hidden 1
+Noise
Input
Output
Hidden 3
Hidden 2
Hidden 1
Dropout
Randomly switched inputGaussian noise
Sparse Auto Encoder
• Reduce the number of active neurons in the coding layer.
– Add sparsity loss into the cost function.
• Sparsity loss:
– Kullback-Leibler(KL) divergence is commonly used.
26
Sparse Auto Encoder
27
   
1
ˆ log 1 log
ˆ ˆ1
j
j j
KL
 
   
 

  

     
1
ˆ, ,sparse j
j
J w b J w b KL  

  
Ad

More Related Content

What's hot (20)

Autoencoder
AutoencoderAutoencoder
Autoencoder
Mehrnaz Faraz
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
Si Haem
 
Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders
Akash Goel
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Cnn
CnnCnn
Cnn
Nirthika Rajendran
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
Francesco Collova'
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
Kuppusamy P
 
Perceptron
PerceptronPerceptron
Perceptron
Nagarajan
 
Optimization for Deep Learning
Optimization for Deep LearningOptimization for Deep Learning
Optimization for Deep Learning
Sebastian Ruder
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter Tuning
Jon Lederman
 
Simple Introduction to AutoEncoder
Simple Introduction to AutoEncoderSimple Introduction to AutoEncoder
Simple Introduction to AutoEncoder
Jun Lang
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural network
Sopheaktra YONG
 
Support Vector Machines ( SVM )
Support Vector Machines ( SVM ) Support Vector Machines ( SVM )
Support Vector Machines ( SVM )
Mohammad Junaid Khan
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
Yan Xu
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
Si Haem
 
Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders
Akash Goel
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
Francesco Collova'
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
Kuppusamy P
 
Optimization for Deep Learning
Optimization for Deep LearningOptimization for Deep Learning
Optimization for Deep Learning
Sebastian Ruder
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter Tuning
Jon Lederman
 
Simple Introduction to AutoEncoder
Simple Introduction to AutoEncoderSimple Introduction to AutoEncoder
Simple Introduction to AutoEncoder
Jun Lang
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural network
Sopheaktra YONG
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
Yan Xu
 

Similar to Autoencoders in Deep Learning (20)

autoencoder-190813144108.pptx
autoencoder-190813144108.pptxautoencoder-190813144108.pptx
autoencoder-190813144108.pptx
kiran814572
 
autoencoder-190813145130.pdf
autoencoder-190813145130.pdfautoencoder-190813145130.pdf
autoencoder-190813145130.pdf
Sameer Gulshan
 
Lecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptxLecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptx
yosrghozzi2023
 
Explanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto EncoderExplanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto Encoder
seshathirid
 
Lecture 7-8 From Autoencoder to VAE.pdf
Lecture 7-8 From   Autoencoder to VAE.pdfLecture 7-8 From   Autoencoder to VAE.pdf
Lecture 7-8 From Autoencoder to VAE.pdf
EmadAbdelkader5
 
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
ShubhamMittal569818
 
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
ShubhamMittal569818
 
DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............
kirankamblecoin03
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
Lec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptxLec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptx
Sameer Gulshan
 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
NiharikaThakur32
 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
NiharikaThakur32
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networks
ananth
 
Seq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) modelSeq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) model
佳蓉 倪
 
Autoencoder
AutoencoderAutoencoder
Autoencoder
Wataru Hirota
 
AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)
aayanshsingh0401
 
Autoencoder Forest for Anomaly Detection from IoT Time Series
Autoencoder Forest for Anomaly Detection from IoT Time SeriesAutoencoder Forest for Anomaly Detection from IoT Time Series
Autoencoder Forest for Anomaly Detection from IoT Time Series
Yiqun Hu
 
zkStudyClub: CirC and Compiling Programs to Circuits
zkStudyClub: CirC and Compiling Programs to CircuitszkStudyClub: CirC and Compiling Programs to Circuits
zkStudyClub: CirC and Compiling Programs to Circuits
Alex Pruden
 
201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search
DaeJin Kim
 
Anomaly Detection by ADGM / LVAE
Anomaly Detection by ADGM / LVAEAnomaly Detection by ADGM / LVAE
Anomaly Detection by ADGM / LVAE
Preferred Networks
 
autoencoder-190813144108.pptx
autoencoder-190813144108.pptxautoencoder-190813144108.pptx
autoencoder-190813144108.pptx
kiran814572
 
autoencoder-190813145130.pdf
autoencoder-190813145130.pdfautoencoder-190813145130.pdf
autoencoder-190813145130.pdf
Sameer Gulshan
 
Lecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptxLecture 7-8 From Autoencoder to VAE.pptx
Lecture 7-8 From Autoencoder to VAE.pptx
yosrghozzi2023
 
Explanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto EncoderExplanation of Autoencoder to Variontal Auto Encoder
Explanation of Autoencoder to Variontal Auto Encoder
seshathirid
 
Lecture 7-8 From Autoencoder to VAE.pdf
Lecture 7-8 From   Autoencoder to VAE.pdfLecture 7-8 From   Autoencoder to VAE.pdf
Lecture 7-8 From Autoencoder to VAE.pdf
EmadAbdelkader5
 
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
A Comprehensive Overview of Encoder and Decoder Architectures in Deep Learnin...
ShubhamMittal569818
 
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
Autoencoders in Computer Vision: A Deep Learning Approach for Image Denoising...
ShubhamMittal569818
 
DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............DL-unite4-Autoencoders.pptx..............
DL-unite4-Autoencoders.pptx..............
kirankamblecoin03
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
Lec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptxLec16 - Autoencoders.pptx
Lec16 - Autoencoders.pptx
Sameer Gulshan
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networks
ananth
 
Seq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) modelSeq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) model
佳蓉 倪
 
AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)AUTO ENCODERS (Deep Learning fundamentals)
AUTO ENCODERS (Deep Learning fundamentals)
aayanshsingh0401
 
Autoencoder Forest for Anomaly Detection from IoT Time Series
Autoencoder Forest for Anomaly Detection from IoT Time SeriesAutoencoder Forest for Anomaly Detection from IoT Time Series
Autoencoder Forest for Anomaly Detection from IoT Time Series
Yiqun Hu
 
zkStudyClub: CirC and Compiling Programs to Circuits
zkStudyClub: CirC and Compiling Programs to CircuitszkStudyClub: CirC and Compiling Programs to Circuits
zkStudyClub: CirC and Compiling Programs to Circuits
Alex Pruden
 
201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search
DaeJin Kim
 
Anomaly Detection by ADGM / LVAE
Anomaly Detection by ADGM / LVAEAnomaly Detection by ADGM / LVAE
Anomaly Detection by ADGM / LVAE
Preferred Networks
 
Ad

Recently uploaded (20)

vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
BTech_CSE_LPU_Presentation.pptx.........
BTech_CSE_LPU_Presentation.pptx.........BTech_CSE_LPU_Presentation.pptx.........
BTech_CSE_LPU_Presentation.pptx.........
jinny kaur
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
How to Make Material Space Qu___ (1).pptx
How to Make Material Space Qu___ (1).pptxHow to Make Material Space Qu___ (1).pptx
How to Make Material Space Qu___ (1).pptx
engaash9
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
Upstream_processing of industrial products.pptx
Upstream_processing of industrial products.pptxUpstream_processing of industrial products.pptx
Upstream_processing of industrial products.pptx
KshitijJayswal2
 
aset and manufacturing optimization and connecting edge
aset and manufacturing optimization and connecting edgeaset and manufacturing optimization and connecting edge
aset and manufacturing optimization and connecting edge
alilamisse
 
Reagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptxReagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptx
AlejandroOdio
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
LiyaShaji4
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Basic Principles for Electronics Students
Basic Principles for Electronics StudentsBasic Principles for Electronics Students
Basic Principles for Electronics Students
cbdbizdev04
 
Elevate Your Workflow
Elevate Your WorkflowElevate Your Workflow
Elevate Your Workflow
NickHuld
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
Kamal Acharya
 
BCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdfBCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdf
VENKATESHBHAT25
 
vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
BTech_CSE_LPU_Presentation.pptx.........
BTech_CSE_LPU_Presentation.pptx.........BTech_CSE_LPU_Presentation.pptx.........
BTech_CSE_LPU_Presentation.pptx.........
jinny kaur
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
How to Make Material Space Qu___ (1).pptx
How to Make Material Space Qu___ (1).pptxHow to Make Material Space Qu___ (1).pptx
How to Make Material Space Qu___ (1).pptx
engaash9
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
Upstream_processing of industrial products.pptx
Upstream_processing of industrial products.pptxUpstream_processing of industrial products.pptx
Upstream_processing of industrial products.pptx
KshitijJayswal2
 
aset and manufacturing optimization and connecting edge
aset and manufacturing optimization and connecting edgeaset and manufacturing optimization and connecting edge
aset and manufacturing optimization and connecting edge
alilamisse
 
Reagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptxReagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptx
AlejandroOdio
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
LiyaShaji4
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Basic Principles for Electronics Students
Basic Principles for Electronics StudentsBasic Principles for Electronics Students
Basic Principles for Electronics Students
cbdbizdev04
 
Elevate Your Workflow
Elevate Your WorkflowElevate Your Workflow
Elevate Your Workflow
NickHuld
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
Kamal Acharya
 
BCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdfBCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdf
VENKATESHBHAT25
 
Ad

Autoencoders in Deep Learning

  • 1. Auto Encoders 1 In the name of God Mehrnaz Faraz Faculty of Electrical Engineering K. N. Toosi University of Technology Milad Abbasi Faculty of Electrical Engineering Sharif University of Technology
  • 2. Auto Encoders 2 • An unsupervised deep learning algorithm • Are artificial neural networks • Useful for dimensionality reduction and clustering Unlabeled data 𝑧 = 𝑠 𝑤𝑥 + 𝑏 𝑥 = 𝑠 𝑤′ z + 𝑏′ 𝑥 is 𝑥’s reconstruction 𝑧 is some latent representation or code and 𝑠 is a non-linearity such as the sigmoid 𝑧 𝑥𝑥 Encoder Decoder
  • 3. Auto Encoders • Simple structure: 3 𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 Input ReconstructedOutput Hidden Encoder Decoder
  • 4. Undercomplete AE • Hidden layer is Undercomplete if smaller than the input layer – Compresses the input – Hidden nodes will be Good features for the training 4 𝑥 𝑥 𝑤 𝑤′ 𝑧
  • 5. Overcomplete AE • Hidden layer is Overcomplete if greater than the input layer – No compression in hidden layer. – Each hidden unit could copy a different input component. 5 𝑥 𝑥 𝑤 𝑤′ 𝑧
  • 6. Deep Auto Encoders • Deep Auto Encoders (DAE) • Stacked Auto Encoders (SAE) 6
  • 7. Training Deep Auto Encoder • First layer: 7 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 Encoder Decoder
  • 8. Training Deep Auto Encoder • Features of first layer: 8 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 𝑎1 𝑎2 𝑎3
  • 9. Training Deep Auto Encoder • Second layer: 9 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 𝒂 𝟏 𝒂 𝟑 𝒂 𝟐 𝒃 𝟐 𝒃 𝟏
  • 10. Training Deep Auto Encoder • Features of second layer: 10 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 𝒃 𝟐 𝒃 𝟏 𝑏1 𝑏2
  • 11. Using Deep Auto Encoder • Feature extraction • Dimensionality reduction • Classification 11 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 𝒃 𝟐 𝒃 𝟏 Inputs Features Encoder
  • 12. Using Deep Auto Encoder • Reconstruction 12 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒂 𝟑 𝒂 𝟐 𝒂 𝟏 𝒃 𝟐 𝒃 𝟏 𝒂 𝟏 𝒂 𝟑 𝒂 𝟐 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 Encoder Decoder
  • 13. Using AE • Denoising • Data compression • Unsupervised learning • Manifold learning • Generative model 13
  • 14. Types of Auto Encoder • Stacked auto encoder (SAE) • Denoising auto encoder (DAE) • Sparse Auto Encoder (SAE) • Contractive Auto Encoder (CAE) • Convolutional Auto Encoder (CAE) • Variational Auto Encoder (VAE) 14
  • 15. Generative Models • Given training data, generate new samples from same distribution – Variational Auto Encoder (VAE) – Generative Adversarial Network (GAN) 15
  • 16. Variational Auto Encoder 16 Encoder Decoder Input x Output 𝐱𝒒∅ 𝒛|𝒙 𝒑 𝜽 𝒙|𝒛 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒛 𝟏 𝒛 𝟐
  • 17. Variational Auto Encoder • Use probabilistic encoding and decoding – Encoder: – Decoder: • x: Unknown probability distribution • z: Gaussian probability distribution 17 𝑞∅ 𝑧|𝑥 𝑝 𝜃 𝑥|𝑧
  • 18. Training Variational Auto Encoder • Latent space: 18 𝒙 𝟏 𝒙 𝟒 𝒙 𝟑 𝒙 𝟐 𝒉 𝟏 𝒉 𝟐 𝒉 𝟑 𝝈 𝝁 𝒛 𝑞∅ 𝑧|𝑥 Mean Variance 1 dimensional Gaussian probability distribution If we have n neurons for 𝝈 and 𝝁 then we have n dimensional distribution
  • 19. Training Variational Auto Encoder • Generating new data: – Example: MNIST Database 19 𝐱 Encoder Latent space Decoder
  • 20. Generative Adversarial Network • VAE: • GAN: – Can generate samples – Trained by competing each other – Use neural network – Z is some random noise (Gaussian/Uniform). – Z can be thought as the latent representation of the image. 20 x Decoder 𝐱zEncoder z Generator 𝐱 x Discriminator Fake or real? Loss
  • 21. GAN’s Architecture Real samples Discriminator Generated fake samples Fine tune training Latent space Noise Is D correct?Generator • Overview:
  • 22. Using GAN • Image generation: 22
  • 23. Using GAN • Data manipulation: 23
  • 24. Denoising Auto Encoder • Add noise to its input, and train it to recover this original. 24
  • 25. Denoising Auto Encoder 25 Input Output Hidden 3 Hidden 2 Hidden 1 +Noise Input Output Hidden 3 Hidden 2 Hidden 1 Dropout Randomly switched inputGaussian noise
  • 26. Sparse Auto Encoder • Reduce the number of active neurons in the coding layer. – Add sparsity loss into the cost function. • Sparsity loss: – Kullback-Leibler(KL) divergence is commonly used. 26
  • 27. Sparse Auto Encoder 27     1 ˆ log 1 log ˆ ˆ1 j j j KL                    1 ˆ, ,sparse j j J w b J w b KL      