SlideShare a Scribd company logo
Hack Session
By
Axel de Romblay
AUTOMATED MACHINE LEARNING
• Introduction on Auto-ML
• MLBox : a powerful Auto-ML python package
• Hack session on a dataset
AUTOMATED MACHINE LEARNING
Data ScientistData Computation means
Data pre-processing Model tuning
Machine Learning
Almost an automated process…
Auto Machine Learning
A fully automated process
Data Computation meansRobot
• Supervised tasks
- classification
- regression
• Structured data
- csv files
- json files
- …
• Unsupervised tasks
- outlier detection
- clustering
- …
• Unstructured data
- images
- texts
- …
What is auto-ML ?
We want to automate…
…the maximum number of steps in a ML pipeline…
…with minimum human intervention…
…while conserving a high performance !
Data
cleaning
(duplicates, ids,
correlations,
leaks, … )
Data
encoding
(NA, dates, text,
categorical
features, … )
STEP 2 : Preprocessing
STEP 1 : Reading /
merging
STEP 3 : Optimisation
Feature
selection
Feature
engineering
Model
selection
Prediction
Model
interpretation
STEP 4 : Application
Focus on the automation process
Diagram of a standard ML pipeline
Automate Machine Learning Pipeline Using MLBox
 Quality: functional code : tested on Kaggle
 Performance: fully distributed and optimised
 AI: dumping and automatic reading of computations
 Updates: latest algorithms
MLBox: a fully automated python package
 Compatibility: Python 2.7-3.6, Linux OS
 Quick setup: $ pip install mlbox
 User friendly: tutorials, docs, examples…
Hack Session
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
Manual kernel : https://www.kaggle.com/sudalairajkumar/xgb-starter-in-python/
Auto kernel : https://www.kaggle.com/axelderomblay/mlbox-a-fully-automated-package/
Thank you !
Questions ?
Ad

More Related Content

What's hot (20)

Scalable Automatic Machine Learning in H2O
Scalable Automatic Machine Learning in H2OScalable Automatic Machine Learning in H2O
Scalable Automatic Machine Learning in H2O
Sri Ambati
 
Machine learning pipeline with spark ml
Machine learning pipeline with spark mlMachine learning pipeline with spark ml
Machine learning pipeline with spark ml
datamantra
 
MLlib and Machine Learning on Spark
MLlib and Machine Learning on SparkMLlib and Machine Learning on Spark
MLlib and Machine Learning on Spark
Petr Zapletal
 
Microsoft Introduction to Automated Machine Learning
Microsoft Introduction to Automated Machine LearningMicrosoft Introduction to Automated Machine Learning
Microsoft Introduction to Automated Machine Learning
Setu Chokshi
 
Jake Mannix, MLconf 2013
Jake Mannix, MLconf 2013Jake Mannix, MLconf 2013
Jake Mannix, MLconf 2013
MLconf
 
Introduction to MLflow
Introduction to MLflowIntroduction to MLflow
Introduction to MLflow
Databricks
 
Object- Relational Persistence in Smalltalk
Object- Relational Persistence in SmalltalkObject- Relational Persistence in Smalltalk
Object- Relational Persistence in Smalltalk
ESUG
 
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Justin Basilico
 
HyperGraphDb
HyperGraphDbHyperGraphDb
HyperGraphDb
borislav
 
Pipeline oriented data analytics
Pipeline oriented data analyticsPipeline oriented data analytics
Pipeline oriented data analytics
Borys Biletskyy
 
ML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talkML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talk
Faisal Siddiqi
 
SDEC2011 Mahout - the what, the how and the why
SDEC2011 Mahout - the what, the how and the whySDEC2011 Mahout - the what, the how and the why
SDEC2011 Mahout - the what, the how and the why
Korea Sdec
 
Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)
Nikhil Garg
 
HypergraphDB
HypergraphDBHypergraphDB
HypergraphDB
Jan Drozen
 
Hundreds of queries in the time of one - Gianmario Spacagna
Hundreds of queries in the time of one - Gianmario SpacagnaHundreds of queries in the time of one - Gianmario Spacagna
Hundreds of queries in the time of one - Gianmario Spacagna
Spark Summit
 
mlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecyclemlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
Open Platform for AI & ML modeling
Open Platform for AI & ML modelingOpen Platform for AI & ML modeling
Open Platform for AI & ML modeling
Institute of Contemporary Sciences
 
Automated Machine Learning
Automated Machine LearningAutomated Machine Learning
Automated Machine Learning
safa cimenli
 
Graph Based Machine Learning on Relational Data
Graph Based Machine Learning on Relational DataGraph Based Machine Learning on Relational Data
Graph Based Machine Learning on Relational Data
Benjamin Bengfort
 
Python for ML
Python for MLPython for ML
Python for ML
Reza Sadeghi Jafari
 
Scalable Automatic Machine Learning in H2O
Scalable Automatic Machine Learning in H2OScalable Automatic Machine Learning in H2O
Scalable Automatic Machine Learning in H2O
Sri Ambati
 
Machine learning pipeline with spark ml
Machine learning pipeline with spark mlMachine learning pipeline with spark ml
Machine learning pipeline with spark ml
datamantra
 
MLlib and Machine Learning on Spark
MLlib and Machine Learning on SparkMLlib and Machine Learning on Spark
MLlib and Machine Learning on Spark
Petr Zapletal
 
Microsoft Introduction to Automated Machine Learning
Microsoft Introduction to Automated Machine LearningMicrosoft Introduction to Automated Machine Learning
Microsoft Introduction to Automated Machine Learning
Setu Chokshi
 
Jake Mannix, MLconf 2013
Jake Mannix, MLconf 2013Jake Mannix, MLconf 2013
Jake Mannix, MLconf 2013
MLconf
 
Introduction to MLflow
Introduction to MLflowIntroduction to MLflow
Introduction to MLflow
Databricks
 
Object- Relational Persistence in Smalltalk
Object- Relational Persistence in SmalltalkObject- Relational Persistence in Smalltalk
Object- Relational Persistence in Smalltalk
ESUG
 
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Is that a Time Machine? Some Design Patterns for Real World Machine Learning ...
Justin Basilico
 
HyperGraphDb
HyperGraphDbHyperGraphDb
HyperGraphDb
borislav
 
Pipeline oriented data analytics
Pipeline oriented data analyticsPipeline oriented data analytics
Pipeline oriented data analytics
Borys Biletskyy
 
ML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talkML Infra for Netflix Recommendations - AI NEXTCon talk
ML Infra for Netflix Recommendations - AI NEXTCon talk
Faisal Siddiqi
 
SDEC2011 Mahout - the what, the how and the why
SDEC2011 Mahout - the what, the how and the whySDEC2011 Mahout - the what, the how and the why
SDEC2011 Mahout - the what, the how and the why
Korea Sdec
 
Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)
Nikhil Garg
 
Hundreds of queries in the time of one - Gianmario Spacagna
Hundreds of queries in the time of one - Gianmario SpacagnaHundreds of queries in the time of one - Gianmario Spacagna
Hundreds of queries in the time of one - Gianmario Spacagna
Spark Summit
 
mlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecyclemlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
Automated Machine Learning
Automated Machine LearningAutomated Machine Learning
Automated Machine Learning
safa cimenli
 
Graph Based Machine Learning on Relational Data
Graph Based Machine Learning on Relational DataGraph Based Machine Learning on Relational Data
Graph Based Machine Learning on Relational Data
Benjamin Bengfort
 

Similar to Automate Machine Learning Pipeline Using MLBox (20)

Ember
EmberEmber
Ember
mrphilroth
 
END-TO-END MACHINE LEARNING STACK
END-TO-END MACHINE LEARNING STACKEND-TO-END MACHINE LEARNING STACK
END-TO-END MACHINE LEARNING STACK
Jan Wiegelmann
 
Introduction to ML.NET
Introduction to ML.NETIntroduction to ML.NET
Introduction to ML.NET
Gianni Rosa Gallina
 
Deep Learning for Autonomous Driving
Deep Learning for Autonomous DrivingDeep Learning for Autonomous Driving
Deep Learning for Autonomous Driving
Jan Wiegelmann
 
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
Databricks
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it Work
Ivo Andreev
 
Cutting Edge Computer Vision for Everyone
Cutting Edge Computer Vision for EveryoneCutting Edge Computer Vision for Everyone
Cutting Edge Computer Vision for Everyone
Ivo Andreev
 
The Data Science Process - Do we need it and how to apply?
The Data Science Process - Do we need it and how to apply?The Data Science Process - Do we need it and how to apply?
The Data Science Process - Do we need it and how to apply?
Ivo Andreev
 
Building Machine Learning Models Automatically (June 2020)
Building Machine Learning Models Automatically (June 2020)Building Machine Learning Models Automatically (June 2020)
Building Machine Learning Models Automatically (June 2020)
Julien SIMON
 
Python ml
Python mlPython ml
Python ml
Shubham Sharma
 
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
Jose Quesada (hiring)
 
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning ModelsApache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Anyscale
 
Machine learning
Machine learningMachine learning
Machine learning
Saravanan Subburayal
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0
Mark Tabladillo
 
201909 Automated ML for Developers
201909 Automated ML for Developers201909 Automated ML for Developers
201909 Automated ML for Developers
Mark Tabladillo
 
04 open source_tools
04 open source_tools04 open source_tools
04 open source_tools
Marco Quartulli
 
Azure Databricks for Data Scientists
Azure Databricks for Data ScientistsAzure Databricks for Data Scientists
Azure Databricks for Data Scientists
Richard Garris
 
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
Sandesh Rao
 
The Challenges of Bringing Machine Learning to the Masses
The Challenges of Bringing Machine Learning to the MassesThe Challenges of Bringing Machine Learning to the Masses
The Challenges of Bringing Machine Learning to the Masses
Alice Zheng
 
C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1
Bill Liu
 
END-TO-END MACHINE LEARNING STACK
END-TO-END MACHINE LEARNING STACKEND-TO-END MACHINE LEARNING STACK
END-TO-END MACHINE LEARNING STACK
Jan Wiegelmann
 
Deep Learning for Autonomous Driving
Deep Learning for Autonomous DrivingDeep Learning for Autonomous Driving
Deep Learning for Autonomous Driving
Jan Wiegelmann
 
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
Databricks
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it Work
Ivo Andreev
 
Cutting Edge Computer Vision for Everyone
Cutting Edge Computer Vision for EveryoneCutting Edge Computer Vision for Everyone
Cutting Edge Computer Vision for Everyone
Ivo Andreev
 
The Data Science Process - Do we need it and how to apply?
The Data Science Process - Do we need it and how to apply?The Data Science Process - Do we need it and how to apply?
The Data Science Process - Do we need it and how to apply?
Ivo Andreev
 
Building Machine Learning Models Automatically (June 2020)
Building Machine Learning Models Automatically (June 2020)Building Machine Learning Models Automatically (June 2020)
Building Machine Learning Models Automatically (June 2020)
Julien SIMON
 
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
A full Machine learning pipeline in Scikit-learn vs in scala-Spark: pros and ...
Jose Quesada (hiring)
 
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning ModelsApache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Anyscale
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0
Mark Tabladillo
 
201909 Automated ML for Developers
201909 Automated ML for Developers201909 Automated ML for Developers
201909 Automated ML for Developers
Mark Tabladillo
 
Azure Databricks for Data Scientists
Azure Databricks for Data ScientistsAzure Databricks for Data Scientists
Azure Databricks for Data Scientists
Richard Garris
 
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021
Sandesh Rao
 
The Challenges of Bringing Machine Learning to the Masses
The Challenges of Bringing Machine Learning to the MassesThe Challenges of Bringing Machine Learning to the Masses
The Challenges of Bringing Machine Learning to the Masses
Alice Zheng
 
C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1
Bill Liu
 
Ad

Recently uploaded (20)

Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
ss0077014
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Introduction to Mobile Forensics Part 1.pptx
Introduction to Mobile Forensics Part 1.pptxIntroduction to Mobile Forensics Part 1.pptx
Introduction to Mobile Forensics Part 1.pptx
Nivya George
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 
Antonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of MicrobiologyAntonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of Microbiology
Anoja Kurian
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
ss0077014
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Introduction to Mobile Forensics Part 1.pptx
Introduction to Mobile Forensics Part 1.pptxIntroduction to Mobile Forensics Part 1.pptx
Introduction to Mobile Forensics Part 1.pptx
Nivya George
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 
Antonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of MicrobiologyAntonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of Microbiology
Anoja Kurian
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
Ad

Automate Machine Learning Pipeline Using MLBox

  • 1. Hack Session By Axel de Romblay AUTOMATED MACHINE LEARNING
  • 2. • Introduction on Auto-ML • MLBox : a powerful Auto-ML python package • Hack session on a dataset AUTOMATED MACHINE LEARNING
  • 3. Data ScientistData Computation means Data pre-processing Model tuning Machine Learning Almost an automated process…
  • 4. Auto Machine Learning A fully automated process Data Computation meansRobot • Supervised tasks - classification - regression • Structured data - csv files - json files - … • Unsupervised tasks - outlier detection - clustering - … • Unstructured data - images - texts - …
  • 5. What is auto-ML ? We want to automate… …the maximum number of steps in a ML pipeline… …with minimum human intervention… …while conserving a high performance !
  • 6. Data cleaning (duplicates, ids, correlations, leaks, … ) Data encoding (NA, dates, text, categorical features, … ) STEP 2 : Preprocessing STEP 1 : Reading / merging STEP 3 : Optimisation Feature selection Feature engineering Model selection Prediction Model interpretation STEP 4 : Application Focus on the automation process Diagram of a standard ML pipeline
  • 8.  Quality: functional code : tested on Kaggle  Performance: fully distributed and optimised  AI: dumping and automatic reading of computations  Updates: latest algorithms MLBox: a fully automated python package  Compatibility: Python 2.7-3.6, Linux OS  Quick setup: $ pip install mlbox  User friendly: tutorials, docs, examples…
  • 9. Hack Session https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries Manual kernel : https://www.kaggle.com/sudalairajkumar/xgb-starter-in-python/ Auto kernel : https://www.kaggle.com/axelderomblay/mlbox-a-fully-automated-package/

Editor's Notes

  • #2: 1min
  • #3: 1min
  • #4: 2min Data preprocessing and model tuning are both repetitive tasks that take a lot of time… A Data Scientist is expensive !
  • #5: 2min So why don’t we replace the DS by a robot ??? We would save time and money ! Let’s see what can be automated !
  • #6: 1min Performance = computation time + accuracy
  • #7: 2min 90% of machine learning tasks follow this pipeline
  • #8: 1min Available on PyPI Github with tutos, examples Docs with articles, kaggle kernels, … Performance : tested on Kaggle ! Features : drifts, embeddings, stacking, leak, feature importances,…
  • #9: 2min
  • #10: 40min
  • #11: 10min THANKS ! Q&A ?