SlideShare a Scribd company logo
ARC303 - Unmeltable Infrastructure at Scale:
Using Apache Kafka, Twitter Storm
and ElasticSearch on AWS
Jim Nisbet

Philip O’Toole

CTO and VP of Engineering, Loggly

Lead Developer, Infrastructure, Loggly

November 2013

© 2013 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.
What Loggly Does
•  Log Management as a service
–  Near real-time indexing of events

•  Distributed architecture, built on AWS
•  Initial production services in 2011
–  Loggly Generation 2 released in Sept 2013

•  Thousands of customers
Agenda for this Presentation
• 
• 
• 
• 
• 
• 

A bit about logging
Lessons learned from our first generation
How we leverage AWS services
Our use of Kafka, Storm, ElasticSearch
What worked well for us and what did not
Where we are going
Log Management
•  Everyone starts with …
–  A bunch of log files (syslog, application specific)
–  On a bunch of machines

•  Management consists of doing the simple stuff
–  Rotate files, compress and delete
–  Information is there but awkward to find specific events
–  Weird log retention policies evolve over time
“…how can I make this someone else’s problem!”

“…hmmm, our logs are getting a bit bloated”

Log Volume

Self-Inflicted Pain

“…let’s spend time managing our log capacity”
Best Practices in Log Management
•  Use existing logging infrastructure
–  Real time syslog forwarding is built in
–  Application log file watching

•  Store logs externally
–  Accessible when there is a system failure

•  Log messages in machine parsable format
–  JSON encoding when logging structured information
–  Key-value pairs
From the Trenches…
•  Managing Applications vs. Managing Logs
–  Do not make this is an either/or proposition!

If you get a disk space alert, first login…
% sudo rm –rf /var/log/apache2/*!

Admit it, we’ve all seen this kind of thing!
You Have Logs...
2013-10-25T18:35:43.387+0000: 441.482: [GC [PSYoungGen: 2430541K->268617K(2484544K)] 7687523K>5660738K(8076992K), 0.3266870 secs] [Times: user=1.05 sys=0.17, real=0.33 secs]!
2013-10-25T18:35:43.714+0000: 441.809: [Full GC [PSYoungGen: 268617K->0K(2484544K)] [ParOldGen: 5392121K>354965K(5592448K)] 5660738K->354965K(8076992K) [PSPermGen: 44444K->44395K(83968K)], 0.9225290 secs] [Times:
user=2.22 sys=0.26, real=0.92 secs]!

•  In this case, JVM garbage collection logs
enabled with…
-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps
Yes, you need to search these logs
But you also need to to spot trends
Loggly Offers Logging as a Service
Loggly First Generation
•  Logging as a service
–  Real-time searchable logs

•  Thousands of customers
–  Transmission rates from 10 events/sec to 100k events/sec
–  When customers systems are busy they send more logs
–  Log traffic has distinct bursts; bursts can last for several hours

•  AWS EC2 deployment
–  We used EC2 Instance storage

•  SOLR Cloud
–  Full power of Lucene search
–  Tens of thousands of shards (with special ‘sleep shard’ logic)

•  ZeroMQ for message queue
First Generation Lessons Learned
•  Event ingestion too tightly coupled to indexing
–  Manual re-indexing for temporary SOLR issues

•  Multiple Indexing strategies needed
–  4 orders of magnitude difference between our high volume users
and our low volume users (10 eps vs. 100,000+ eps)
–  Too much system overhead for low volume users
–  Difficult to support changing sharding strategies for a customer
Big Data Infrastructure Solutions
We are not alone…
•  Our challenges
– 
– 
– 
– 
– 

Massive incoming event stream
Fundamentally multi-tenant
Scalable framework for analysis
Near real-time indexing
Time series index management

Scalability

Real
Time

Analytics

Multi
tenant

SaaS
Apache Kafka
•  Overview
– 
– 
– 
– 

An Apache project initially developed at LinkedIn
Distributed publish-subscribe messaging system
Specifically designed for real time activity streams
Does not follow JMS Standards nor uses JMS APIs

•  Key Features
– 
– 
– 
– 

Persistent messaging
High throughput
Uses Zookeeper for forming a cluster of nodes
Supports both queue and topic semantics
Message Queue Performance

http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
Storm Framework
•  Storm (open sourced by Twitter)
–  Open sourced September 2011
–  Now an Apache Software Foundation project
•  Currently Incubator Status

•  Framework is for stream processing
– 
– 
– 
– 

Distributed
Fault tolerant
Computation
Fail-fast components
Storm Logical View
Example Topology
Bolt
Spout

Bolt
Bolt

Spouts emit source stream

Bolts perform stream processing

Bolt
Storm Physical View
ElasticSearch
•  Open source
–  Commercial support available from ElasticSearch.com
–  Growing open-source community

• 
• 
• 
• 
• 

Distributed search engine
Fully exposes Lucene search functionality
Built for clustering from the ground-up
High availability
Multi-tenancy
ElasticSearch In Action
•  Add/delete nodes dynamically
•  Add indexes with REST api
•  Indexes and Nodes have attributes
–  Indexes automatically moved to best Nodes

•  Indexes can be sharded
•  Supports bulk insertion of events
•  Plugins for monitoring cluster
Our Second Generation
Generation 2 – The Challenge
•  Always accept log data
–  Never make a customer’s incident worse

•  Never drop log data
–  A single log message could be critical

•  True Elasticity
Perfect Match For Real Time Log Events
•  Apache Kafka
–  Extremely high-performance pub-sub persistent queue

•  Consumer tracks their location in queue
–  A good fit for our use cases

•  Multiple Kafka brokers
–  Good match for AWS
•  Multiple brokers per region
•  Availability Zone separation
Real Time Event Processing
•  Twitter Storm
–  Scalable realtime computation sysytem

•  Storm used as a “pull” system
–  Provisioned for average load, not peak load
–  Input from Kafka queue
•  Worker nodes can be scaled dynamically

•  Elasticity is key
–  Another good match for AWS
•  Able to scale workers up and down dynamically
Log Event Ingestion
Kafka
Stage 2
Loggly Collector Performance
•  C++ multi-threaded
•  Boost ASIO framework
•  Each Collector can
handle 250k+ events
per second
–  Per m2.2xlarge instance

1 x EC2 m2.2xlarge Collector instance
(300 byte average event size).
Processing Events
Storm Event Processing

Identify
Customer

Summary
Statistics

Kafka
Stage 2

Acme
Bucket
Event Pipeline in Summary
•  Storm provides Complex Event Processing
–  Where we run much of our secret-sauce

•  Stage 1 contains the raw Events
•  Stage 2 contains processed Events
•  Snapshot the last day of Stage 2 events to S3
Elastic Search Clusters

Multi-Tiered
Elastic Cluster
Loggly and Index Management
•  Indexes are time-series data
–  Separated by customer
–  Represent slices of time
•  Higher volume index will have shorter time slice

•  Multi-tier architecture for efficient indexing
–  Multiple indexing tiers mapped to different AWS instance types

•  Efficient use of AWS resources
AWS Deployment Instances – Stage 1

c1.xlarge
• 
• 
• 

Compute-optimized
High-traffic ingestion points
Disk not important

m2.2xlarge!
• 
• 

Memory-optimized
Disk buffer caching

4K Provisioned IOPs EBS
• 
• 
• 

Ensures consistent IO
No noisy-neighbours
Persistent storage
AWS Deployment Instances – Stage 2

ZooKeeper

c1.xlarge

m1.xlarge

• 
• 

• 
• 
• 

• 

Compute-optimized
CPU-intensive
processing
Network IO

General-purpose
Configuration
Management

m2.2xlarge
• 
• 
• 

Memory-optimized
Disk buffer caching
4K provisioned IOPs EBS
AWS Deployment Instances – Indexing

cc2.8xlarge!
•  4K Provisioned IOPs EBS

m2.4xlarge!
•  4K Provisioned IOPs EBS
A Few False Starts
ELB in front of Collector Had Limitations
•  Initial testing used AWS Elastic Load Balancer for incoming
events:

•  ELB doesn’t allow forwarding port 514 (syslog)
•  ELB doesn’t support forwarding UDP
•  Event traffic can burst and hit ELB performance limits
AWS Route 53 DNS Round Robin a Win
•  DNS Round Robin is a pretty basic load balancing
–  Not a bump in the wire

•  Take advantage of AWS failover health checks
–  When a collector goes out of service, it will be out of the DNS rotation

•  Round Robin across multiple regions, AZs
–  Latency based resolution optimizes inbound traffic

•  Collector failover takes longer than it would with ELB
Our First Plan for Log Events
•  Cassandra
–  Highly scalable key-value store
–  Impressive write performance a good match for us
–  Apache project plus commercial support with DataStax

•  Use Cassandra for both our Event Queue and
Persistent Store
–  Our strategy was to get the raw event in to Cassandra
–  …then perform workflow processing on events
Design meets Reality
•  Cassandra not designed to be a message queue
•  Hard to track Events received out-of-order

•  Multi-tenancy requires handling data bursts
–  Collectors still needed to be able to buffer to disk
–  Added complexity and became a point of failure
Staging Pre-Production System
Load Balancing

Kafka
Stage 2
Kafka enables Staging Architecture
•  Kafka producer doesn’t care if there are
multiple consumers
•  Staging system runs pre-production code
•  Pub-sub allows us to randomly index a
fraction of our production load
•  A highly-effective pre-production system
AWS re:Invent presentation: Unmeltable Infrastructure at Scale by Loggly
Big Wins
•  Leveraging AWS services
– 
– 
– 
– 

Multi-Region, multi-AZ
Provisioned IOPS for availability and scale
Route 53 DNS support with latency resolution
Easy to increase and decrease Storm resources

•  Leveraging Open Source infrastructure
–  Apache Kafka
–  Twitter Storm
–  ElasticSearch

•  Staging
Future of Loggly Infrastructure
•  Better use of Amazon Auto Scaling
•  Keep logs in region they came from
–  We currently keep indexed events in a single region

•  Integrate with more external data sources
Feedback
•  Questions?
Send’em to us on twitter: @loggly
Kick the tires, sign up: loggly.com/ace
Jim Nisbet
CTO and VP of Engineering, Loggly
Philip O’Toole
Lead Developer, Infrastructure, Loggly
Ad

More Related Content

What's hot (20)

Kafka - Linkedin's messaging backbone
Kafka - Linkedin's messaging backboneKafka - Linkedin's messaging backbone
Kafka - Linkedin's messaging backbone
Ayyappadas Ravindran (Appu)
 
The Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data ProblemsThe Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data Problems
Monal Daxini
 
Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer
confluent
 
Streaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in ProductionStreaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in Production
confluent
 
Building Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache KafkaBuilding Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache Kafka
Brian Ritchie
 
Beaming flink to the cloud @ netflix ff 2016-monal-daxini
Beaming flink to the cloud @ netflix   ff 2016-monal-daxiniBeaming flink to the cloud @ netflix   ff 2016-monal-daxini
Beaming flink to the cloud @ netflix ff 2016-monal-daxini
Monal Daxini
 
Introduction to Kafka
Introduction to KafkaIntroduction to Kafka
Introduction to Kafka
Akash Vacher
 
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the JobAkka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Lightbend
 
URP? Excuse You! The Three Metrics You Have to Know
URP? Excuse You! The Three Metrics You Have to Know URP? Excuse You! The Three Metrics You Have to Know
URP? Excuse You! The Three Metrics You Have to Know
confluent
 
Running Kafka for Maximum Pain
Running Kafka for Maximum PainRunning Kafka for Maximum Pain
Running Kafka for Maximum Pain
Todd Palino
 
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean FellowsDeploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
confluent
 
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
confluent
 
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
StreamNative
 
Hive & HBase For Transaction Processing
Hive & HBase For Transaction ProcessingHive & HBase For Transaction Processing
Hive & HBase For Transaction Processing
DataWorks Summit
 
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
HostedbyConfluent
 
6/18/14 Billing & Payments Engineering Meetup I
6/18/14 Billing & Payments Engineering Meetup I6/18/14 Billing & Payments Engineering Meetup I
6/18/14 Billing & Payments Engineering Meetup I
Mathieu Chauvin
 
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails? Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
confluent
 
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OSPutting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Lightbend
 
Change Data Capture using Kafka
Change Data Capture using KafkaChange Data Capture using Kafka
Change Data Capture using Kafka
Akash Vacher
 
Copy of Kafka-Camus
Copy of Kafka-CamusCopy of Kafka-Camus
Copy of Kafka-Camus
Deep Shah
 
The Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data ProblemsThe Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data Problems
Monal Daxini
 
Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer
confluent
 
Streaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in ProductionStreaming in Practice - Putting Apache Kafka in Production
Streaming in Practice - Putting Apache Kafka in Production
confluent
 
Building Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache KafkaBuilding Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache Kafka
Brian Ritchie
 
Beaming flink to the cloud @ netflix ff 2016-monal-daxini
Beaming flink to the cloud @ netflix   ff 2016-monal-daxiniBeaming flink to the cloud @ netflix   ff 2016-monal-daxini
Beaming flink to the cloud @ netflix ff 2016-monal-daxini
Monal Daxini
 
Introduction to Kafka
Introduction to KafkaIntroduction to Kafka
Introduction to Kafka
Akash Vacher
 
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the JobAkka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Akka, Spark or Kafka? Selecting The Right Streaming Engine For the Job
Lightbend
 
URP? Excuse You! The Three Metrics You Have to Know
URP? Excuse You! The Three Metrics You Have to Know URP? Excuse You! The Three Metrics You Have to Know
URP? Excuse You! The Three Metrics You Have to Know
confluent
 
Running Kafka for Maximum Pain
Running Kafka for Maximum PainRunning Kafka for Maximum Pain
Running Kafka for Maximum Pain
Todd Palino
 
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean FellowsDeploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
confluent
 
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
Kafka Summit NYC 2017 - Cloud Native Data Streaming Microservices with Spring...
confluent
 
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
Apache Pulsar: Why Unified Messaging and Streaming Is the Future - Pulsar Sum...
StreamNative
 
Hive & HBase For Transaction Processing
Hive & HBase For Transaction ProcessingHive & HBase For Transaction Processing
Hive & HBase For Transaction Processing
DataWorks Summit
 
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
Should you read Kafka as a stream or in batch? Should you even care? | Ido Na...
HostedbyConfluent
 
6/18/14 Billing & Payments Engineering Meetup I
6/18/14 Billing & Payments Engineering Meetup I6/18/14 Billing & Payments Engineering Meetup I
6/18/14 Billing & Payments Engineering Meetup I
Mathieu Chauvin
 
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails? Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
Kafka Summit NYC 2017 - Apache Kafka in the Enterprise: What if it Fails?
confluent
 
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OSPutting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Putting Kafka In Jail – Best Practices To Run Kafka On Kubernetes & DC/OS
Lightbend
 
Change Data Capture using Kafka
Change Data Capture using KafkaChange Data Capture using Kafka
Change Data Capture using Kafka
Akash Vacher
 
Copy of Kafka-Camus
Copy of Kafka-CamusCopy of Kafka-Camus
Copy of Kafka-Camus
Deep Shah
 

Viewers also liked (13)

6 Critical SaaS Engineering Mistakes to Avoid
6 Critical SaaS Engineering Mistakes to Avoid6 Critical SaaS Engineering Mistakes to Avoid
6 Critical SaaS Engineering Mistakes to Avoid
SolarWinds Loggly
 
Rumble Entertainment GDC 2014: Maximizing Revenue Through Logging
Rumble Entertainment GDC 2014: Maximizing Revenue Through LoggingRumble Entertainment GDC 2014: Maximizing Revenue Through Logging
Rumble Entertainment GDC 2014: Maximizing Revenue Through Logging
SolarWinds Loggly
 
Business company-profile-templatedocdoc765
Business company-profile-templatedocdoc765Business company-profile-templatedocdoc765
Business company-profile-templatedocdoc765
Md. shamsul Arefin sujon
 
Презентация IT компании. Презентация для сервисной компании.
Презентация  IT компании.  Презентация для сервисной компании. Презентация  IT компании.  Презентация для сервисной компании.
Презентация IT компании. Презентация для сервисной компании.
Агентство Презентаций "Romanoff"
 
Itc Presentation
Itc PresentationItc Presentation
Itc Presentation
avichandgal1
 
New company presentation slideshare
New company presentation slideshareNew company presentation slideshare
New company presentation slideshare
solutions-2
 
Itc-company profile
Itc-company profileItc-company profile
Itc-company profile
ravindra murty
 
Презентация бизнес-плана кафе
Презентация бизнес-плана кафеПрезентация бизнес-плана кафе
Презентация бизнес-плана кафе
Financial Outsourcing Centre
 
Шаблон презентации о Компании в PowerPoint (B2B)
Шаблон презентации о Компании в PowerPoint (B2B)Шаблон презентации о Компании в PowerPoint (B2B)
Шаблон презентации о Компании в PowerPoint (B2B)
Слайдстор
 
Ppt of company profile in project
Ppt of company profile in projectPpt of company profile in project
Ppt of company profile in project
shivakumaranupama
 
Tcs company profile presentation -sample
Tcs company profile presentation  -sampleTcs company profile presentation  -sample
Tcs company profile presentation -sample
Sivaraj Ganapathy
 
Introduction to SlideShare for Businesses
Introduction to SlideShare for BusinessesIntroduction to SlideShare for Businesses
Introduction to SlideShare for Businesses
SlideShare
 
Company Overview Presentation
Company Overview PresentationCompany Overview Presentation
Company Overview Presentation
Zenith Technologies
 
6 Critical SaaS Engineering Mistakes to Avoid
6 Critical SaaS Engineering Mistakes to Avoid6 Critical SaaS Engineering Mistakes to Avoid
6 Critical SaaS Engineering Mistakes to Avoid
SolarWinds Loggly
 
Rumble Entertainment GDC 2014: Maximizing Revenue Through Logging
Rumble Entertainment GDC 2014: Maximizing Revenue Through LoggingRumble Entertainment GDC 2014: Maximizing Revenue Through Logging
Rumble Entertainment GDC 2014: Maximizing Revenue Through Logging
SolarWinds Loggly
 
Business company-profile-templatedocdoc765
Business company-profile-templatedocdoc765Business company-profile-templatedocdoc765
Business company-profile-templatedocdoc765
Md. shamsul Arefin sujon
 
Презентация IT компании. Презентация для сервисной компании.
Презентация  IT компании.  Презентация для сервисной компании. Презентация  IT компании.  Презентация для сервисной компании.
Презентация IT компании. Презентация для сервисной компании.
Агентство Презентаций "Romanoff"
 
New company presentation slideshare
New company presentation slideshareNew company presentation slideshare
New company presentation slideshare
solutions-2
 
Презентация бизнес-плана кафе
Презентация бизнес-плана кафеПрезентация бизнес-плана кафе
Презентация бизнес-плана кафе
Financial Outsourcing Centre
 
Шаблон презентации о Компании в PowerPoint (B2B)
Шаблон презентации о Компании в PowerPoint (B2B)Шаблон презентации о Компании в PowerPoint (B2B)
Шаблон презентации о Компании в PowerPoint (B2B)
Слайдстор
 
Ppt of company profile in project
Ppt of company profile in projectPpt of company profile in project
Ppt of company profile in project
shivakumaranupama
 
Tcs company profile presentation -sample
Tcs company profile presentation  -sampleTcs company profile presentation  -sample
Tcs company profile presentation -sample
Sivaraj Ganapathy
 
Introduction to SlideShare for Businesses
Introduction to SlideShare for BusinessesIntroduction to SlideShare for Businesses
Introduction to SlideShare for Businesses
SlideShare
 
Ad

Similar to AWS re:Invent presentation: Unmeltable Infrastructure at Scale by Loggly (20)

Cloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark AnalyticsCloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark Analytics
amesar0
 
Spark cep
Spark cepSpark cep
Spark cep
Byungjin Kim
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
John adams talk cloudy
John adams   talk cloudyJohn adams   talk cloudy
John adams talk cloudy
John Adams
 
Scality S3 Server: Node js Meetup Presentation
Scality S3 Server: Node js Meetup PresentationScality S3 Server: Node js Meetup Presentation
Scality S3 Server: Node js Meetup Presentation
Scality
 
Netflix Keystone—Cloud scale event processing pipeline
Netflix Keystone—Cloud scale event processing pipelineNetflix Keystone—Cloud scale event processing pipeline
Netflix Keystone—Cloud scale event processing pipeline
Monal Daxini
 
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Streamsets Inc.
 
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Rick Bilodeau
 
Stay productive_while_slicing_up_the_monolith
Stay productive_while_slicing_up_the_monolithStay productive_while_slicing_up_the_monolith
Stay productive_while_slicing_up_the_monolith
Markus Eisele
 
ELK Ruminating on Logs (Zendcon 2016)
ELK Ruminating on Logs (Zendcon 2016)ELK Ruminating on Logs (Zendcon 2016)
ELK Ruminating on Logs (Zendcon 2016)
Mathew Beane
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Centralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stackCentralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stack
Rich Lee
 
Sanger, upcoming Openstack for Bio-informaticians
Sanger, upcoming Openstack for Bio-informaticiansSanger, upcoming Openstack for Bio-informaticians
Sanger, upcoming Openstack for Bio-informaticians
Peter Clapham
 
Flexible compute
Flexible computeFlexible compute
Flexible compute
Peter Clapham
 
Real Time Insights for Advertising Tech
Real Time Insights for Advertising TechReal Time Insights for Advertising Tech
Real Time Insights for Advertising Tech
Apache Apex
 
Running Spark on Cloud
Running Spark on CloudRunning Spark on Cloud
Running Spark on Cloud
Qubole
 
NetflixOSS Open House Lightning talks
NetflixOSS Open House Lightning talksNetflixOSS Open House Lightning talks
NetflixOSS Open House Lightning talks
Ruslan Meshenberg
 
Internals of Presto Service
Internals of Presto ServiceInternals of Presto Service
Internals of Presto Service
Treasure Data, Inc.
 
Tech4Africa 2014
Tech4Africa 2014Tech4Africa 2014
Tech4Africa 2014
FAschenbrenner
 
TenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience SharingTenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience Sharing
Chen-en Lu
 
Cloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark AnalyticsCloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark Analytics
amesar0
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
John adams talk cloudy
John adams   talk cloudyJohn adams   talk cloudy
John adams talk cloudy
John Adams
 
Scality S3 Server: Node js Meetup Presentation
Scality S3 Server: Node js Meetup PresentationScality S3 Server: Node js Meetup Presentation
Scality S3 Server: Node js Meetup Presentation
Scality
 
Netflix Keystone—Cloud scale event processing pipeline
Netflix Keystone—Cloud scale event processing pipelineNetflix Keystone—Cloud scale event processing pipeline
Netflix Keystone—Cloud scale event processing pipeline
Monal Daxini
 
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Streamsets Inc.
 
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Rick Bilodeau
 
Stay productive_while_slicing_up_the_monolith
Stay productive_while_slicing_up_the_monolithStay productive_while_slicing_up_the_monolith
Stay productive_while_slicing_up_the_monolith
Markus Eisele
 
ELK Ruminating on Logs (Zendcon 2016)
ELK Ruminating on Logs (Zendcon 2016)ELK Ruminating on Logs (Zendcon 2016)
ELK Ruminating on Logs (Zendcon 2016)
Mathew Beane
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Centralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stackCentralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stack
Rich Lee
 
Sanger, upcoming Openstack for Bio-informaticians
Sanger, upcoming Openstack for Bio-informaticiansSanger, upcoming Openstack for Bio-informaticians
Sanger, upcoming Openstack for Bio-informaticians
Peter Clapham
 
Real Time Insights for Advertising Tech
Real Time Insights for Advertising TechReal Time Insights for Advertising Tech
Real Time Insights for Advertising Tech
Apache Apex
 
Running Spark on Cloud
Running Spark on CloudRunning Spark on Cloud
Running Spark on Cloud
Qubole
 
NetflixOSS Open House Lightning talks
NetflixOSS Open House Lightning talksNetflixOSS Open House Lightning talks
NetflixOSS Open House Lightning talks
Ruslan Meshenberg
 
TenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience SharingTenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience Sharing
Chen-en Lu
 
Ad

More from SolarWinds Loggly (10)

Loggly - Tools and Techniques For Logging Microservices
Loggly - Tools and Techniques For Logging MicroservicesLoggly - Tools and Techniques For Logging Microservices
Loggly - Tools and Techniques For Logging Microservices
SolarWinds Loggly
 
Loggly - 5 Popular .NET Logging Libraries
Loggly - 5 Popular .NET Logging LibrariesLoggly - 5 Popular .NET Logging Libraries
Loggly - 5 Popular .NET Logging Libraries
SolarWinds Loggly
 
Loggly - IT Operations in a Serverless World (Infographic)
Loggly - IT Operations in a Serverless World (Infographic)Loggly - IT Operations in a Serverless World (Infographic)
Loggly - IT Operations in a Serverless World (Infographic)
SolarWinds Loggly
 
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
SolarWinds Loggly
 
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
SolarWinds Loggly
 
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
SolarWinds Loggly
 
Loggly - Case Study - Datami Keeps Developer Productivity High with Loggly
Loggly - Case Study - Datami Keeps Developer Productivity High with LogglyLoggly - Case Study - Datami Keeps Developer Productivity High with Loggly
Loggly - Case Study - Datami Keeps Developer Productivity High with Loggly
SolarWinds Loggly
 
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
SolarWinds Loggly
 
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
SolarWinds Loggly
 
Loggly - Benchmarking 5 Node.js Logging Libraries
Loggly - Benchmarking 5 Node.js Logging LibrariesLoggly - Benchmarking 5 Node.js Logging Libraries
Loggly - Benchmarking 5 Node.js Logging Libraries
SolarWinds Loggly
 
Loggly - Tools and Techniques For Logging Microservices
Loggly - Tools and Techniques For Logging MicroservicesLoggly - Tools and Techniques For Logging Microservices
Loggly - Tools and Techniques For Logging Microservices
SolarWinds Loggly
 
Loggly - 5 Popular .NET Logging Libraries
Loggly - 5 Popular .NET Logging LibrariesLoggly - 5 Popular .NET Logging Libraries
Loggly - 5 Popular .NET Logging Libraries
SolarWinds Loggly
 
Loggly - IT Operations in a Serverless World (Infographic)
Loggly - IT Operations in a Serverless World (Infographic)Loggly - IT Operations in a Serverless World (Infographic)
Loggly - IT Operations in a Serverless World (Infographic)
SolarWinds Loggly
 
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
Loggly - Case Study - Loggly and Docker Deliver Powerful Monitoring for XAPPm...
SolarWinds Loggly
 
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
Loggly - Case Study - Stanley Black & Decker Transforms Work with Support fro...
SolarWinds Loggly
 
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
Loggly - Case Study - Loggly and Kubernetes Give Molecule Easy Access to the ...
SolarWinds Loggly
 
Loggly - Case Study - Datami Keeps Developer Productivity High with Loggly
Loggly - Case Study - Datami Keeps Developer Productivity High with LogglyLoggly - Case Study - Datami Keeps Developer Productivity High with Loggly
Loggly - Case Study - Datami Keeps Developer Productivity High with Loggly
SolarWinds Loggly
 
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
Loggly - Case Study - BEMOBI - Bemobi Monitors the Experience of 500 Million ...
SolarWinds Loggly
 
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
Loggly - How to Scale Your Architecture and DevOps Practices for Big Data App...
SolarWinds Loggly
 
Loggly - Benchmarking 5 Node.js Logging Libraries
Loggly - Benchmarking 5 Node.js Logging LibrariesLoggly - Benchmarking 5 Node.js Logging Libraries
Loggly - Benchmarking 5 Node.js Logging Libraries
SolarWinds Loggly
 

Recently uploaded (20)

Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 

AWS re:Invent presentation: Unmeltable Infrastructure at Scale by Loggly

  • 1. ARC303 - Unmeltable Infrastructure at Scale: Using Apache Kafka, Twitter Storm and ElasticSearch on AWS Jim Nisbet Philip O’Toole CTO and VP of Engineering, Loggly Lead Developer, Infrastructure, Loggly November 2013 © 2013 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.
  • 2. What Loggly Does •  Log Management as a service –  Near real-time indexing of events •  Distributed architecture, built on AWS •  Initial production services in 2011 –  Loggly Generation 2 released in Sept 2013 •  Thousands of customers
  • 3. Agenda for this Presentation •  •  •  •  •  •  A bit about logging Lessons learned from our first generation How we leverage AWS services Our use of Kafka, Storm, ElasticSearch What worked well for us and what did not Where we are going
  • 4. Log Management •  Everyone starts with … –  A bunch of log files (syslog, application specific) –  On a bunch of machines •  Management consists of doing the simple stuff –  Rotate files, compress and delete –  Information is there but awkward to find specific events –  Weird log retention policies evolve over time
  • 5. “…how can I make this someone else’s problem!” “…hmmm, our logs are getting a bit bloated” Log Volume Self-Inflicted Pain “…let’s spend time managing our log capacity”
  • 6. Best Practices in Log Management •  Use existing logging infrastructure –  Real time syslog forwarding is built in –  Application log file watching •  Store logs externally –  Accessible when there is a system failure •  Log messages in machine parsable format –  JSON encoding when logging structured information –  Key-value pairs
  • 7. From the Trenches… •  Managing Applications vs. Managing Logs –  Do not make this is an either/or proposition! If you get a disk space alert, first login… % sudo rm –rf /var/log/apache2/*! Admit it, we’ve all seen this kind of thing!
  • 8. You Have Logs... 2013-10-25T18:35:43.387+0000: 441.482: [GC [PSYoungGen: 2430541K->268617K(2484544K)] 7687523K>5660738K(8076992K), 0.3266870 secs] [Times: user=1.05 sys=0.17, real=0.33 secs]! 2013-10-25T18:35:43.714+0000: 441.809: [Full GC [PSYoungGen: 268617K->0K(2484544K)] [ParOldGen: 5392121K>354965K(5592448K)] 5660738K->354965K(8076992K) [PSPermGen: 44444K->44395K(83968K)], 0.9225290 secs] [Times: user=2.22 sys=0.26, real=0.92 secs]! •  In this case, JVM garbage collection logs enabled with… -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps
  • 9. Yes, you need to search these logs
  • 10. But you also need to to spot trends
  • 11. Loggly Offers Logging as a Service
  • 12. Loggly First Generation •  Logging as a service –  Real-time searchable logs •  Thousands of customers –  Transmission rates from 10 events/sec to 100k events/sec –  When customers systems are busy they send more logs –  Log traffic has distinct bursts; bursts can last for several hours •  AWS EC2 deployment –  We used EC2 Instance storage •  SOLR Cloud –  Full power of Lucene search –  Tens of thousands of shards (with special ‘sleep shard’ logic) •  ZeroMQ for message queue
  • 13. First Generation Lessons Learned •  Event ingestion too tightly coupled to indexing –  Manual re-indexing for temporary SOLR issues •  Multiple Indexing strategies needed –  4 orders of magnitude difference between our high volume users and our low volume users (10 eps vs. 100,000+ eps) –  Too much system overhead for low volume users –  Difficult to support changing sharding strategies for a customer
  • 14. Big Data Infrastructure Solutions We are not alone… •  Our challenges –  –  –  –  –  Massive incoming event stream Fundamentally multi-tenant Scalable framework for analysis Near real-time indexing Time series index management Scalability Real Time Analytics Multi tenant SaaS
  • 15. Apache Kafka •  Overview –  –  –  –  An Apache project initially developed at LinkedIn Distributed publish-subscribe messaging system Specifically designed for real time activity streams Does not follow JMS Standards nor uses JMS APIs •  Key Features –  –  –  –  Persistent messaging High throughput Uses Zookeeper for forming a cluster of nodes Supports both queue and topic semantics
  • 17. Storm Framework •  Storm (open sourced by Twitter) –  Open sourced September 2011 –  Now an Apache Software Foundation project •  Currently Incubator Status •  Framework is for stream processing –  –  –  –  Distributed Fault tolerant Computation Fail-fast components
  • 18. Storm Logical View Example Topology Bolt Spout Bolt Bolt Spouts emit source stream Bolts perform stream processing Bolt
  • 20. ElasticSearch •  Open source –  Commercial support available from ElasticSearch.com –  Growing open-source community •  •  •  •  •  Distributed search engine Fully exposes Lucene search functionality Built for clustering from the ground-up High availability Multi-tenancy
  • 21. ElasticSearch In Action •  Add/delete nodes dynamically •  Add indexes with REST api •  Indexes and Nodes have attributes –  Indexes automatically moved to best Nodes •  Indexes can be sharded •  Supports bulk insertion of events •  Plugins for monitoring cluster
  • 23. Generation 2 – The Challenge •  Always accept log data –  Never make a customer’s incident worse •  Never drop log data –  A single log message could be critical •  True Elasticity
  • 24. Perfect Match For Real Time Log Events •  Apache Kafka –  Extremely high-performance pub-sub persistent queue •  Consumer tracks their location in queue –  A good fit for our use cases •  Multiple Kafka brokers –  Good match for AWS •  Multiple brokers per region •  Availability Zone separation
  • 25. Real Time Event Processing •  Twitter Storm –  Scalable realtime computation sysytem •  Storm used as a “pull” system –  Provisioned for average load, not peak load –  Input from Kafka queue •  Worker nodes can be scaled dynamically •  Elasticity is key –  Another good match for AWS •  Able to scale workers up and down dynamically
  • 28. Loggly Collector Performance •  C++ multi-threaded •  Boost ASIO framework •  Each Collector can handle 250k+ events per second –  Per m2.2xlarge instance 1 x EC2 m2.2xlarge Collector instance (300 byte average event size).
  • 31. Event Pipeline in Summary •  Storm provides Complex Event Processing –  Where we run much of our secret-sauce •  Stage 1 contains the raw Events •  Stage 2 contains processed Events •  Snapshot the last day of Stage 2 events to S3
  • 33. Loggly and Index Management •  Indexes are time-series data –  Separated by customer –  Represent slices of time •  Higher volume index will have shorter time slice •  Multi-tier architecture for efficient indexing –  Multiple indexing tiers mapped to different AWS instance types •  Efficient use of AWS resources
  • 34. AWS Deployment Instances – Stage 1 c1.xlarge •  •  •  Compute-optimized High-traffic ingestion points Disk not important m2.2xlarge! •  •  Memory-optimized Disk buffer caching 4K Provisioned IOPs EBS •  •  •  Ensures consistent IO No noisy-neighbours Persistent storage
  • 35. AWS Deployment Instances – Stage 2 ZooKeeper c1.xlarge m1.xlarge •  •  •  •  •  •  Compute-optimized CPU-intensive processing Network IO General-purpose Configuration Management m2.2xlarge •  •  •  Memory-optimized Disk buffer caching 4K provisioned IOPs EBS
  • 36. AWS Deployment Instances – Indexing cc2.8xlarge! •  4K Provisioned IOPs EBS m2.4xlarge! •  4K Provisioned IOPs EBS
  • 37. A Few False Starts
  • 38. ELB in front of Collector Had Limitations •  Initial testing used AWS Elastic Load Balancer for incoming events: •  ELB doesn’t allow forwarding port 514 (syslog) •  ELB doesn’t support forwarding UDP •  Event traffic can burst and hit ELB performance limits
  • 39. AWS Route 53 DNS Round Robin a Win •  DNS Round Robin is a pretty basic load balancing –  Not a bump in the wire •  Take advantage of AWS failover health checks –  When a collector goes out of service, it will be out of the DNS rotation •  Round Robin across multiple regions, AZs –  Latency based resolution optimizes inbound traffic •  Collector failover takes longer than it would with ELB
  • 40. Our First Plan for Log Events •  Cassandra –  Highly scalable key-value store –  Impressive write performance a good match for us –  Apache project plus commercial support with DataStax •  Use Cassandra for both our Event Queue and Persistent Store –  Our strategy was to get the raw event in to Cassandra –  …then perform workflow processing on events
  • 41. Design meets Reality •  Cassandra not designed to be a message queue •  Hard to track Events received out-of-order •  Multi-tenancy requires handling data bursts –  Collectors still needed to be able to buffer to disk –  Added complexity and became a point of failure
  • 44. Kafka enables Staging Architecture •  Kafka producer doesn’t care if there are multiple consumers •  Staging system runs pre-production code •  Pub-sub allows us to randomly index a fraction of our production load •  A highly-effective pre-production system
  • 46. Big Wins •  Leveraging AWS services –  –  –  –  Multi-Region, multi-AZ Provisioned IOPS for availability and scale Route 53 DNS support with latency resolution Easy to increase and decrease Storm resources •  Leveraging Open Source infrastructure –  Apache Kafka –  Twitter Storm –  ElasticSearch •  Staging
  • 47. Future of Loggly Infrastructure •  Better use of Amazon Auto Scaling •  Keep logs in region they came from –  We currently keep indexed events in a single region •  Integrate with more external data sources
  • 48. Feedback •  Questions? Send’em to us on twitter: @loggly Kick the tires, sign up: loggly.com/ace Jim Nisbet CTO and VP of Engineering, Loggly Philip O’Toole Lead Developer, Infrastructure, Loggly