SlideShare a Scribd company logo
Azure SQL
Azure SQL
Volodymyr Trishyn
Azure SQL
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas
• SQL Server on non-virtualized
physical machines
• SQL Server in on-premises
virtualized machines (private
cloud)
• SQL Server in Azure Virtual
Machine (Microsoft public
cloud)
• Azure SQL Database (Microsoft
public cloud)
Evolution of Azure
SQL database
• On-Premises
• IaaS
• PaaS
Azure SQL
database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-portal
• SQL Database
• SQL Elastic database pool
• SQL Data Warehouse (Azure
Synapse Analytics)
Adjust performance and scale without downtime
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
Elastic pools to maximize resource utilization
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
Azure Synapse
Analytics
• Stores data into relational
tables with columnar storage.
• Leverages Massively Parallel
Processing (MPP) to quickly
run complex queries across
petabytes of data.
• SQL Azure Synapse Analytics as
a key component of a big data
solution.
• Import big data into Azure
Synapse Analytics with simple
PolyBase T-SQL queries.
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
Failover groups and active geo-replication.
Azure SQL Database auto-failover groups (in-preview) is a SQL Database feature designed to automatically
manage geo-replication relationship, connectivity, and failover at scale.
Because auto-failover groups involve multiple databases, they must be configured on the primary server.
Both primary and secondary servers must be in the same subscription.
Auto-failover groups support replication of all databases in the group to only one secondary server in a
different region.
Failover switches all secondary databases in the group to primary. After the database failover is completed,
the DNS record is automatically updated to redirect the end-points to the new region.
Active geo-replication, without auto-failover groups, allows up to four secondaries in any region.
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview
Geo-replication
• Locally redundant storage
• Zone-redundant storage
• Geo-redundant storage
• Read-access geo-redundant
storage
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview
Replication strategy
Replication
strategy LRS ZRS GRS RA-GRS
Data is replicated
across multiple
datacenters.
No Yes Yes Yes
Data can be read
from a secondary
location as well as
the primary location.
No No No Yes
Designed to
provide durability of
objects over a given
year.
at least
99.999999999% (11
9's)
at least
99.9999999999% (12
9's)
at least
99.99999999999999
% (16 9's)
at least
99.99999999999999
% (16 9's)
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
Distributed
transactions
Elastic database transactions for SQL
DB enable applications to make
atomic changes to data stored in
several different SQL Databases.
The preview focuses on client-side
development experiences in C# and
.NET.
A server-side experience using T-SQL
is planned for a later time.
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-transactions-overview
Transaction isolation level.
Standard Isolation Levels
• READ UNCOMMITTED
• READ COMMITTED (default)
• REPEATABLE READ
• SERIALIZABLE
Row Versioning-based Isolation Levels
• READ COMMITTED SNAPSHOT (database option READ_COMMITTED_SNAPSHOT in ON)
• SNAPSHOT (database option ALLOW_SNAPSHOT_ISOLATION in ON)
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
In-Memory technologies in SQL Database.
In-Memory technologies are available in all databases in the Premium tier, including databases in Premium
elastic pools.
• In-Memory OLTP increases throughput and reduces latency for transaction processing. High-throughput
transaction processing such as trading and gaming, data ingestion from events or IoT devices, caching, data
load, and temporary table and table variable scenarios.
• Clustered columnstore indexes reduce your storage footprint (up to 10 times) and improve performance
for reporting and analytics queries. You can use it with historical data in your operational database to
archive and be able to query up to 10 times more data.
• Nonclustered columnstore indexes for HTAP help you to gain real-time insights into your business through
querying the operational database directly, without the need to run an expensive extract, transform, and
load (ETL) process and wait for the Azure Synapse Analytics to be populated.
• You can also have the combination of a memory-optimized table with a columnstore index. This
combination enables you to perform very fast transaction processing, and to concurrently run analytics
queries very quickly on the same data.
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-in-memory
Transactions per second
Azure SQL Database is able to achieve 75,000 transactions per second (TPS) in a single database, which is an
11X performance improvement from using In-Memory OLTP, compared with traditional tables and stored
procedures.
Pricing tier TPS for In-Memory OLTP TPS for traditional tables Performance gain
P15 75,000 6,800 11X
P2 8,900 1,000 9X
Table Partitioning.
• Creating the Partition Function
• Creating the Partition Scheme
• Creating the Partitioned Table
CREATE PARTITION FUNCTION
PF_HASH_BY_VALUE (BIGINT) AS
RANGE LEFT
FOR VALUES (100000, 200000,
300000, 400000, 500000, 600000,
700000, 800000, 900000)
https://www.mssqltips.com/sqlservertip/3494/azure-sql-database--table-partitioning/
Materialized View
pattern.
Materialized views, which only
contain data required by a
query, allow applications to
quickly obtain the information
they need.
When the source data for the
view changes, the view must
be updated to include the new
information. You can schedule
this to happen automatically,
or when the system detects a
change to the original data.
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
Materialized Views vs Views.
Materialized Views
• Stores results not queries
• Requires Physical memory
• Auto updates (in MS SQL case)
• Execution time is less
Views
• Stores queries not data
• No physical memory required
• Auto Updates
• Execution time is more
Extensive monitoring and alerting capabilities
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
Scale out databases with the shard map manager
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-shard-map-management
The Lookup strategy
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
The Range strategy
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
The Hash strategy
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
Azure Synapse Analytics.
SQL Server, in this case the Parallel Azure Synapse Analytics appliance version is
tested and scales up to hundreds of Terabytes.
For anything that goes in the Petabytes, the solution is not only technical but
also architectural. You must plan for backup, disaster recovery, maintenance
etc.
Most likely the result will be that you need to distribute your data across
multiple systems to go into the petabyte range.
But it depends a lot on the specific workload.
MPP Architecture
components.
Azure Synapse Analytics
leverages a scale out
architecture to distribute
computational processing of
data across multiple nodes.
The unit of scale is an
abstraction of compute power
that is known as a Azure
Synapse Analytics unit.
Azure Synapse Analytics
separates compute from
storage which enables you as
the user to scale compute
independently of the data in
your system.
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
Hash-distributed
tables.
A hash distributed table can
deliver the highest query
performance for joins and
aggregations on large tables.
• Each row belongs to one
distribution.
• A deterministic hash
algorithm assigns each row
to one distribution.
• The number of table rows
per distribution varies as
shown by the different sizes
of tables.
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
Round-robin distributed tables.
A round-robin table is the simplest table to create and delivers fast performance when used as a staging table
for loads.
A round-robin distributed table distributes data evenly across the table but without any further optimization.
A distribution is first chosen at random and then buffers of rows are assigned to distributions sequentially.
It is quick to load data into a round-robin table, but query performance can often be better with hash
distributed tables.
Joins on round-robin tables require reshuffling data and this takes additional time.
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
Replicated
Tables.
A replicated table provides the
fastest query performance for
small tables.
A table that is replicated
caches a full copy of the table
on each compute node.
Consequently, replicating a
table removes the need to
transfer data among compute
nodes before a join or
aggregation.
Replicated tables are best
utilized with small tables.
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
Hub and spokes
for thousands of
BI users
Use the hub and spoke architecture
to achieve the scale you want, at
the price and performance level
you decide. This architecture also
provides resource isolation and
advanced security features.
https://azure.microsoft.com/en-us/services/sql-data-warehouse
Auto-scale Azure
Synapse
Analytics for
optimized usage
With Azure Functions, you can take
full advantage of the elasticity of
Azure Synapse Analytics by auto-
scaling, and optimize your cost.
https://azure.microsoft.com/en-us/services/sql-data-warehouse
Big-data
integration for
batch processing
of unstructured
data.
With Azure Data Factory, users
can easily integrate your on-
premises and cloud data
applications to your data
warehouse.
Customers can choose between
the leading open source
solution (HDInsight) or .Net
(Azure Data Lake) to process
unstructured data and load
terabytes of results to Azure
Synapse Analyticse using
PolyBase.
https://azure.microsoft.com/en-us/services/sql-data-warehouse
Load data from
Azure blob storage.
• Create external tables
• Load the data into your data
warehouse
• Create statistics on newly
loaded data
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/load-data-from-azure-blob-storage-using-polybase
?
Thank you!
Ad

More Related Content

What's hot (20)

Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
Grant Fritchey
 
Azure Data Lake and U-SQL
Azure Data Lake and U-SQLAzure Data Lake and U-SQL
Azure Data Lake and U-SQL
Michael Rys
 
Star schema my sql
Star schema   my sqlStar schema   my sql
Star schema my sql
deathsubte
 
MySQL conference 2010 ignite talk on InfiniDB
MySQL conference 2010 ignite talk on InfiniDBMySQL conference 2010 ignite talk on InfiniDB
MySQL conference 2010 ignite talk on InfiniDB
Calpont
 
Big Data: Big SQL and HBase
Big Data:  Big SQL and HBase Big Data:  Big SQL and HBase
Big Data: Big SQL and HBase
Cynthia Saracco
 
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. NielsenJ1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
MS Cloud Summit
 
Microsoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse OverviewMicrosoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse Overview
Justin Munsters
 
Gab document db scaling database
Gab   document db scaling databaseGab   document db scaling database
Gab document db scaling database
MUG Perú
 
Mysql For Developers
Mysql For DevelopersMysql For Developers
Mysql For Developers
Carol McDonald
 
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
ITCamp
 
Azure data lake sql konf 2016
Azure data lake   sql konf 2016Azure data lake   sql konf 2016
Azure data lake sql konf 2016
Kenneth Michael Nielsen
 
SQL Server In-Memory OLTP: What Every SQL Professional Should Know
SQL Server In-Memory OLTP: What Every SQL Professional Should KnowSQL Server In-Memory OLTP: What Every SQL Professional Should Know
SQL Server In-Memory OLTP: What Every SQL Professional Should Know
Bob Ward
 
Oracle 21c: New Features and Enhancements of Data Pump & TTS
Oracle 21c: New Features and Enhancements of Data Pump & TTSOracle 21c: New Features and Enhancements of Data Pump & TTS
Oracle 21c: New Features and Enhancements of Data Pump & TTS
Christian Gohmann
 
Get started with Microsoft SQL Polybase
Get started with Microsoft SQL PolybaseGet started with Microsoft SQL Polybase
Get started with Microsoft SQL Polybase
Henk van der Valk
 
Oracle 12.2 sharded database management
Oracle 12.2 sharded database managementOracle 12.2 sharded database management
Oracle 12.2 sharded database management
Leyi (Kamus) Zhang
 
In-memory ColumnStore Index
In-memory ColumnStore IndexIn-memory ColumnStore Index
In-memory ColumnStore Index
SolidQ
 
Let’s get to know Snowflake
Let’s get to know SnowflakeLet’s get to know Snowflake
Let’s get to know Snowflake
Knoldus Inc.
 
A short introduction to Vertica
A short introduction to VerticaA short introduction to Vertica
A short introduction to Vertica
Tommi Siivola
 
Overview of Postgres 9.5
Overview of Postgres 9.5 Overview of Postgres 9.5
Overview of Postgres 9.5
EDB
 
SQL Server database engine 2017 enhancements
SQL Server database engine 2017 enhancementsSQL Server database engine 2017 enhancements
SQL Server database engine 2017 enhancements
Gianluca Hotz
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
Grant Fritchey
 
Azure Data Lake and U-SQL
Azure Data Lake and U-SQLAzure Data Lake and U-SQL
Azure Data Lake and U-SQL
Michael Rys
 
Star schema my sql
Star schema   my sqlStar schema   my sql
Star schema my sql
deathsubte
 
MySQL conference 2010 ignite talk on InfiniDB
MySQL conference 2010 ignite talk on InfiniDBMySQL conference 2010 ignite talk on InfiniDB
MySQL conference 2010 ignite talk on InfiniDB
Calpont
 
Big Data: Big SQL and HBase
Big Data:  Big SQL and HBase Big Data:  Big SQL and HBase
Big Data: Big SQL and HBase
Cynthia Saracco
 
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. NielsenJ1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
MS Cloud Summit
 
Microsoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse OverviewMicrosoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse Overview
Justin Munsters
 
Gab document db scaling database
Gab   document db scaling databaseGab   document db scaling database
Gab document db scaling database
MUG Perú
 
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
Real Time Operational Analytics with Microsoft Sql Server 2016 [Liviu Ieran]
ITCamp
 
SQL Server In-Memory OLTP: What Every SQL Professional Should Know
SQL Server In-Memory OLTP: What Every SQL Professional Should KnowSQL Server In-Memory OLTP: What Every SQL Professional Should Know
SQL Server In-Memory OLTP: What Every SQL Professional Should Know
Bob Ward
 
Oracle 21c: New Features and Enhancements of Data Pump & TTS
Oracle 21c: New Features and Enhancements of Data Pump & TTSOracle 21c: New Features and Enhancements of Data Pump & TTS
Oracle 21c: New Features and Enhancements of Data Pump & TTS
Christian Gohmann
 
Get started with Microsoft SQL Polybase
Get started with Microsoft SQL PolybaseGet started with Microsoft SQL Polybase
Get started with Microsoft SQL Polybase
Henk van der Valk
 
Oracle 12.2 sharded database management
Oracle 12.2 sharded database managementOracle 12.2 sharded database management
Oracle 12.2 sharded database management
Leyi (Kamus) Zhang
 
In-memory ColumnStore Index
In-memory ColumnStore IndexIn-memory ColumnStore Index
In-memory ColumnStore Index
SolidQ
 
Let’s get to know Snowflake
Let’s get to know SnowflakeLet’s get to know Snowflake
Let’s get to know Snowflake
Knoldus Inc.
 
A short introduction to Vertica
A short introduction to VerticaA short introduction to Vertica
A short introduction to Vertica
Tommi Siivola
 
Overview of Postgres 9.5
Overview of Postgres 9.5 Overview of Postgres 9.5
Overview of Postgres 9.5
EDB
 
SQL Server database engine 2017 enhancements
SQL Server database engine 2017 enhancementsSQL Server database engine 2017 enhancements
SQL Server database engine 2017 enhancements
Gianluca Hotz
 

Similar to Azure SQL (20)

Scalable relational database with SQL Azure
Scalable relational database with SQL AzureScalable relational database with SQL Azure
Scalable relational database with SQL Azure
Shy Engelberg
 
AZURE Data Related Services
AZURE Data Related ServicesAZURE Data Related Services
AZURE Data Related Services
Ruslan Drahomeretskyy
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
Alessandro Melchiori
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Michael Noel
 
Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)
James Serra
 
Qubole - Big data in cloud
Qubole - Big data in cloudQubole - Big data in cloud
Qubole - Big data in cloud
Dmitry Tolpeko
 
Databricks_Pricingsssssssssssssssss.pptx
Databricks_Pricingsssssssssssssssss.pptxDatabricks_Pricingsssssssssssssssss.pptx
Databricks_Pricingsssssssssssssssss.pptx
Nguyễn Hải
 
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DBBuilding near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Timothy McAliley
 
Sql server 2016 Discovery Day
Sql server 2016 Discovery DaySql server 2016 Discovery Day
Sql server 2016 Discovery Day
Thomas Sykes
 
Cepta The Future of Data with Power BI
Cepta The Future of Data with Power BICepta The Future of Data with Power BI
Cepta The Future of Data with Power BI
Kellyn Pot'Vin-Gorman
 
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
A Tour of Azure SQL Databases  (NOVA SQL UG 2020)A Tour of Azure SQL Databases  (NOVA SQL UG 2020)
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
Timothy McAliley
 
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
Tobias Koprowski
 
Modernizing your database with SQL Server 2019
Modernizing your database with SQL Server 2019Modernizing your database with SQL Server 2019
Modernizing your database with SQL Server 2019
Antonios Chatzipavlis
 
Why you should(n't) run your databases in the cloud
Why you should(n't) run your databases in the cloudWhy you should(n't) run your databases in the cloud
Why you should(n't) run your databases in the cloud
Microsoft TechNet - Belgium and Luxembourg
 
autonomous-database-100.pdf
autonomous-database-100.pdfautonomous-database-100.pdf
autonomous-database-100.pdf
TrLuNguyn
 
VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld 2013: Virtualizing Databases: Doing IT Right VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld
 
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als DatenplattformRalph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Informatik Aktuell
 
London Redshift Meetup - July 2017
London Redshift Meetup - July 2017London Redshift Meetup - July 2017
London Redshift Meetup - July 2017
Pratim Das
 
Clustering van IT-componenten
Clustering van IT-componentenClustering van IT-componenten
Clustering van IT-componenten
Richard Claassens CIPPE
 
Scalable relational database with SQL Azure
Scalable relational database with SQL AzureScalable relational database with SQL Azure
Scalable relational database with SQL Azure
Shy Engelberg
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Ultimate SharePoint Infrastructure Best Practises Session - Isle of Man Share...
Michael Noel
 
Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)Azure Synapse Analytics Overview (r2)
Azure Synapse Analytics Overview (r2)
James Serra
 
Qubole - Big data in cloud
Qubole - Big data in cloudQubole - Big data in cloud
Qubole - Big data in cloud
Dmitry Tolpeko
 
Databricks_Pricingsssssssssssssssss.pptx
Databricks_Pricingsssssssssssssssss.pptxDatabricks_Pricingsssssssssssssssss.pptx
Databricks_Pricingsssssssssssssssss.pptx
Nguyễn Hải
 
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DBBuilding near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Building near real-time HTAP solutions using Synapse Link for Azure Cosmos DB
Timothy McAliley
 
Sql server 2016 Discovery Day
Sql server 2016 Discovery DaySql server 2016 Discovery Day
Sql server 2016 Discovery Day
Thomas Sykes
 
Cepta The Future of Data with Power BI
Cepta The Future of Data with Power BICepta The Future of Data with Power BI
Cepta The Future of Data with Power BI
Kellyn Pot'Vin-Gorman
 
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
A Tour of Azure SQL Databases  (NOVA SQL UG 2020)A Tour of Azure SQL Databases  (NOVA SQL UG 2020)
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
Timothy McAliley
 
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
44spotkaniePLSSUGWRO_CoNowegowKrainieChmur
Tobias Koprowski
 
Modernizing your database with SQL Server 2019
Modernizing your database with SQL Server 2019Modernizing your database with SQL Server 2019
Modernizing your database with SQL Server 2019
Antonios Chatzipavlis
 
autonomous-database-100.pdf
autonomous-database-100.pdfautonomous-database-100.pdf
autonomous-database-100.pdf
TrLuNguyn
 
VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld 2013: Virtualizing Databases: Doing IT Right VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld 2013: Virtualizing Databases: Doing IT Right
VMworld
 
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als DatenplattformRalph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Ralph Kemperdick – IT-Tage 2015 – Microsoft Azure als Datenplattform
Informatik Aktuell
 
London Redshift Meetup - July 2017
London Redshift Meetup - July 2017London Redshift Meetup - July 2017
London Redshift Meetup - July 2017
Pratim Das
 
Ad

More from GlobalLogic Ukraine (20)

GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic Ukraine
 
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Ukraine
 
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic Ukraine
 
Штучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptxШтучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptx
GlobalLogic Ukraine
 
Задачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptxЗадачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptx
GlobalLogic Ukraine
 
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptxЩо треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Ukraine
 
JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"
GlobalLogic Ukraine
 
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic Ukraine
 
Страх і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic EducationСтрах і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic Education
GlobalLogic Ukraine
 
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic Ukraine
 
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic Ukraine
 
“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?
GlobalLogic Ukraine
 
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Ukraine
 
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Ukraine
 
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic Ukraine
 
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic Ukraine
 
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Ukraine
 
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic Ukraine
 
Штучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptxШтучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptx
GlobalLogic Ukraine
 
Задачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptxЗадачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptx
GlobalLogic Ukraine
 
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptxЩо треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Ukraine
 
JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"
GlobalLogic Ukraine
 
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic Ukraine
 
Страх і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic EducationСтрах і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic Education
GlobalLogic Ukraine
 
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic Ukraine
 
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic Ukraine
 
“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?
GlobalLogic Ukraine
 
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Machine Learning Webinar “Advanced Statistical Methods for Linear...
GlobalLogic Ukraine
 
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Machine Learning Webinar “Statistical learning of linear regressi...
GlobalLogic Ukraine
 
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic Ukraine
 
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
GlobalLogic Ukraine
 
Ad

Recently uploaded (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 

Azure SQL

  • 3. Azure SQL https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas • SQL Server on non-virtualized physical machines • SQL Server in on-premises virtualized machines (private cloud) • SQL Server in Azure Virtual Machine (Microsoft public cloud) • Azure SQL Database (Microsoft public cloud)
  • 4. Evolution of Azure SQL database • On-Premises • IaaS • PaaS
  • 6. Adjust performance and scale without downtime https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
  • 7. Elastic pools to maximize resource utilization https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
  • 8. Azure Synapse Analytics • Stores data into relational tables with columnar storage. • Leverages Massively Parallel Processing (MPP) to quickly run complex queries across petabytes of data. • SQL Azure Synapse Analytics as a key component of a big data solution. • Import big data into Azure Synapse Analytics with simple PolyBase T-SQL queries. https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
  • 9. Failover groups and active geo-replication. Azure SQL Database auto-failover groups (in-preview) is a SQL Database feature designed to automatically manage geo-replication relationship, connectivity, and failover at scale. Because auto-failover groups involve multiple databases, they must be configured on the primary server. Both primary and secondary servers must be in the same subscription. Auto-failover groups support replication of all databases in the group to only one secondary server in a different region. Failover switches all secondary databases in the group to primary. After the database failover is completed, the DNS record is automatically updated to redirect the end-points to the new region. Active geo-replication, without auto-failover groups, allows up to four secondaries in any region. https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview
  • 10. Geo-replication • Locally redundant storage • Zone-redundant storage • Geo-redundant storage • Read-access geo-redundant storage https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview
  • 11. Replication strategy Replication strategy LRS ZRS GRS RA-GRS Data is replicated across multiple datacenters. No Yes Yes Yes Data can be read from a secondary location as well as the primary location. No No No Yes Designed to provide durability of objects over a given year. at least 99.999999999% (11 9's) at least 99.9999999999% (12 9's) at least 99.99999999999999 % (16 9's) at least 99.99999999999999 % (16 9's) https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
  • 12. Distributed transactions Elastic database transactions for SQL DB enable applications to make atomic changes to data stored in several different SQL Databases. The preview focuses on client-side development experiences in C# and .NET. A server-side experience using T-SQL is planned for a later time. https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-transactions-overview
  • 13. Transaction isolation level. Standard Isolation Levels • READ UNCOMMITTED • READ COMMITTED (default) • REPEATABLE READ • SERIALIZABLE Row Versioning-based Isolation Levels • READ COMMITTED SNAPSHOT (database option READ_COMMITTED_SNAPSHOT in ON) • SNAPSHOT (database option ALLOW_SNAPSHOT_ISOLATION in ON) https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
  • 14. In-Memory technologies in SQL Database. In-Memory technologies are available in all databases in the Premium tier, including databases in Premium elastic pools. • In-Memory OLTP increases throughput and reduces latency for transaction processing. High-throughput transaction processing such as trading and gaming, data ingestion from events or IoT devices, caching, data load, and temporary table and table variable scenarios. • Clustered columnstore indexes reduce your storage footprint (up to 10 times) and improve performance for reporting and analytics queries. You can use it with historical data in your operational database to archive and be able to query up to 10 times more data. • Nonclustered columnstore indexes for HTAP help you to gain real-time insights into your business through querying the operational database directly, without the need to run an expensive extract, transform, and load (ETL) process and wait for the Azure Synapse Analytics to be populated. • You can also have the combination of a memory-optimized table with a columnstore index. This combination enables you to perform very fast transaction processing, and to concurrently run analytics queries very quickly on the same data. https://docs.microsoft.com/en-us/azure/sql-database/sql-database-in-memory
  • 15. Transactions per second Azure SQL Database is able to achieve 75,000 transactions per second (TPS) in a single database, which is an 11X performance improvement from using In-Memory OLTP, compared with traditional tables and stored procedures. Pricing tier TPS for In-Memory OLTP TPS for traditional tables Performance gain P15 75,000 6,800 11X P2 8,900 1,000 9X
  • 16. Table Partitioning. • Creating the Partition Function • Creating the Partition Scheme • Creating the Partitioned Table CREATE PARTITION FUNCTION PF_HASH_BY_VALUE (BIGINT) AS RANGE LEFT FOR VALUES (100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000, 900000) https://www.mssqltips.com/sqlservertip/3494/azure-sql-database--table-partitioning/
  • 17. Materialized View pattern. Materialized views, which only contain data required by a query, allow applications to quickly obtain the information they need. When the source data for the view changes, the view must be updated to include the new information. You can schedule this to happen automatically, or when the system detects a change to the original data. https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
  • 18. Materialized Views vs Views. Materialized Views • Stores results not queries • Requires Physical memory • Auto updates (in MS SQL case) • Execution time is less Views • Stores queries not data • No physical memory required • Auto Updates • Execution time is more
  • 19. Extensive monitoring and alerting capabilities https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
  • 20. Scale out databases with the shard map manager https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-shard-map-management
  • 24. Azure Synapse Analytics. SQL Server, in this case the Parallel Azure Synapse Analytics appliance version is tested and scales up to hundreds of Terabytes. For anything that goes in the Petabytes, the solution is not only technical but also architectural. You must plan for backup, disaster recovery, maintenance etc. Most likely the result will be that you need to distribute your data across multiple systems to go into the petabyte range. But it depends a lot on the specific workload.
  • 25. MPP Architecture components. Azure Synapse Analytics leverages a scale out architecture to distribute computational processing of data across multiple nodes. The unit of scale is an abstraction of compute power that is known as a Azure Synapse Analytics unit. Azure Synapse Analytics separates compute from storage which enables you as the user to scale compute independently of the data in your system. https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
  • 26. Hash-distributed tables. A hash distributed table can deliver the highest query performance for joins and aggregations on large tables. • Each row belongs to one distribution. • A deterministic hash algorithm assigns each row to one distribution. • The number of table rows per distribution varies as shown by the different sizes of tables. https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
  • 27. Round-robin distributed tables. A round-robin table is the simplest table to create and delivers fast performance when used as a staging table for loads. A round-robin distributed table distributes data evenly across the table but without any further optimization. A distribution is first chosen at random and then buffers of rows are assigned to distributions sequentially. It is quick to load data into a round-robin table, but query performance can often be better with hash distributed tables. Joins on round-robin tables require reshuffling data and this takes additional time. https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
  • 28. Replicated Tables. A replicated table provides the fastest query performance for small tables. A table that is replicated caches a full copy of the table on each compute node. Consequently, replicating a table removes the need to transfer data among compute nodes before a join or aggregation. Replicated tables are best utilized with small tables. https://docs.microsoft.com/en-us/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
  • 29. Hub and spokes for thousands of BI users Use the hub and spoke architecture to achieve the scale you want, at the price and performance level you decide. This architecture also provides resource isolation and advanced security features. https://azure.microsoft.com/en-us/services/sql-data-warehouse
  • 30. Auto-scale Azure Synapse Analytics for optimized usage With Azure Functions, you can take full advantage of the elasticity of Azure Synapse Analytics by auto- scaling, and optimize your cost. https://azure.microsoft.com/en-us/services/sql-data-warehouse
  • 31. Big-data integration for batch processing of unstructured data. With Azure Data Factory, users can easily integrate your on- premises and cloud data applications to your data warehouse. Customers can choose between the leading open source solution (HDInsight) or .Net (Azure Data Lake) to process unstructured data and load terabytes of results to Azure Synapse Analyticse using PolyBase. https://azure.microsoft.com/en-us/services/sql-data-warehouse
  • 32. Load data from Azure blob storage. • Create external tables • Load the data into your data warehouse • Create statistics on newly loaded data https://docs.microsoft.com/en-us/azure/sql-data-warehouse/load-data-from-azure-blob-storage-using-polybase
  • 33. ?