SlideShare a Scribd company logo
AzureDay North Poland
Gdynia 2016
Introduction to Big Data
Analytics?
Łukasz Grala | Senior Architect
Łukasz Grala
• Senior architekt rozwiązań Platformy Danych & Business Intelligence & Zaawansowanej Analityki w TIDK
• Twórca „Data Scientist as as Service”
• Certyfikowany trener Microsoft i wykładowca na wyższych uczelniach
• Autor zaawansowanych szkoleń i warsztatów, oraz licznych publikacji i webcastów
• Od 2010 roku wyróżniany nagrodą Microsoft Data Platform MVP
• Doktorant Politechnika Poznańska – Wydział Informatyki (obszar bazy danych, eksploracja danych, uczenie maszynowe)
• Prelegent na licznych konferencjach w kraju i na świecie
• Posiada liczne certyfikaty (MCT, MCSE, MCSA, MCITP,…)
• Członek Polskiego Towarzystwa Informatycznego
• Członek i lider Polish SQL Server User Group (PLSSUG)
• Pasjonat analizy, przechowywania i przetwarzania danych, miłośnik Jazzu
email lukasz@tidk.pl
Data
• 72 hours of video are uploaded per minute on YouTube (1
terabyte every 4 minutes)
• 500 terabytes of new data per day are ingested in Facebook
databases
• Sensors from a Boeing jet engine create 20 terabytes
of data every hour
• The proposed Square Kilometer Array telescope will generate “a
few Exabytes of data per day” (single beam)
Big Data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
4V
Volume Variety Velocity Veracity
• Validity
• Value
• Variability
• Venue
• Vocabulary
• Vagueness
Internet Of Things
New Modern BI Solution
ETL Tool
(SSIS, etc) EDW
(SQL Server, Teradata, etc)
Extract
Original Data
Load
Transformed
Data
Transform
BI Tools
Ingest (EL)
Original Data
Scale-out
Storage &
Compute
(HDFS, Blob Storage,
etc)
Transform & Load
Data Marts
Data Lake(s)
Dashboards
Apps
Streaming data
Time
Big Data
Storage
Processing
and
Analytics
Visualization
Visualization
Reports & Mobil Reports
Storage
Blob
SQL Database & SQL Data Warehouse
DocumentDB
HDInsight
Azure Data Lake Store
Azure Blob Storage
• Blob Storage
• Table Storage
• Queue Storage
• File Storage
SQL Database
& SQL Data Warehouse
SQL Database
& SQL Data Warehouse
DocumentDB
Analytics
Azure HDInsight
Azure Data Lake Analytics
Azure Stream Analytics
Azure Machine Learning
Azure Cognitive Services
Azure Data Lake
WebHDFS
YARN
U-SQL
Analytics Service HDInsight
(managed Hadoop Clusters)
Analytics
Store
Why Machine Learning
Analytics
Storage
HDInsight
(“managed clusters”)
Azure Data Lake Analytics
Azure Data Lake Storage
HDInsight
• HDInsight is a Hadoop-based service that brings 100% Apache
Hadoop solution running on the Microsoft Azure platform
• Based on the Hortonworks Data Platform (HDP)
• Scalable, on-demand service
HDInsight
Why Machine Learning
HDInsight & SQL Server
Query relational
and non-relational
data, on-premises
and in Azure
Apps
T-SQL query
SQL Server Hadoop
Azure Stream Analytics
Point of
Service Devices
Self Checkout
Stations
Kiosks
Smart
Phones
Slates/
Tablets
PCs/
Laptops
Servers
Digital
Signs
Diagnostic
EquipmentRemote Medical
Monitors
Logic
Controllers
Specialized
DevicesThin
Clients
Handhelds
Security
POS
Terminals
Automation
Devices
Vending
Machines
Kinect
ATM
Canonical Event-driven Scenario
Advanced Analytics
• Language R and Python
• Microsoft R Open, Microsoft R Server, R Services, CARN R,
Revolution
• Mahout
• SparkR
• MLLib
• Azure Machine Learning
• Azure Cognitive Services Models/API
Traditional Data Mining vs Big Data
Analysis
Traditional Big Data analysis
Memory access Data is stored in centralized RAM and
can be efficiently scanned several times
Data be stored on high distributed data
sources
In case of huge, continuous data
streams, data is accessed only in single
scan
Computional processing and
architectures
Serial, centralized processing
A single-computer platform that scales
with better hardware is sufficient
Parallel and distributed architectures
may be necessary
Cluster platforms that scale with several
nodes may be necessary
Data Types Data source is relatively homogeneous
Data is static and of resonable size
Data come from multiple data sources
which may be heterogeneous and
complex
Data may be dynamic and evolving.
Adapting to data changes may be
necessary
Traditional Data Mining vs Big Data
Analysis
Traditional Big Data analysis
Data management Data format is simple and fits in
relational database or data warehouse
Data access time is not critical
Data format are usually diverse and may
not fit in a relational database.
Data may be greatly interconnected and
needs to be integreted from several
nodes
Often special data systems are required
that manage varied data formats
(NoSQL, Databases, HADOOP,…)
Data acess time is critical for scalability
and speed
Data quality The provenance and pre-processing
steps are relatively well documented
Strong correction techniques were
applied
Data is relatively well tagged and
labeled
The provenance and pre-processing
steps may be unclear and
undocumented
There is a large amount of uncertainly
and imprecision in the data
Only small numer of data are tagged and
labeled
Traditional Data Mining vs Big Data
Analysis
Traditional Big Data analysis
Data processing Only batch learning is necessary
Learning can be slow and off-line
Data fits into memory
All the data has some sort of utility
Data may arrive in a stream and need
processed continuously
Learning need to be fast and online
The scalability of algorithms is important
Data not fit in memory
Azure Machine Learning
Cognitive Services
Question?
lukasz@tidk.pl
Ad

More Related Content

What's hot (20)

Lean Data Lineage
Lean Data LineageLean Data Lineage
Lean Data Lineage
Data to Value Ltd
 
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databases
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databasesGive sense to your Big Data w/ Apache TinkerPop™ & property graph databases
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databases
DataStax
 
Necessity of Data Lakes in the Financial Services Sector
Necessity of Data Lakes in the Financial Services SectorNecessity of Data Lakes in the Financial Services Sector
Necessity of Data Lakes in the Financial Services Sector
DataWorks Summit
 
Pentaho Analytics on MongoDB
Pentaho Analytics on MongoDBPentaho Analytics on MongoDB
Pentaho Analytics on MongoDB
Mark Kromer
 
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
MongoDB
 
Data Preparation of Data Science
Data Preparation of Data ScienceData Preparation of Data Science
Data Preparation of Data Science
DataWorks Summit/Hadoop Summit
 
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
DataStax
 
3 Reasons Data Virtualization Matters in Your Portfolio
3 Reasons Data Virtualization Matters in Your Portfolio3 Reasons Data Virtualization Matters in Your Portfolio
3 Reasons Data Virtualization Matters in Your Portfolio
Denodo
 
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
South Tyrol Free Software Conference
 
Introduction to BIG DATA
Introduction to BIG DATA Introduction to BIG DATA
Introduction to BIG DATA
Zeeshan Khan
 
Callcenter HPE IDOL overview
Callcenter HPE IDOL overviewCallcenter HPE IDOL overview
Callcenter HPE IDOL overview
Tania Akinina
 
Дмитрий Попович "How to build a data warehouse?"
Дмитрий Попович "How to build a data warehouse?"Дмитрий Попович "How to build a data warehouse?"
Дмитрий Попович "How to build a data warehouse?"
Fwdays
 
Rethink Analytics with an Enterprise Data Hub
Rethink Analytics with an Enterprise Data HubRethink Analytics with an Enterprise Data Hub
Rethink Analytics with an Enterprise Data Hub
Cloudera, Inc.
 
Big Data Use Cases
Big Data Use CasesBig Data Use Cases
Big Data Use Cases
InSemble
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture OpportunityThe Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
Denodo
 
Machine Learning in the Data Science Context
Machine Learning in the Data Science ContextMachine Learning in the Data Science Context
Machine Learning in the Data Science Context
sisira samarasinghe
 
Business Innovations Through Big Data Analytics - 30th November 2017
Business Innovations Through Big Data Analytics - 30th November 2017Business Innovations Through Big Data Analytics - 30th November 2017
Business Innovations Through Big Data Analytics - 30th November 2017
sisira samarasinghe
 
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
Codemotion
 
Digikrit Company Profile
Digikrit Company ProfileDigikrit Company Profile
Digikrit Company Profile
Digikrit
 
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databases
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databasesGive sense to your Big Data w/ Apache TinkerPop™ & property graph databases
Give sense to your Big Data w/ Apache TinkerPop™ & property graph databases
DataStax
 
Necessity of Data Lakes in the Financial Services Sector
Necessity of Data Lakes in the Financial Services SectorNecessity of Data Lakes in the Financial Services Sector
Necessity of Data Lakes in the Financial Services Sector
DataWorks Summit
 
Pentaho Analytics on MongoDB
Pentaho Analytics on MongoDBPentaho Analytics on MongoDB
Pentaho Analytics on MongoDB
Mark Kromer
 
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
Advanced Reporting and ETL for MongoDB: Easily Build a 360-Degree View of You...
MongoDB
 
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
Webinar: Proofpoint, a pioneer in security-as-a-service protects people, info...
DataStax
 
3 Reasons Data Virtualization Matters in Your Portfolio
3 Reasons Data Virtualization Matters in Your Portfolio3 Reasons Data Virtualization Matters in Your Portfolio
3 Reasons Data Virtualization Matters in Your Portfolio
Denodo
 
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
SFScon19 - Grazia Cazzin - KNOWAGE the open source answer to the new needs in...
South Tyrol Free Software Conference
 
Introduction to BIG DATA
Introduction to BIG DATA Introduction to BIG DATA
Introduction to BIG DATA
Zeeshan Khan
 
Callcenter HPE IDOL overview
Callcenter HPE IDOL overviewCallcenter HPE IDOL overview
Callcenter HPE IDOL overview
Tania Akinina
 
Дмитрий Попович "How to build a data warehouse?"
Дмитрий Попович "How to build a data warehouse?"Дмитрий Попович "How to build a data warehouse?"
Дмитрий Попович "How to build a data warehouse?"
Fwdays
 
Rethink Analytics with an Enterprise Data Hub
Rethink Analytics with an Enterprise Data HubRethink Analytics with an Enterprise Data Hub
Rethink Analytics with an Enterprise Data Hub
Cloudera, Inc.
 
Big Data Use Cases
Big Data Use CasesBig Data Use Cases
Big Data Use Cases
InSemble
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture OpportunityThe Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
Denodo
 
Machine Learning in the Data Science Context
Machine Learning in the Data Science ContextMachine Learning in the Data Science Context
Machine Learning in the Data Science Context
sisira samarasinghe
 
Business Innovations Through Big Data Analytics - 30th November 2017
Business Innovations Through Big Data Analytics - 30th November 2017Business Innovations Through Big Data Analytics - 30th November 2017
Business Innovations Through Big Data Analytics - 30th November 2017
sisira samarasinghe
 
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
[Keynote HP] Guido Pezzin - Big Data - from theory to practice with the simpl...
Codemotion
 
Digikrit Company Profile
Digikrit Company ProfileDigikrit Company Profile
Digikrit Company Profile
Digikrit
 

Viewers also liked (20)

On Big Data Analytics - opportunities and challenges
On Big Data Analytics - opportunities and challengesOn Big Data Analytics - opportunities and challenges
On Big Data Analytics - opportunities and challenges
Petteri Alahuhta
 
Introduction to Data Mining and Big Data Analytics
Introduction to Data Mining and Big Data AnalyticsIntroduction to Data Mining and Big Data Analytics
Introduction to Data Mining and Big Data Analytics
Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
 
Big-data analytics: challenges and opportunities
Big-data analytics: challenges and opportunitiesBig-data analytics: challenges and opportunities
Big-data analytics: challenges and opportunities
台灣資料科學年會
 
Getting started with Scrum
Getting started with ScrumGetting started with Scrum
Getting started with Scrum
Tecsisa
 
Agile Data Warehousing
Agile Data WarehousingAgile Data Warehousing
Agile Data Warehousing
Davide Mauri
 
Introduction to Big Data & Analytics
Introduction to Big Data & AnalyticsIntroduction to Big Data & Analytics
Introduction to Big Data & Analytics
Prasad Chitta
 
Building Your Big Data Analytics Strategy- Impetus Webinar
Building Your Big Data Analytics Strategy- Impetus WebinarBuilding Your Big Data Analytics Strategy- Impetus Webinar
Building Your Big Data Analytics Strategy- Impetus Webinar
Impetus Technologies
 
Agile data warehouse
Agile data warehouseAgile data warehouse
Agile data warehouse
Dao Vo
 
Data Mining- Big Data landscape
Data Mining- Big Data landscapeData Mining- Big Data landscape
Data Mining- Big Data landscape
Frank Luong PMP,MBA
 
Bancos colombia
Bancos colombiaBancos colombia
Bancos colombia
ivanhhh
 
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Lauri Eloranta
 
Agile Data Warehouse Design for Big Data Presentation
Agile Data Warehouse Design for Big Data PresentationAgile Data Warehouse Design for Big Data Presentation
Agile Data Warehouse Design for Big Data Presentation
Vishal Kumar
 
Modern business intelligence
Modern business intelligenceModern business intelligence
Modern business intelligence
Michael Stephenson
 
Big Data Startups - Top Visualization and Data Analytics Startups
Big Data Startups - Top Visualization and Data Analytics StartupsBig Data Startups - Top Visualization and Data Analytics Startups
Big Data Startups - Top Visualization and Data Analytics Startups
wallesplace
 
Preprocessing with RapidMiner Studio 6
Preprocessing with RapidMiner Studio 6Preprocessing with RapidMiner Studio 6
Preprocessing with RapidMiner Studio 6
Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
 
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Em Campbell-Pretty
 
Big Data
Big DataBig Data
Big Data
NGDATA
 
Big Data v Data Mining
Big Data v Data MiningBig Data v Data Mining
Big Data v Data Mining
University of Hertfordshire
 
Big data ppt
Big  data pptBig  data ppt
Big data ppt
Nasrin Hussain
 
Introduction of Cloud computing
Introduction of Cloud computingIntroduction of Cloud computing
Introduction of Cloud computing
Rkrishna Mishra
 
On Big Data Analytics - opportunities and challenges
On Big Data Analytics - opportunities and challengesOn Big Data Analytics - opportunities and challenges
On Big Data Analytics - opportunities and challenges
Petteri Alahuhta
 
Big-data analytics: challenges and opportunities
Big-data analytics: challenges and opportunitiesBig-data analytics: challenges and opportunities
Big-data analytics: challenges and opportunities
台灣資料科學年會
 
Getting started with Scrum
Getting started with ScrumGetting started with Scrum
Getting started with Scrum
Tecsisa
 
Agile Data Warehousing
Agile Data WarehousingAgile Data Warehousing
Agile Data Warehousing
Davide Mauri
 
Introduction to Big Data & Analytics
Introduction to Big Data & AnalyticsIntroduction to Big Data & Analytics
Introduction to Big Data & Analytics
Prasad Chitta
 
Building Your Big Data Analytics Strategy- Impetus Webinar
Building Your Big Data Analytics Strategy- Impetus WebinarBuilding Your Big Data Analytics Strategy- Impetus Webinar
Building Your Big Data Analytics Strategy- Impetus Webinar
Impetus Technologies
 
Agile data warehouse
Agile data warehouseAgile data warehouse
Agile data warehouse
Dao Vo
 
Bancos colombia
Bancos colombiaBancos colombia
Bancos colombia
ivanhhh
 
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Big Data and Data Mining - Lecture 3 in Introduction to Computational Social ...
Lauri Eloranta
 
Agile Data Warehouse Design for Big Data Presentation
Agile Data Warehouse Design for Big Data PresentationAgile Data Warehouse Design for Big Data Presentation
Agile Data Warehouse Design for Big Data Presentation
Vishal Kumar
 
Big Data Startups - Top Visualization and Data Analytics Startups
Big Data Startups - Top Visualization and Data Analytics StartupsBig Data Startups - Top Visualization and Data Analytics Startups
Big Data Startups - Top Visualization and Data Analytics Startups
wallesplace
 
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Agile Data Warehousing at Telstra, TDWI Melbourne, October 2013
Em Campbell-Pretty
 
Big Data
Big DataBig Data
Big Data
NGDATA
 
Introduction of Cloud computing
Introduction of Cloud computingIntroduction of Cloud computing
Introduction of Cloud computing
Rkrishna Mishra
 
Ad

Similar to AzureDay - Introduction Big Data Analytics. (20)

Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?
James Serra
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
Databricks
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
ADV Slides: Building and Growing Organizational Analytics with Data Lakes
ADV Slides: Building and Growing Organizational Analytics with Data LakesADV Slides: Building and Growing Organizational Analytics with Data Lakes
ADV Slides: Building and Growing Organizational Analytics with Data Lakes
DATAVERSITY
 
Building Data Warehouse in SQL Server
Building Data Warehouse in SQL ServerBuilding Data Warehouse in SQL Server
Building Data Warehouse in SQL Server
Antonios Chatzipavlis
 
Prague data management meetup 2018-03-27
Prague data management meetup 2018-03-27Prague data management meetup 2018-03-27
Prague data management meetup 2018-03-27
Martin Bém
 
The Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They NeedThe Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They Need
Dunn Solutions Group
 
Transform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big DataTransform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big Data
Ashnikbiz
 
Dw 07032018-dr pl pradhan
Dw 07032018-dr pl pradhanDw 07032018-dr pl pradhan
Dw 07032018-dr pl pradhan
Dr Pradhan PL Pradhan
 
BD_Architecture and Charateristics.pptx.pdf
BD_Architecture and Charateristics.pptx.pdfBD_Architecture and Charateristics.pptx.pdf
BD_Architecture and Charateristics.pptx.pdf
eramfatima43
 
Skilwise Big data
Skilwise Big dataSkilwise Big data
Skilwise Big data
Skillwise Group
 
Hadoop meets Agile! - An Agile Big Data Model
Hadoop meets Agile! - An Agile Big Data ModelHadoop meets Agile! - An Agile Big Data Model
Hadoop meets Agile! - An Agile Big Data Model
Uwe Printz
 
Skillwise Big Data part 2
Skillwise Big Data part 2Skillwise Big Data part 2
Skillwise Big Data part 2
Skillwise Group
 
4070949. 89-Test-12-File.pdf
4070949.             89-Test-12-File.pdf4070949.             89-Test-12-File.pdf
4070949. 89-Test-12-File.pdf
raypoll198
 
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid WarehouseUsing the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Rizaldy Ignacio
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
James Serra
 
Best practices to deliver data analytics to the business with power bi
Best practices to deliver data analytics to the business with power biBest practices to deliver data analytics to the business with power bi
Best practices to deliver data analytics to the business with power bi
Satya Shyam K Jayanty
 
Data Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptxData Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptx
Priyadarshini648418
 
Meta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinarMeta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinar
Michael Hiskey
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?
James Serra
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
Databricks
 
Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)Data Lakehouse, Data Mesh, and Data Fabric (r2)
Data Lakehouse, Data Mesh, and Data Fabric (r2)
James Serra
 
ADV Slides: Building and Growing Organizational Analytics with Data Lakes
ADV Slides: Building and Growing Organizational Analytics with Data LakesADV Slides: Building and Growing Organizational Analytics with Data Lakes
ADV Slides: Building and Growing Organizational Analytics with Data Lakes
DATAVERSITY
 
Building Data Warehouse in SQL Server
Building Data Warehouse in SQL ServerBuilding Data Warehouse in SQL Server
Building Data Warehouse in SQL Server
Antonios Chatzipavlis
 
Prague data management meetup 2018-03-27
Prague data management meetup 2018-03-27Prague data management meetup 2018-03-27
Prague data management meetup 2018-03-27
Martin Bém
 
The Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They NeedThe Data Lake and Getting Buisnesses the Big Data Insights They Need
The Data Lake and Getting Buisnesses the Big Data Insights They Need
Dunn Solutions Group
 
Transform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big DataTransform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big Data
Ashnikbiz
 
BD_Architecture and Charateristics.pptx.pdf
BD_Architecture and Charateristics.pptx.pdfBD_Architecture and Charateristics.pptx.pdf
BD_Architecture and Charateristics.pptx.pdf
eramfatima43
 
Hadoop meets Agile! - An Agile Big Data Model
Hadoop meets Agile! - An Agile Big Data ModelHadoop meets Agile! - An Agile Big Data Model
Hadoop meets Agile! - An Agile Big Data Model
Uwe Printz
 
Skillwise Big Data part 2
Skillwise Big Data part 2Skillwise Big Data part 2
Skillwise Big Data part 2
Skillwise Group
 
4070949. 89-Test-12-File.pdf
4070949.             89-Test-12-File.pdf4070949.             89-Test-12-File.pdf
4070949. 89-Test-12-File.pdf
raypoll198
 
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid WarehouseUsing the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Rizaldy Ignacio
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
James Serra
 
Best practices to deliver data analytics to the business with power bi
Best practices to deliver data analytics to the business with power biBest practices to deliver data analytics to the business with power bi
Best practices to deliver data analytics to the business with power bi
Satya Shyam K Jayanty
 
Data Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptxData Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptx
Priyadarshini648418
 
Meta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinarMeta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinar
Michael Hiskey
 
Ad

More from Łukasz Grala (20)

Cognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from MicrosoftCognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from Microsoft
Łukasz Grala
 
DataMass Summit - Machine Learning for Big Data in SQL Server
DataMass Summit - Machine Learning for Big Data  in SQL ServerDataMass Summit - Machine Learning for Big Data  in SQL Server
DataMass Summit - Machine Learning for Big Data in SQL Server
Łukasz Grala
 
WhyR? Analiza sentymentu
WhyR? Analiza sentymentuWhyR? Analiza sentymentu
WhyR? Analiza sentymentu
Łukasz Grala
 
Microsoft ML - State of The Art Microsoft Machine Learning - Package R
Microsoft ML - State of The Art Microsoft Machine Learning - Package RMicrosoft ML - State of The Art Microsoft Machine Learning - Package R
Microsoft ML - State of The Art Microsoft Machine Learning - Package R
Łukasz Grala
 
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
Łukasz Grala
 
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsightAnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
Łukasz Grala
 
eRum2016 -RevoScaleR - Performance and Scalability R
eRum2016 -RevoScaleR - Performance and Scalability ReRum2016 -RevoScaleR - Performance and Scalability R
eRum2016 -RevoScaleR - Performance and Scalability R
Łukasz Grala
 
AzureDay - What is Machine Learnin?
AzureDay - What is Machine Learnin?AzureDay - What is Machine Learnin?
AzureDay - What is Machine Learnin?
Łukasz Grala
 
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
Łukasz Grala
 
3 CityNetConf - sql+c#=u-sql
3 CityNetConf - sql+c#=u-sql3 CityNetConf - sql+c#=u-sql
3 CityNetConf - sql+c#=u-sql
Łukasz Grala
 
20060416 Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
20060416   Azure Boot Camp 2016- Azure Data Lake Storage and Analytics20060416   Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
20060416 Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
Łukasz Grala
 
20160405 Cloud Community Poznań - Cloud Analytics on Azure
20160405  Cloud Community Poznań - Cloud Analytics on Azure20160405  Cloud Community Poznań - Cloud Analytics on Azure
20160405 Cloud Community Poznań - Cloud Analytics on Azure
Łukasz Grala
 
20160309 AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
20160309   AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning20160309   AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
20160309 AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
Łukasz Grala
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
20160316 techstolica - cloudstorage -tidk
20160316  techstolica - cloudstorage -tidk20160316  techstolica - cloudstorage -tidk
20160316 techstolica - cloudstorage -tidk
Łukasz Grala
 
20160316 techstolica - cloudanalytics -tidk
20160316  techstolica - cloudanalytics -tidk20160316  techstolica - cloudanalytics -tidk
20160316 techstolica - cloudanalytics -tidk
Łukasz Grala
 
Prescriptive Analytics
Prescriptive AnalyticsPrescriptive Analytics
Prescriptive Analytics
Łukasz Grala
 
DAC4B 2015 - Polybase
DAC4B 2015 - PolybaseDAC4B 2015 - Polybase
DAC4B 2015 - Polybase
Łukasz Grala
 
Expert summit SQL Server 2016
Expert summit   SQL Server 2016Expert summit   SQL Server 2016
Expert summit SQL Server 2016
Łukasz Grala
 
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Łukasz Grala
 
Cognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from MicrosoftCognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from Microsoft
Łukasz Grala
 
DataMass Summit - Machine Learning for Big Data in SQL Server
DataMass Summit - Machine Learning for Big Data  in SQL ServerDataMass Summit - Machine Learning for Big Data  in SQL Server
DataMass Summit - Machine Learning for Big Data in SQL Server
Łukasz Grala
 
WhyR? Analiza sentymentu
WhyR? Analiza sentymentuWhyR? Analiza sentymentu
WhyR? Analiza sentymentu
Łukasz Grala
 
Microsoft ML - State of The Art Microsoft Machine Learning - Package R
Microsoft ML - State of The Art Microsoft Machine Learning - Package RMicrosoft ML - State of The Art Microsoft Machine Learning - Package R
Microsoft ML - State of The Art Microsoft Machine Learning - Package R
Łukasz Grala
 
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
AnalyticsConf2016 - Innowacyjność poprzez inteligentną analizę informacji - C...
Łukasz Grala
 
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsightAnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
AnalyticsConf2016 - Zaawansowana analityka na platformie Azure HDInsight
Łukasz Grala
 
eRum2016 -RevoScaleR - Performance and Scalability R
eRum2016 -RevoScaleR - Performance and Scalability ReRum2016 -RevoScaleR - Performance and Scalability R
eRum2016 -RevoScaleR - Performance and Scalability R
Łukasz Grala
 
AzureDay - What is Machine Learnin?
AzureDay - What is Machine Learnin?AzureDay - What is Machine Learnin?
AzureDay - What is Machine Learnin?
Łukasz Grala
 
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
Łukasz Grala
 
3 CityNetConf - sql+c#=u-sql
3 CityNetConf - sql+c#=u-sql3 CityNetConf - sql+c#=u-sql
3 CityNetConf - sql+c#=u-sql
Łukasz Grala
 
20060416 Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
20060416   Azure Boot Camp 2016- Azure Data Lake Storage and Analytics20060416   Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
20060416 Azure Boot Camp 2016- Azure Data Lake Storage and Analytics
Łukasz Grala
 
20160405 Cloud Community Poznań - Cloud Analytics on Azure
20160405  Cloud Community Poznań - Cloud Analytics on Azure20160405  Cloud Community Poznań - Cloud Analytics on Azure
20160405 Cloud Community Poznań - Cloud Analytics on Azure
Łukasz Grala
 
20160309 AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
20160309   AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning20160309   AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
20160309 AzureDay 2016 - Azure Stream Analytics & Azure Machine Learning
Łukasz Grala
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
20160316 techstolica - cloudstorage -tidk
20160316  techstolica - cloudstorage -tidk20160316  techstolica - cloudstorage -tidk
20160316 techstolica - cloudstorage -tidk
Łukasz Grala
 
20160316 techstolica - cloudanalytics -tidk
20160316  techstolica - cloudanalytics -tidk20160316  techstolica - cloudanalytics -tidk
20160316 techstolica - cloudanalytics -tidk
Łukasz Grala
 
Prescriptive Analytics
Prescriptive AnalyticsPrescriptive Analytics
Prescriptive Analytics
Łukasz Grala
 
DAC4B 2015 - Polybase
DAC4B 2015 - PolybaseDAC4B 2015 - Polybase
DAC4B 2015 - Polybase
Łukasz Grala
 
Expert summit SQL Server 2016
Expert summit   SQL Server 2016Expert summit   SQL Server 2016
Expert summit SQL Server 2016
Łukasz Grala
 
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Nowy SQL Server 2012 – DENALI rewolucją w silnikach baz danych - Microsoft te...
Łukasz Grala
 

Recently uploaded (20)

Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 

AzureDay - Introduction Big Data Analytics.

  • 2. Introduction to Big Data Analytics? Łukasz Grala | Senior Architect
  • 3. Łukasz Grala • Senior architekt rozwiązań Platformy Danych & Business Intelligence & Zaawansowanej Analityki w TIDK • Twórca „Data Scientist as as Service” • Certyfikowany trener Microsoft i wykładowca na wyższych uczelniach • Autor zaawansowanych szkoleń i warsztatów, oraz licznych publikacji i webcastów • Od 2010 roku wyróżniany nagrodą Microsoft Data Platform MVP • Doktorant Politechnika Poznańska – Wydział Informatyki (obszar bazy danych, eksploracja danych, uczenie maszynowe) • Prelegent na licznych konferencjach w kraju i na świecie • Posiada liczne certyfikaty (MCT, MCSE, MCSA, MCITP,…) • Członek Polskiego Towarzystwa Informatycznego • Członek i lider Polish SQL Server User Group (PLSSUG) • Pasjonat analizy, przechowywania i przetwarzania danych, miłośnik Jazzu email [email protected]
  • 4. Data • 72 hours of video are uploaded per minute on YouTube (1 terabyte every 4 minutes) • 500 terabytes of new data per day are ingested in Facebook databases • Sensors from a Boeing jet engine create 20 terabytes of data every hour • The proposed Square Kilometer Array telescope will generate “a few Exabytes of data per day” (single beam)
  • 6. 4V Volume Variety Velocity Veracity • Validity • Value • Variability • Venue • Vocabulary • Vagueness
  • 8. New Modern BI Solution ETL Tool (SSIS, etc) EDW (SQL Server, Teradata, etc) Extract Original Data Load Transformed Data Transform BI Tools Ingest (EL) Original Data Scale-out Storage & Compute (HDFS, Blob Storage, etc) Transform & Load Data Marts Data Lake(s) Dashboards Apps Streaming data
  • 12. Reports & Mobil Reports
  • 13. Storage Blob SQL Database & SQL Data Warehouse DocumentDB HDInsight Azure Data Lake Store
  • 14. Azure Blob Storage • Blob Storage • Table Storage • Queue Storage • File Storage
  • 15. SQL Database & SQL Data Warehouse
  • 16. SQL Database & SQL Data Warehouse
  • 18. Analytics Azure HDInsight Azure Data Lake Analytics Azure Stream Analytics Azure Machine Learning Azure Cognitive Services
  • 19. Azure Data Lake WebHDFS YARN U-SQL Analytics Service HDInsight (managed Hadoop Clusters) Analytics Store
  • 20. Why Machine Learning Analytics Storage HDInsight (“managed clusters”) Azure Data Lake Analytics Azure Data Lake Storage
  • 21. HDInsight • HDInsight is a Hadoop-based service that brings 100% Apache Hadoop solution running on the Microsoft Azure platform • Based on the Hortonworks Data Platform (HDP) • Scalable, on-demand service
  • 24. HDInsight & SQL Server Query relational and non-relational data, on-premises and in Azure Apps T-SQL query SQL Server Hadoop
  • 25. Azure Stream Analytics Point of Service Devices Self Checkout Stations Kiosks Smart Phones Slates/ Tablets PCs/ Laptops Servers Digital Signs Diagnostic EquipmentRemote Medical Monitors Logic Controllers Specialized DevicesThin Clients Handhelds Security POS Terminals Automation Devices Vending Machines Kinect ATM
  • 27. Advanced Analytics • Language R and Python • Microsoft R Open, Microsoft R Server, R Services, CARN R, Revolution • Mahout • SparkR • MLLib • Azure Machine Learning • Azure Cognitive Services Models/API
  • 28. Traditional Data Mining vs Big Data Analysis Traditional Big Data analysis Memory access Data is stored in centralized RAM and can be efficiently scanned several times Data be stored on high distributed data sources In case of huge, continuous data streams, data is accessed only in single scan Computional processing and architectures Serial, centralized processing A single-computer platform that scales with better hardware is sufficient Parallel and distributed architectures may be necessary Cluster platforms that scale with several nodes may be necessary Data Types Data source is relatively homogeneous Data is static and of resonable size Data come from multiple data sources which may be heterogeneous and complex Data may be dynamic and evolving. Adapting to data changes may be necessary
  • 29. Traditional Data Mining vs Big Data Analysis Traditional Big Data analysis Data management Data format is simple and fits in relational database or data warehouse Data access time is not critical Data format are usually diverse and may not fit in a relational database. Data may be greatly interconnected and needs to be integreted from several nodes Often special data systems are required that manage varied data formats (NoSQL, Databases, HADOOP,…) Data acess time is critical for scalability and speed Data quality The provenance and pre-processing steps are relatively well documented Strong correction techniques were applied Data is relatively well tagged and labeled The provenance and pre-processing steps may be unclear and undocumented There is a large amount of uncertainly and imprecision in the data Only small numer of data are tagged and labeled
  • 30. Traditional Data Mining vs Big Data Analysis Traditional Big Data analysis Data processing Only batch learning is necessary Learning can be slow and off-line Data fits into memory All the data has some sort of utility Data may arrive in a stream and need processed continuously Learning need to be fast and online The scalability of algorithms is important Data not fit in memory