SlideShare a Scribd company logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import numpy as np
import matplotlib.pyplot as plt
# Dataset generation
data_dict = {'CSE':33, 'ECE':28, 'EEE':30}
courses = list(data_dict.keys())
values = list(data_dict.values())
fig = plt.figure(figsize = (10, 5))
#  Bar plot
plt.bar(courses, values, color ='green',
        width = 0.5)
plt.xlabel("Courses offered")
plt.ylabel("No. of students enrolled")
plt.title("Students enrolled in different courses")
plt.show()
1
2
3
4
5
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('tips')
sns.barplot(x = 'time',y = 'total_bill',data = df)
plt.show()
1950 1960 1970
0
5M
10M
15M
20M
25M
30M
35M
pop
1
2
3
4
import plotly.express as px
data_canada = px.data.gapminder().query("country == 'Canada'")
fig = px.bar(data_canada, x='year', y='pop')
fig.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import pandas as pd
 
plotdata = pd.DataFrame({
 
    "2018":[57,67,77,83],
 
    "2019":[68,73,80,79],
 
    "2020":[73,78,80,85]},
 
    index=["Django", "Gafur", "Tommy", "Ronnie"])
 
plotdata.plot(kind="bar",figsize=(15, 8))
 
plt.title("FIFA ratings")
 
plt.xlabel("Footballer")
 
plt.ylabel("Ratings")
Text(0, 0.5, 'Ratings')
1
3
4
5
6
7
2
8
import pandas as pd
plotdata = pd.DataFrame({
    "2018":[57,67,77,83],
    "2019":[68,73,80,79],
    "2020":[73,78,80,85]},
    index=["Django", "Gafur", "Tommy", "Ronnie"])
 
plotdata.plot(kind='bar', stacked=True,figsize=(15, 8))
<matplotlib.axes._subplots.AxesSubplot at 0x7fb62ed80b50>
Text(0, 0.5, 'Ratings')
1
2
3
4
5
6
7
8
9
10
11
 
import pandas as pd
plotdata = pd.DataFrame({
    "2018":[57,67,77,83],
    "2019":[68,73,80,79],
    "2020":[73,78,80,85]},
    index=["Django", "Gafur", "Tommy", "Ronnie"])
plotdata.plot(kind='bar', stacked=True,figsize=(15, 8))
plt.title("FIFA ratings")
plt.xlabel("Footballer")
plt.ylabel("Ratings")
1 df=pd.read_csv("Summer-Olympic-medals-1976-to-2008.csv",encoding='latin-1')
1
3
4
2
5
 
top_10.plot(kind='bar',figsize=(10,8))
plt.title('All Time Medals of top 10 countries')
top_10 = df['Country'].value_counts()[:10]
 
Text(0.5, 1.0, 'All Time Medals of top 10 countries')
1
2
3
indpie = df[df['Country']=='United States']['Medal'].value_counts()
 
indpie.plot(kind='bar',figsize=(10,8))
<matplotlib.axes._subplots.AxesSubplot at 0x7fb62e63ccd0>
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid p
Text(0, 0.5, 'No. of Athlete')
1
2
3
4
5
plt.figure(figsize=(10, 5))
sns.countplot(df['Year'])
plt.title('Total Athletes contribution in summer olympics over time')
plt.xlabel('Years')
plt.ylabel('No. of Athlete')
1
3
4
5
2
6
athlete_order = df['Athlete'].value_counts().head(10).index
sns.countplot(data=df, y='Athlete', order=athlete_order)
plt.title('Top 10 Athletes with the most awarded Medals')
plt.xlabel('No. of awrded medals')
plt.figure(figsize=(9, 5))
plt.ylabel('Athlete Name');
Text(0, 0.5, 'No. of Medals')
1
2
3
4
5
6
7
plt.figure(figsize=(15, 5))
highest_sport = df['Sport'].value_counts().index
sns.countplot(data=df, x='Sport', order=highest_sport)
plt.xticks(rotation=75)
plt.title('Sports with most awarded Medals')
plt.xlabel('Sport')
plt.ylabel('No. of Medals')
1
2
3
sns.countplot(x='Year',hue='Medal',data=df)
sns.set(rc={'figure.figsize':(10,10)})
plt.title("Type of medals won over the years")
Text(0.5, 1.0, 'Type of medals won over the years')
<matplotlib.axes._subplots.AxesSubplot at 0x7fb62e50efd0>
1 sns.countplot(x="Medal", hue="Gender", data=df)
1
2
3
4
5
6
7
gender_group = df.groupby(['Year', 'Gender']).size().unstack()
 
gender_group.apply(lambda x:x/x.sum(), axis=1).plot(kind='barh', stacked=True, legend
 
plt.legend(['Men', 'Women'], bbox_to_anchor=(1.0, 0.7))
 
plt.xlabel('Men / Women ratio')
Text(0.5, 0, 'Men / Women ratio')
1
2
3
4
5
sns.countplot(y='Discipline',hue='Gender',data=df)
sns.set(rc={'figure.figsize':(10,10)})
plt.xticks(rotation=90)
plt.title('Medals by Gender in each Discipline')
plt.legend(loc=1)  # 1 is code for 'upper right'3
check 0s completed at 11:52 PM
<matplotlib.legend.Legend at 0x7fb62e19afd0>
<seaborn.axisgrid.FacetGrid at 0x7fb62dfd3210>
1 sns.catplot(x="Medal", y="Year", hue="Gender",kind="box", data=df)
Ad

More Related Content

What's hot (20)

Gentlest Introduction to Tensorflow
Gentlest Introduction to TensorflowGentlest Introduction to Tensorflow
Gentlest Introduction to Tensorflow
Khor SoonHin
 
Es84
Es84Es84
Es84
Imee Kassandra Cacho II
 
Thesis PPT
Thesis PPTThesis PPT
Thesis PPT
Drew Ferkin
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
662305 10
662305 10662305 10
662305 10
Nitigan Nakjuatong
 
Bcsl 033 data and file structures lab s1-1
Bcsl 033 data and file structures lab s1-1Bcsl 033 data and file structures lab s1-1
Bcsl 033 data and file structures lab s1-1
Dr. Loganathan R
 
Closures
ClosuresClosures
Closures
alexisabril
 
Lecture 1 mte 407
Lecture 1 mte 407Lecture 1 mte 407
Lecture 1 mte 407
rumanatasnim415
 
Lecture 1 mte 407
Lecture 1 mte 407Lecture 1 mte 407
Lecture 1 mte 407
rumanatasnim415
 
Exercise #7 notes
Exercise #7 notesExercise #7 notes
Exercise #7 notes
Kelly Scallion
 
Gopher conbr golang e data science - oficial
Gopher conbr   golang e data science - oficialGopher conbr   golang e data science - oficial
Gopher conbr golang e data science - oficial
Rodrigo Pinheiro
 
Python programing
Python programingPython programing
Python programing
BHAVYA DOSHI
 
Wcbpijwbpij new
Wcbpijwbpij newWcbpijwbpij new
Wcbpijwbpij new
Hanokh Aloni
 
Program to reflecta triangle
Program to reflecta triangleProgram to reflecta triangle
Program to reflecta triangle
Tanya Makkar
 
C file
C fileC file
C file
simarsimmygrewal
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Write a program to show the example of hybrid inheritance.
Write a program to show the example of hybrid inheritance.Write a program to show the example of hybrid inheritance.
Write a program to show the example of hybrid inheritance.
Mumbai B.Sc.IT Study
 
matplotlib-installatin-interactive-contour-example-guide
matplotlib-installatin-interactive-contour-example-guidematplotlib-installatin-interactive-contour-example-guide
matplotlib-installatin-interactive-contour-example-guide
Arulalan T
 
Cristina
CristinaCristina
Cristina
daquicaro
 
R programming lab 1 - jupyter notebook
R programming lab   1 - jupyter notebookR programming lab   1 - jupyter notebook
R programming lab 1 - jupyter notebook
Ashwini Mathur
 
Gentlest Introduction to Tensorflow
Gentlest Introduction to TensorflowGentlest Introduction to Tensorflow
Gentlest Introduction to Tensorflow
Khor SoonHin
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Bcsl 033 data and file structures lab s1-1
Bcsl 033 data and file structures lab s1-1Bcsl 033 data and file structures lab s1-1
Bcsl 033 data and file structures lab s1-1
Dr. Loganathan R
 
Gopher conbr golang e data science - oficial
Gopher conbr   golang e data science - oficialGopher conbr   golang e data science - oficial
Gopher conbr golang e data science - oficial
Rodrigo Pinheiro
 
Program to reflecta triangle
Program to reflecta triangleProgram to reflecta triangle
Program to reflecta triangle
Tanya Makkar
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Write a program to show the example of hybrid inheritance.
Write a program to show the example of hybrid inheritance.Write a program to show the example of hybrid inheritance.
Write a program to show the example of hybrid inheritance.
Mumbai B.Sc.IT Study
 
matplotlib-installatin-interactive-contour-example-guide
matplotlib-installatin-interactive-contour-example-guidematplotlib-installatin-interactive-contour-example-guide
matplotlib-installatin-interactive-contour-example-guide
Arulalan T
 
R programming lab 1 - jupyter notebook
R programming lab   1 - jupyter notebookR programming lab   1 - jupyter notebook
R programming lab 1 - jupyter notebook
Ashwini Mathur
 

Similar to Bar plots.ipynb colaboratory (20)

BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND MLBASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
AbhaysinhVansadia
 
Using the following code Install Packages pip install .pdf
Using the following code Install Packages   pip install .pdfUsing the following code Install Packages   pip install .pdf
Using the following code Install Packages pip install .pdf
picscamshoppe
 
Seaborn for data visualization using python.pptx
Seaborn for data visualization using python.pptxSeaborn for data visualization using python.pptx
Seaborn for data visualization using python.pptx
sjcdsdocs
 
Regression Tree.pdf
Regression Tree.pdfRegression Tree.pdf
Regression Tree.pdf
IvanHartana4
 
Assignment 6.2a.pdf
Assignment 6.2a.pdfAssignment 6.2a.pdf
Assignment 6.2a.pdf
dash41
 
digit recognition recognition in computer science
digit recognition  recognition in computer sciencedigit recognition  recognition in computer science
digit recognition recognition in computer science
wondimagegndesta
 
III MCS python lab (1).pdf
III MCS python lab (1).pdfIII MCS python lab (1).pdf
III MCS python lab (1).pdf
srxerox
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
sumitt6_25730773
 
Need help filling out the missing sections of this code- the sections.docx
Need help filling out the missing sections of this code- the sections.docxNeed help filling out the missing sections of this code- the sections.docx
Need help filling out the missing sections of this code- the sections.docx
lauracallander
 
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvfmatplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
Forecast stock prices python
Forecast stock prices pythonForecast stock prices python
Forecast stock prices python
Utkarsh Asthana
 
xii cs practicals class 12 computer science.pdf
xii cs practicals class 12 computer science.pdfxii cs practicals class 12 computer science.pdf
xii cs practicals class 12 computer science.pdf
gmaiihghtg
 
AI02_Python (cont.).pptx
AI02_Python (cont.).pptxAI02_Python (cont.).pptx
AI02_Python (cont.).pptx
Nguyễn Tiến
 
DDU Workshop Day-2 presentation (1).pptx
DDU Workshop Day-2 presentation (1).pptxDDU Workshop Day-2 presentation (1).pptx
DDU Workshop Day-2 presentation (1).pptx
ritu23mts5729
 
C lab-programs
C lab-programsC lab-programs
C lab-programs
Tony Kurishingal
 
Data Science.pptx00000000000000000000000
Data Science.pptx00000000000000000000000Data Science.pptx00000000000000000000000
Data Science.pptx00000000000000000000000
shaikhmismail66
 
Linear Logistic regession_Practical.pptx
Linear Logistic regession_Practical.pptxLinear Logistic regession_Practical.pptx
Linear Logistic regession_Practical.pptx
Dr. Amanpreet Kaur
 
Naive application of Machine Learning to Software Development
Naive application of Machine Learning to Software DevelopmentNaive application of Machine Learning to Software Development
Naive application of Machine Learning to Software Development
Andriy Khavryuchenko
 
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
The Statistical and Applied Mathematical Sciences Institute
 
Assignment 5.2.pdf
Assignment 5.2.pdfAssignment 5.2.pdf
Assignment 5.2.pdf
dash41
 
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND MLBASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
AbhaysinhVansadia
 
Using the following code Install Packages pip install .pdf
Using the following code Install Packages   pip install .pdfUsing the following code Install Packages   pip install .pdf
Using the following code Install Packages pip install .pdf
picscamshoppe
 
Seaborn for data visualization using python.pptx
Seaborn for data visualization using python.pptxSeaborn for data visualization using python.pptx
Seaborn for data visualization using python.pptx
sjcdsdocs
 
Regression Tree.pdf
Regression Tree.pdfRegression Tree.pdf
Regression Tree.pdf
IvanHartana4
 
Assignment 6.2a.pdf
Assignment 6.2a.pdfAssignment 6.2a.pdf
Assignment 6.2a.pdf
dash41
 
digit recognition recognition in computer science
digit recognition  recognition in computer sciencedigit recognition  recognition in computer science
digit recognition recognition in computer science
wondimagegndesta
 
III MCS python lab (1).pdf
III MCS python lab (1).pdfIII MCS python lab (1).pdf
III MCS python lab (1).pdf
srxerox
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
sumitt6_25730773
 
Need help filling out the missing sections of this code- the sections.docx
Need help filling out the missing sections of this code- the sections.docxNeed help filling out the missing sections of this code- the sections.docx
Need help filling out the missing sections of this code- the sections.docx
lauracallander
 
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvfmatplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
Forecast stock prices python
Forecast stock prices pythonForecast stock prices python
Forecast stock prices python
Utkarsh Asthana
 
xii cs practicals class 12 computer science.pdf
xii cs practicals class 12 computer science.pdfxii cs practicals class 12 computer science.pdf
xii cs practicals class 12 computer science.pdf
gmaiihghtg
 
AI02_Python (cont.).pptx
AI02_Python (cont.).pptxAI02_Python (cont.).pptx
AI02_Python (cont.).pptx
Nguyễn Tiến
 
DDU Workshop Day-2 presentation (1).pptx
DDU Workshop Day-2 presentation (1).pptxDDU Workshop Day-2 presentation (1).pptx
DDU Workshop Day-2 presentation (1).pptx
ritu23mts5729
 
Data Science.pptx00000000000000000000000
Data Science.pptx00000000000000000000000Data Science.pptx00000000000000000000000
Data Science.pptx00000000000000000000000
shaikhmismail66
 
Linear Logistic regession_Practical.pptx
Linear Logistic regession_Practical.pptxLinear Logistic regession_Practical.pptx
Linear Logistic regession_Practical.pptx
Dr. Amanpreet Kaur
 
Naive application of Machine Learning to Software Development
Naive application of Machine Learning to Software DevelopmentNaive application of Machine Learning to Software Development
Naive application of Machine Learning to Software Development
Andriy Khavryuchenko
 
Assignment 5.2.pdf
Assignment 5.2.pdfAssignment 5.2.pdf
Assignment 5.2.pdf
dash41
 
Ad

More from Gokuldhev mony (6)

Lecture no 2 resource sharing
Lecture no 2 resource sharingLecture no 2 resource sharing
Lecture no 2 resource sharing
Gokuldhev mony
 
Flowerpollination 141114212025-conversion-gate02 (1)
Flowerpollination 141114212025-conversion-gate02 (1)Flowerpollination 141114212025-conversion-gate02 (1)
Flowerpollination 141114212025-conversion-gate02 (1)
Gokuldhev mony
 
Introduction to embedded c
Introduction to embedded cIntroduction to embedded c
Introduction to embedded c
Gokuldhev mony
 
Wireless sensor networks
Wireless sensor networksWireless sensor networks
Wireless sensor networks
Gokuldhev mony
 
Centralized shared memory architectures
Centralized shared memory architecturesCentralized shared memory architectures
Centralized shared memory architectures
Gokuldhev mony
 
Important hr questions
Important hr questionsImportant hr questions
Important hr questions
Gokuldhev mony
 
Lecture no 2 resource sharing
Lecture no 2 resource sharingLecture no 2 resource sharing
Lecture no 2 resource sharing
Gokuldhev mony
 
Flowerpollination 141114212025-conversion-gate02 (1)
Flowerpollination 141114212025-conversion-gate02 (1)Flowerpollination 141114212025-conversion-gate02 (1)
Flowerpollination 141114212025-conversion-gate02 (1)
Gokuldhev mony
 
Introduction to embedded c
Introduction to embedded cIntroduction to embedded c
Introduction to embedded c
Gokuldhev mony
 
Wireless sensor networks
Wireless sensor networksWireless sensor networks
Wireless sensor networks
Gokuldhev mony
 
Centralized shared memory architectures
Centralized shared memory architecturesCentralized shared memory architectures
Centralized shared memory architectures
Gokuldhev mony
 
Important hr questions
Important hr questionsImportant hr questions
Important hr questions
Gokuldhev mony
 
Ad

Recently uploaded (20)

Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 

Bar plots.ipynb colaboratory