This document provides an introduction to Bayesian belief networks and naive Bayesian classification. It defines key probability concepts like joint probability, conditional probability, and Bayes' rule. It explains how Bayesian belief networks can represent dependencies between variables and how naive Bayesian classification assumes conditional independence between variables. The document concludes with examples of how to calculate probabilities and classify new examples using a naive Bayesian approach.
K-nearest neighbors (KNN) is a machine learning algorithm that classifies data points based on their closest neighbors. Random forest is an ensemble learning method that constructs multiple decision trees during training and outputs the class that is the mode of the classes of the individual trees. It works by constructing many decision trees during training and outputting the class that is the mode of the individual trees' classes. Random forest introduces randomness when building trees by using bootstrap samples of the data and randomly selecting a subset of features to consider when looking for the best split. This helps to decrease variance and helps prevent overfitting.
No machine learning algorithm dominates in every domain, but random forests are usually tough to beat by much. And they have some advantages compared to other models. No much input preparation needed, implicit feature selection, fast to train, and ability to visualize the model. While it is easy to get started with random forests, a good understanding of the model is key to get the most of them.
This talk will cover decision trees from theory, to their implementation in scikit-learn. An overview of ensemble methods and bagging will follow, to end up explaining and implementing random forests and see how they compare to other state-of-the-art models.
The talk will have a very practical approach, using examples and real cases to illustrate how to use both decision trees and random forests.
We will see how the simplicity of decision trees, is a key advantage compared to other methods. Unlike black-box methods, or methods tough to represent in multivariate cases, decision trees can easily be visualized, analyzed, and debugged, until we see that our model is behaving as expected. This exercise can increase our understanding of the data and the problem, while making our model perform in the best possible way.
Random Forests can randomize and ensemble decision trees to increase its predictive power, while keeping most of their properties.
The main topics covered will include:
* What are decision trees?
* How decision trees are trained?
* Understanding and debugging decision trees
* Ensemble methods
* Bagging
* Random Forests
* When decision trees and random forests should be used?
* Python implementation with scikit-learn
* Analysis of performance
In this presentation is given an introduction to Bayesian networks and basic probability theory. Graphical explanation of Bayes' theorem, random variable, conditional and joint probability. Spam classifier, medical diagnosis, fault prediction. The main software for Bayesian Networks are presented.
This presentation covers Decision Tree as a supervised machine learning technique, talking about Information Gain method and Gini Index method with their related Algorithms.
The document discusses decision trees and random forest algorithms. It begins with an outline and defines the problem as determining target attribute values for new examples given a training data set. It then explains key requirements like discrete classes and sufficient data. The document goes on to describe the principles of decision trees, including entropy and information gain as criteria for splitting nodes. Random forests are introduced as consisting of multiple decision trees to help reduce variance. The summary concludes by noting out-of-bag error rate can estimate classification error as trees are added.
PCA projects data onto principal components to reduce dimensionality while retaining most information. It works by (1) zero-centering the data, (2) calculating the covariance matrix to measure joint variability, (3) computing eigenvalues and eigenvectors of the covariance matrix to identify principal components with most variation, and (4) mapping the zero-centered data to a new space using the eigenvectors. This transforms the data onto a new set of orthogonal axes oriented in the directions of maximum variance.
Mrbml004 : Introduction to Information Theory for Machine LearningJaouad Dabounou
La quatrième séance de lecture de livres en machine learning.
Vidéo : https://youtu.be/Ab5RvD7ieFg
Elle concernera une brève introduction à la théorie de l'information: Entropy, K-L divergence, mutual Information,... et son application dans la fonction de perte et notamment la cross-entropy.
Lecture de trois livres, dans le cadre de "Monday reading books on machine learning".
Le premier livre, qui constituera le fil conducteur de toute l'action :
Christopher Bishop; Pattern Recognition and Machine Learning, Springer-Verlag New York Inc, 2006
Seront utilisées des parties de deux livres, surtout du livre :
Ian Goodfellow, Yoshua Bengio, Aaron Courville; Deep Learning, The MIT Press, 2016
et du livre :
Ovidiu Calin; Deep Learning Architectures: A Mathematical Approach, Springer, 2020
Data Science - Part IX - Support Vector MachineDerek Kane
This lecture provides an overview of Support Vector Machines in a more relatable and accessible manner. We will go through some methods of calibration and diagnostics of SVM and then apply the technique to accurately detect breast cancer within a dataset.
This document summarizes a machine learning workshop on feature selection. It discusses typical feature selection methods like single feature evaluation using metrics like mutual information and Gini indexing. It also covers subset selection techniques like sequential forward selection and sequential backward selection. Examples are provided showing how feature selection improves performance for logistic regression on large datasets with more features than samples. The document outlines the workshop agenda and provides details on when and why feature selection is important for machine learning models.
KNN Algorithm using Python | How KNN Algorithm works | Python Data Science Tr...Edureka!
** Python for Data Science: https://www.edureka.co/python **
This Edureka tutorial on KNN Algorithm will help you to build your base by covering the theoretical, mathematical and implementation part of the KNN algorithm in Python. Topics covered under this tutorial includes:
1. What is KNN Algorithm?
2. Industrial Use case of KNN Algorithm
3. How things are predicted using KNN Algorithm
4. How to choose the value of K?
5. KNN Algorithm Using Python
6. Implementation of KNN Algorithm from scratch
Check out our playlist: http://bit.ly/2taym8X
Logistic regression is a statistical model used to predict binary outcomes like disease presence/absence from several explanatory variables. It is similar to linear regression but for binary rather than continuous outcomes. The document provides an example analysis using logistic regression to predict risk of HHV8 infection from sexual behaviors and infections like HIV. The analysis found HIV and HSV2 history were associated with higher odds of HHV8 after adjusting for other variables, while gonorrhea history was not a significant independent predictor.
This document discusses dimensionality reduction techniques for data mining. It begins with an introduction to dimensionality reduction and reasons for using it. These include dealing with high-dimensional data issues like the curse of dimensionality. It then covers major dimensionality reduction techniques of feature selection and feature extraction. Feature selection techniques discussed include search strategies, feature ranking, and evaluation measures. Feature extraction maps data to a lower-dimensional space. The document outlines applications of dimensionality reduction like text mining and gene expression analysis. It concludes with trends in the field.
Linear Regression vs Logistic Regression | EdurekaEdureka!
YouTube: https://youtu.be/OCwZyYH14uw
** Data Science Certification using R: https://www.edureka.co/data-science **
This Edureka PPT on Linear Regression Vs Logistic Regression covers the basic concepts of linear and logistic models. The following topics are covered in this session:
Types of Machine Learning
Regression Vs Classification
What is Linear Regression?
What is Logistic Regression?
Linear Regression Use Case
Logistic Regression Use Case
Linear Regression Vs Logistic Regression
Blog Series: http://bit.ly/data-science-blogs
Data Science Training Playlist: http://bit.ly/data-science-playlist
Follow us to never miss an update in the future.
YouTube: https://www.youtube.com/user/edurekaIN
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
An introduction to Bayesian Statistics using Pythonfreshdatabos
This document provides an introduction to Bayesian statistics and inference through examples. It begins with an overview of Bayes' Theorem and probability concepts. An example problem about cookies in bowls is used to demonstrate applying Bayes' Theorem to update beliefs based on new data. The document introduces the Pmf class for representing probability mass functions and working through examples numerically. Further examples involving dice and trains reinforce how to build likelihood functions and update distributions. The document concludes with a real-world example of analyzing whether a coin is biased based on spin results.
This document provides an overview of Chapter 14 on probabilistic reasoning and Bayesian networks from an artificial intelligence textbook. It introduces Bayesian networks as a way to represent knowledge over uncertain domains using directed graphs. Each node corresponds to a variable and arrows represent conditional dependencies between variables. The document explains how Bayesian networks can encode a joint probability distribution and represent conditional independence relationships. It also discusses techniques for efficiently representing conditional distributions in Bayesian networks, including noisy logical relationships and continuous variables. The chapter covers exact and approximate inference methods for Bayesian networks.
Decision Trees for Classification: A Machine Learning AlgorithmPalin analytics
Decision Trees in Machine Learning - Decision tree method is a commonly used data mining method for establishing classification systems based on several covariates or for developing prediction algorithms for a target variable.
This document provides an introduction to Bayesian networks. It begins by explaining Bayesian networks using a medical example about determining the likelihood a patient has anthrax given various observed symptoms. It then provides a probability primer covering random variables, conditional probability, and independence. The document defines Bayesian networks as consisting of a directed acyclic graph and conditional probability tables at each node. It explains how Bayesian networks compactly represent joint probability distributions and allow for inference queries. The challenges of exact versus approximate inference in large networks are also noted.
Youtube:
https://www.youtube.com/playlist?list=PLeeHDpwX2Kj55He_jfPojKrZf22HVjAZY
Paper review of "Auto-Encoding Variational Bayes"
The document discusses techniques for imputing missing data (<NA>) in R. It introduces common imputation methods like MICE, missForest, and Hmisc. MICE creates multiple imputations using chained equations to account for uncertainty, while missForest uses random forests to impute missing values. Hmisc offers functions to impute missing values using methods like mean, regression, and predictive mean matching. The goal is to understand missing data, learn imputation methods, and choose the best approach for a given dataset.
- Naive Bayes is a classification technique based on Bayes' theorem that uses "naive" independence assumptions. It is easy to build and can perform well even with large datasets.
- It works by calculating the posterior probability for each class given predictor values using the Bayes theorem and independence assumptions between predictors. The class with the highest posterior probability is predicted.
- It is commonly used for text classification, spam filtering, and sentiment analysis due to its fast performance and high success rates compared to other algorithms.
Data Science - Part XII - Ridge Regression, LASSO, and Elastic NetsDerek Kane
The document discusses various regression techniques including ridge regression, lasso regression, and elastic net regression. It begins with an overview of advancements in regression analysis since the late 1800s/early 1900s enabled by increased computing power. Modern high-dimensional data often has many independent variables, requiring improved regression methods. The document then provides technical explanations and formulas for ordinary least squares regression, ridge regression, lasso regression, and their properties such as bias-variance tradeoffs. It explains how ridge and lasso regression address limitations of OLS through regularization that shrinks coefficients.
This document provides an introduction to logistic regression. It outlines key features such as using a logistic function to model a binary dependent variable that can take on values of 0 or 1. Logistic regression is a linear method that uses the logistic function to transform predictions. The document discusses applications in machine learning, medical science, social science, and industry. It also provides details on logistic regression models, including converting linear variables to logistic variables using a sigmoid function and examining the effects of varying the logistic growth and midpoint parameters on the logistic regression curve.
Data Mining: Concepts and Techniques (3rd ed.)- Chapter 3 preprocessingSalah Amean
the chapter contains :
Data Preprocessing: An Overview,
Data Quality,
Major Tasks in Data Preprocessing,
Data Cleaning,
Data Integration,
Data Reduction,
Data Transformation and Data Discretization,
Summary.
This document summarizes key concepts from Dr. Sobia Baig's lecture on probability and random variables. It discusses conditional probability, Bayes' theorem, and independent events. Examples are provided to illustrate how to calculate conditional probabilities, apply Bayes' rule, and determine if events are independent. The document also examines sequential experiments and how to determine probabilities when subexperiments are independent.
- Hierarchical clustering produces nested clusters organized as a hierarchical tree called a dendrogram. It can be either agglomerative, where each point starts in its own cluster and clusters are merged, or divisive, where all points start in one cluster which is recursively split.
- Common hierarchical clustering algorithms include single linkage (minimum distance), complete linkage (maximum distance), group average, and Ward's method. They differ in how they calculate distance between clusters during merging.
- K-means is a partitional clustering algorithm that divides data into k non-overlapping clusters based on minimizing distance between points and cluster centroids. It is fast but sensitive to initialization and assumes spherical clusters of similar size and density.
PCA projects data onto principal components to reduce dimensionality while retaining most information. It works by (1) zero-centering the data, (2) calculating the covariance matrix to measure joint variability, (3) computing eigenvalues and eigenvectors of the covariance matrix to identify principal components with most variation, and (4) mapping the zero-centered data to a new space using the eigenvectors. This transforms the data onto a new set of orthogonal axes oriented in the directions of maximum variance.
Mrbml004 : Introduction to Information Theory for Machine LearningJaouad Dabounou
La quatrième séance de lecture de livres en machine learning.
Vidéo : https://youtu.be/Ab5RvD7ieFg
Elle concernera une brève introduction à la théorie de l'information: Entropy, K-L divergence, mutual Information,... et son application dans la fonction de perte et notamment la cross-entropy.
Lecture de trois livres, dans le cadre de "Monday reading books on machine learning".
Le premier livre, qui constituera le fil conducteur de toute l'action :
Christopher Bishop; Pattern Recognition and Machine Learning, Springer-Verlag New York Inc, 2006
Seront utilisées des parties de deux livres, surtout du livre :
Ian Goodfellow, Yoshua Bengio, Aaron Courville; Deep Learning, The MIT Press, 2016
et du livre :
Ovidiu Calin; Deep Learning Architectures: A Mathematical Approach, Springer, 2020
Data Science - Part IX - Support Vector MachineDerek Kane
This lecture provides an overview of Support Vector Machines in a more relatable and accessible manner. We will go through some methods of calibration and diagnostics of SVM and then apply the technique to accurately detect breast cancer within a dataset.
This document summarizes a machine learning workshop on feature selection. It discusses typical feature selection methods like single feature evaluation using metrics like mutual information and Gini indexing. It also covers subset selection techniques like sequential forward selection and sequential backward selection. Examples are provided showing how feature selection improves performance for logistic regression on large datasets with more features than samples. The document outlines the workshop agenda and provides details on when and why feature selection is important for machine learning models.
KNN Algorithm using Python | How KNN Algorithm works | Python Data Science Tr...Edureka!
** Python for Data Science: https://www.edureka.co/python **
This Edureka tutorial on KNN Algorithm will help you to build your base by covering the theoretical, mathematical and implementation part of the KNN algorithm in Python. Topics covered under this tutorial includes:
1. What is KNN Algorithm?
2. Industrial Use case of KNN Algorithm
3. How things are predicted using KNN Algorithm
4. How to choose the value of K?
5. KNN Algorithm Using Python
6. Implementation of KNN Algorithm from scratch
Check out our playlist: http://bit.ly/2taym8X
Logistic regression is a statistical model used to predict binary outcomes like disease presence/absence from several explanatory variables. It is similar to linear regression but for binary rather than continuous outcomes. The document provides an example analysis using logistic regression to predict risk of HHV8 infection from sexual behaviors and infections like HIV. The analysis found HIV and HSV2 history were associated with higher odds of HHV8 after adjusting for other variables, while gonorrhea history was not a significant independent predictor.
This document discusses dimensionality reduction techniques for data mining. It begins with an introduction to dimensionality reduction and reasons for using it. These include dealing with high-dimensional data issues like the curse of dimensionality. It then covers major dimensionality reduction techniques of feature selection and feature extraction. Feature selection techniques discussed include search strategies, feature ranking, and evaluation measures. Feature extraction maps data to a lower-dimensional space. The document outlines applications of dimensionality reduction like text mining and gene expression analysis. It concludes with trends in the field.
Linear Regression vs Logistic Regression | EdurekaEdureka!
YouTube: https://youtu.be/OCwZyYH14uw
** Data Science Certification using R: https://www.edureka.co/data-science **
This Edureka PPT on Linear Regression Vs Logistic Regression covers the basic concepts of linear and logistic models. The following topics are covered in this session:
Types of Machine Learning
Regression Vs Classification
What is Linear Regression?
What is Logistic Regression?
Linear Regression Use Case
Logistic Regression Use Case
Linear Regression Vs Logistic Regression
Blog Series: http://bit.ly/data-science-blogs
Data Science Training Playlist: http://bit.ly/data-science-playlist
Follow us to never miss an update in the future.
YouTube: https://www.youtube.com/user/edurekaIN
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
An introduction to Bayesian Statistics using Pythonfreshdatabos
This document provides an introduction to Bayesian statistics and inference through examples. It begins with an overview of Bayes' Theorem and probability concepts. An example problem about cookies in bowls is used to demonstrate applying Bayes' Theorem to update beliefs based on new data. The document introduces the Pmf class for representing probability mass functions and working through examples numerically. Further examples involving dice and trains reinforce how to build likelihood functions and update distributions. The document concludes with a real-world example of analyzing whether a coin is biased based on spin results.
This document provides an overview of Chapter 14 on probabilistic reasoning and Bayesian networks from an artificial intelligence textbook. It introduces Bayesian networks as a way to represent knowledge over uncertain domains using directed graphs. Each node corresponds to a variable and arrows represent conditional dependencies between variables. The document explains how Bayesian networks can encode a joint probability distribution and represent conditional independence relationships. It also discusses techniques for efficiently representing conditional distributions in Bayesian networks, including noisy logical relationships and continuous variables. The chapter covers exact and approximate inference methods for Bayesian networks.
Decision Trees for Classification: A Machine Learning AlgorithmPalin analytics
Decision Trees in Machine Learning - Decision tree method is a commonly used data mining method for establishing classification systems based on several covariates or for developing prediction algorithms for a target variable.
This document provides an introduction to Bayesian networks. It begins by explaining Bayesian networks using a medical example about determining the likelihood a patient has anthrax given various observed symptoms. It then provides a probability primer covering random variables, conditional probability, and independence. The document defines Bayesian networks as consisting of a directed acyclic graph and conditional probability tables at each node. It explains how Bayesian networks compactly represent joint probability distributions and allow for inference queries. The challenges of exact versus approximate inference in large networks are also noted.
Youtube:
https://www.youtube.com/playlist?list=PLeeHDpwX2Kj55He_jfPojKrZf22HVjAZY
Paper review of "Auto-Encoding Variational Bayes"
The document discusses techniques for imputing missing data (<NA>) in R. It introduces common imputation methods like MICE, missForest, and Hmisc. MICE creates multiple imputations using chained equations to account for uncertainty, while missForest uses random forests to impute missing values. Hmisc offers functions to impute missing values using methods like mean, regression, and predictive mean matching. The goal is to understand missing data, learn imputation methods, and choose the best approach for a given dataset.
- Naive Bayes is a classification technique based on Bayes' theorem that uses "naive" independence assumptions. It is easy to build and can perform well even with large datasets.
- It works by calculating the posterior probability for each class given predictor values using the Bayes theorem and independence assumptions between predictors. The class with the highest posterior probability is predicted.
- It is commonly used for text classification, spam filtering, and sentiment analysis due to its fast performance and high success rates compared to other algorithms.
Data Science - Part XII - Ridge Regression, LASSO, and Elastic NetsDerek Kane
The document discusses various regression techniques including ridge regression, lasso regression, and elastic net regression. It begins with an overview of advancements in regression analysis since the late 1800s/early 1900s enabled by increased computing power. Modern high-dimensional data often has many independent variables, requiring improved regression methods. The document then provides technical explanations and formulas for ordinary least squares regression, ridge regression, lasso regression, and their properties such as bias-variance tradeoffs. It explains how ridge and lasso regression address limitations of OLS through regularization that shrinks coefficients.
This document provides an introduction to logistic regression. It outlines key features such as using a logistic function to model a binary dependent variable that can take on values of 0 or 1. Logistic regression is a linear method that uses the logistic function to transform predictions. The document discusses applications in machine learning, medical science, social science, and industry. It also provides details on logistic regression models, including converting linear variables to logistic variables using a sigmoid function and examining the effects of varying the logistic growth and midpoint parameters on the logistic regression curve.
Data Mining: Concepts and Techniques (3rd ed.)- Chapter 3 preprocessingSalah Amean
the chapter contains :
Data Preprocessing: An Overview,
Data Quality,
Major Tasks in Data Preprocessing,
Data Cleaning,
Data Integration,
Data Reduction,
Data Transformation and Data Discretization,
Summary.
This document summarizes key concepts from Dr. Sobia Baig's lecture on probability and random variables. It discusses conditional probability, Bayes' theorem, and independent events. Examples are provided to illustrate how to calculate conditional probabilities, apply Bayes' rule, and determine if events are independent. The document also examines sequential experiments and how to determine probabilities when subexperiments are independent.
- Hierarchical clustering produces nested clusters organized as a hierarchical tree called a dendrogram. It can be either agglomerative, where each point starts in its own cluster and clusters are merged, or divisive, where all points start in one cluster which is recursively split.
- Common hierarchical clustering algorithms include single linkage (minimum distance), complete linkage (maximum distance), group average, and Ward's method. They differ in how they calculate distance between clusters during merging.
- K-means is a partitional clustering algorithm that divides data into k non-overlapping clusters based on minimizing distance between points and cluster centroids. It is fast but sensitive to initialization and assumes spherical clusters of similar size and density.
Association analysis is used to uncover relationships between data items by identifying frequent patterns and association rules. The Apriori algorithm is a two-step process used for association rule mining: 1) find frequent itemsets that satisfy a minimum support threshold, and 2) generate strong association rules from the frequent itemsets that meet minimum support and confidence thresholds. Practical issues like level of data aggregation and appropriate support/confidence levels must be considered.
This document provides an overview of clustering techniques. It defines clustering as grouping a set of similar objects into classes, with objects within a cluster being similar to each other and dissimilar to objects in other clusters. The document then discusses partitioning, hierarchical, and density-based clustering methods. It also covers mathematical elements of clustering like partitions, distances, and data types. The goal of clustering is to minimize a similarity function to create high similarity within clusters and low similarity between clusters.
Clustering is the process of grouping similar objects together. It allows data to be analyzed and summarized. There are several methods of clustering including partitioning, hierarchical, density-based, grid-based, and model-based. Hierarchical clustering methods are either agglomerative (bottom-up) or divisive (top-down). Density-based methods like DBSCAN and OPTICS identify clusters based on density. Grid-based methods impose grids on data to find dense regions. Model-based clustering uses models like expectation-maximization. High-dimensional data can be clustered using subspace or dimension-reduction methods. Constraint-based clustering allows users to specify preferences.
Bayesian Networks - A Brief IntroductionAdnan Masood
- A Bayesian network is a graphical model that depicts probabilistic relationships among variables. It represents a joint probability distribution over variables in a directed acyclic graph with conditional probability tables.
- A Bayesian network consists of a directed acyclic graph whose nodes represent variables and edges represent probabilistic dependencies, along with conditional probability distributions that quantify the relationships.
- Inference using a Bayesian network allows computing probabilities like P(X|evidence) by taking into account the graph structure and probability tables.
Types of clustering and different types of clustering algorithmsPrashanth Guntal
The document discusses different types of clustering algorithms:
1. Hard clustering assigns each data point to one cluster, while soft clustering allows points to belong to multiple clusters.
2. Hierarchical clustering builds clusters hierarchically in a top-down or bottom-up approach, while flat clustering does not have a hierarchy.
3. Model-based clustering models data using statistical distributions to find the best fitting model.
It then provides examples of specific clustering algorithms like K-Means, Fuzzy K-Means, Streaming K-Means, Spectral clustering, and Dirichlet clustering.
Clustering is an unsupervised learning technique used to group unlabeled data points together based on similarities. It aims to maximize similarity within clusters and minimize similarity between clusters. There are several clustering methods including partitioning, hierarchical, density-based, grid-based, and model-based. Clustering has many applications such as pattern recognition, image processing, market research, and bioinformatics. It is useful for extracting hidden patterns from large, complex datasets.
The document discusses clustering and k-means clustering algorithms. It provides examples of scenarios where clustering can be used, such as placing cell phone towers or opening new offices. It then defines clustering as organizing data into groups where objects within each group are similar to each other and dissimilar to objects in other groups. The document proceeds to explain k-means clustering, including the process of initializing cluster centers, assigning data points to the closest center, recomputing the centers, and iterating until centers converge. It provides a use case of using k-means to determine locations for new schools.
K-means clustering is an algorithm that groups data points into k number of clusters based on their similarity. It works by randomly selecting k data points as initial cluster centroids and then assigning each remaining point to the closest centroid. It then recalculates the centroids and reassigns points in an iterative process until centroids stabilize. While efficient, k-means clustering has weaknesses in that it requires specifying k, can get stuck in local optima, and is not suitable for non-convex shaped clusters or noisy data.
HR / Talent Analytics orientation given as a guest lecture at Management Institute for Leadership and Excellence (MILE), Pune. This presentation covers aspects like:
1. Core concepts, terminologies & buzzwords
- Business Intelligence, Analytics
- Big Data, Cloud, SaaS
2. Analytics
- Types, Domains, Tools…
3. HR Analytics
- Why? What is measured?
- How? Predictive possibilities…
4. Case studies
5. HR Analytics org structure & delivery model
Quantum Computing Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
Generative Artificial Intelligence (GenAI) in BusinessDr. Tathagat Varma
My talk for the Indian School of Business (ISB) Emerging Leaders Program Cohort 9. In this talk, I discussed key issues around adoption of GenAI in business - benefits, opportunities and limitations. I also discussed how my research on Theory of Cognitive Chasms helps address some of these issues
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPathCommunity
Join this UiPath Community Berlin meetup to explore the Orchestrator API, Swagger interface, and the Test Manager API. Learn how to leverage these tools to streamline automation, enhance testing, and integrate more efficiently with UiPath. Perfect for developers, testers, and automation enthusiasts!
📕 Agenda
Welcome & Introductions
Orchestrator API Overview
Exploring the Swagger Interface
Test Manager API Highlights
Streamlining Automation & Testing with APIs (Demo)
Q&A and Open Discussion
Perfect for developers, testers, and automation enthusiasts!
👉 Join our UiPath Community Berlin chapter: https://community.uipath.com/berlin/
This session streamed live on April 29, 2025, 18:00 CET.
Check out all our upcoming UiPath Community sessions at https://community.uipath.com/events/.
What is Model Context Protocol(MCP) - The new technology for communication bw...Vishnu Singh Chundawat
The MCP (Model Context Protocol) is a framework designed to manage context and interaction within complex systems. This SlideShare presentation will provide a detailed overview of the MCP Model, its applications, and how it plays a crucial role in improving communication and decision-making in distributed systems. We will explore the key concepts behind the protocol, including the importance of context, data management, and how this model enhances system adaptability and responsiveness. Ideal for software developers, system architects, and IT professionals, this presentation will offer valuable insights into how the MCP Model can streamline workflows, improve efficiency, and create more intuitive systems for a wide range of use cases.
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...Alan Dix
Talk at the final event of Data Fusion Dynamics: A Collaborative UK-Saudi Initiative in Cybersecurity and Artificial Intelligence funded by the British Council UK-Saudi Challenge Fund 2024, Cardiff Metropolitan University, 29th April 2025
https://alandix.com/academic/talks/CMet2025-AI-Changes-Everything/
Is AI just another technology, or does it fundamentally change the way we live and think?
Every technology has a direct impact with micro-ethical consequences, some good, some bad. However more profound are the ways in which some technologies reshape the very fabric of society with macro-ethical impacts. The invention of the stirrup revolutionised mounted combat, but as a side effect gave rise to the feudal system, which still shapes politics today. The internal combustion engine offers personal freedom and creates pollution, but has also transformed the nature of urban planning and international trade. When we look at AI the micro-ethical issues, such as bias, are most obvious, but the macro-ethical challenges may be greater.
At a micro-ethical level AI has the potential to deepen social, ethnic and gender bias, issues I have warned about since the early 1990s! It is also being used increasingly on the battlefield. However, it also offers amazing opportunities in health and educations, as the recent Nobel prizes for the developers of AlphaFold illustrate. More radically, the need to encode ethics acts as a mirror to surface essential ethical problems and conflicts.
At the macro-ethical level, by the early 2000s digital technology had already begun to undermine sovereignty (e.g. gambling), market economics (through network effects and emergent monopolies), and the very meaning of money. Modern AI is the child of big data, big computation and ultimately big business, intensifying the inherent tendency of digital technology to concentrate power. AI is already unravelling the fundamentals of the social, political and economic world around us, but this is a world that needs radical reimagining to overcome the global environmental and human challenges that confront us. Our challenge is whether to let the threads fall as they may, or to use them to weave a better future.
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Impelsys Inc.
Impelsys provided a robust testing solution, leveraging a risk-based and requirement-mapped approach to validate ICU Connect and CritiXpert. A well-defined test suite was developed to assess data communication, clinical data collection, transformation, and visualization across integrated devices.
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveScyllaDB
Want to learn practical tips for designing systems that can scale efficiently without compromising speed?
Join us for a workshop where we’ll address these challenges head-on and explore how to architect low-latency systems using Rust. During this free interactive workshop oriented for developers, engineers, and architects, we’ll cover how Rust’s unique language features and the Tokio async runtime enable high-performance application development.
As you explore key principles of designing low-latency systems with Rust, you will learn how to:
- Create and compile a real-world app with Rust
- Connect the application to ScyllaDB (NoSQL data store)
- Negotiate tradeoffs related to data modeling and querying
- Manage and monitor the database for consistently low latencies
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxshyamraj55
We’re bringing the TDX energy to our community with 2 power-packed sessions:
🛠️ Workshop: MuleSoft for Agentforce
Explore the new version of our hands-on workshop featuring the latest Topic Center and API Catalog updates.
📄 Talk: Power Up Document Processing
Dive into smart automation with MuleSoft IDP, NLP, and Einstein AI for intelligent document workflows.
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfAbi john
Analyze the growth of meme coins from mere online jokes to potential assets in the digital economy. Explore the community, culture, and utility as they elevate themselves to a new era in cryptocurrency.
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Aqusag Technologies
In late April 2025, a significant portion of Europe, particularly Spain, Portugal, and parts of southern France, experienced widespread, rolling power outages that continue to affect millions of residents, businesses, and infrastructure systems.
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfSoftware Company
Explore the benefits and features of advanced logistics management software for businesses in Riyadh. This guide delves into the latest technologies, from real-time tracking and route optimization to warehouse management and inventory control, helping businesses streamline their logistics operations and reduce costs. Learn how implementing the right software solution can enhance efficiency, improve customer satisfaction, and provide a competitive edge in the growing logistics sector of Riyadh.
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
Semantic Cultivators : The Critical Future Role to Enable AIartmondano
By 2026, AI agents will consume 10x more enterprise data than humans, but with none of the contextual understanding that prevents catastrophic misinterpretations.
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...SOFTTECHHUB
I started my online journey with several hosting services before stumbling upon Ai EngineHost. At first, the idea of paying one fee and getting lifetime access seemed too good to pass up. The platform is built on reliable US-based servers, ensuring your projects run at high speeds and remain safe. Let me take you step by step through its benefits and features as I explain why this hosting solution is a perfect fit for digital entrepreneurs.
Role of Data Annotation Services in AI-Powered ManufacturingAndrew Leo
From predictive maintenance to robotic automation, AI is driving the future of manufacturing. But without high-quality annotated data, even the smartest models fall short.
Discover how data annotation services are powering accuracy, safety, and efficiency in AI-driven manufacturing systems.
Precision in data labeling = Precision on the production floor.
3. Bayesian Belief Networks (BBN)
BBN is a probabilistic graphical model (PGM)
Weather
Lawn
Sprinkler
4. Bayesian Belief Network
0 Graphical (Directed Acyclic Graph) Model
0 Nodes are the features:
0 Each has a set of possible parameters/values/states:
0Weather = {sunny, cloudy, rainy}; Sprinkler = {off, on}; Lawn = {dry, wet}
0BBN sample case: {Weather = rainy, Sprinkler = off, Lawn = wet}
0 Edges / Links represent relations between features
0 Get used to talking in ‘graph language’:
0Lawn is a child of its two parents: Weather and Sprinkler
0 Direction of edges basically indicates Causality:
0Either rainy weather or turning on the sprinkler may cause wet lawn
0 Edges direction from {Weather / Sprinkler} to Lawn
Weather
Lawn
Sprinkler
5. BBN – Modeling Reality with Probabilities
1. Each node / feature is a random variable
0 Takes multiple parameters / values / states
0 States occur with a certain probability
0 Example: a fair coin has two possible values: {heads, tails},
each occurs with 50% probability
6. BBN – Modeling Reality with
Probabilities – cont.
2. We call these probabilities of occurring states - Beliefs
0Example: our belief in the state {coin=‘head’} is 50%
0If we thought the coin was not fair, then our belief for the state
{coin=‘head’} wouldn’t be 50%
0 Bayesian Belief Network
3. All beliefs of all possible states of a node are gathered in
a single CPT - Conditional Probability Table
7. CPT - Conditional Probability Table
Weather
Lawn
Sprinkler
Weather (London)
Sunny 10%
Cloudy 30%
Rainy 60%
Sprinkler
Weather On Off
Sunny 20% 80%
Cloudy 10% 90%
Rainy 0% 100%
Lawn
Weather Sprinkler Wet Dry
Sunny On 20% 80%
Cloudy On 40% 60%
Rainy On 100% 0%
Sunny Off 0% 100%
Cloudy Off 10% 90%
Rainy Off 100% 0%
Weather (Israel)
Sunny 70%
Cloudy 20%
Rainy 10%
Prior Probability
P(Sprinkler = ‘on’ | weather = ‘sunny’) = 20%
Conditional Probability
Probability:
all beliefs must sum
up to 100%
9. BBN
A Probabilistic Graphical Learning Model
0 BBN is a 2-component model:
0 Graph
0 CPTs
Weather
Lawn
Sprinkler
Weather (London)
Sunny 10%
Cloudy 30%
Rainy 60%
Sprinkler
Weather On Off
Sunny 20% 80%
Cloudy 10% 90%
Rainy 0% 100%
Lawn
Weather Sprinkle
r
Wet Dry
Sunny On 20% 80%
Cloudy On 40% 60%
Rainy On 100% 0%
Sunny Off 0% 100%
Cloudy Off 10% 90%
Rainy Off 100% 0%
10. BBN
Machine Learning Process
counting
{Weather = ‘rainy’ ; Sprinkler = ‘off’’ ; Lawn = ‘wet’}
{Weather = ‘sunny’ ; Sprinkler = ‘on’’ ; Lawn = ‘wet’}
{Weather = ‘sunny’ ; Sprinkler = ‘off’’ ; Lawn = ‘dry’}
{Weather = ‘cloudy’ ; Sprinkler = ‘off’ ; Lawn = ‘dry’}
Weather
Lawn
Sprinkler
Weather (London)
Sunny 10%
Cloudy 30%
Rainy 60%
Sprinkler
Weather On Off
Sunny 20% 80%
Cloudy 10% 90%
Rainy 0% 100%
Lawn
Weather Sprinkler Wet Dry
Sunny On 20% 80%
Cloudy On 40% 60%
Rainy On 100% 0%
Sunny Off 0% 100%
Cloudy Off 10% 90%
Rainy Off 100% 0%
lots of training
cases
We begin with a
model
11. BBN – Predicting (Inferencing)
0 Bayesian Inference: After training (CPT calculation), we
can then answer questions like:
0 Given a rainy weather, is the lawn wet?
0 Given that the lawn is wet, what could be the reason for that?
0Rainy weather? or
0A turned-on sprinkler?
Weather
Lawn
Sprinkler
Stay Tuned!
The real action begins...
Trivial answer -
not interesting
Cool
12. Bayesian Inference
0 Bayes’ Theorem:
0 Philosophically: Knowledge is power!
Thomas Bayes
18th century
Newborn is
AB- ?
P = 1%
Our Prior
Belief
Hypothesis =
what we seek
13. Bayesian Inference
0 Bayes’ Theorem:
0 Philosophically: Knowledge is power!
Thomas Bayes
18th century
Newborn is
AB- ?
P = 1%
Our Prior
Belief
Hypothesis =
what we seek
Mother is AB-
Evidence
14. Bayesian Inference
0 Bayes’ Theorem:
0 Philosophically: Knowledge is power!
0 Bayesian Updating: Evidence updates belief
Thomas Bayes
18th century
Newborn is
AB- ?
P = 1%
Our Prior
Belief
Hypothesis =
what we seek
Mother is AB-
Evidence
P = ?
Our
a posteriori
Updated Belief
15. Bayesian Inference
0 Bayes’ Theorem:
0 Philosophically: Knowledge is power!
0 Bayesian Updating: Evidence updates belief
Thomas Bayes
18th century
Newborn is
AB- ?
P = 1%
Our Prior
Belief
Hypothesis =
what we seek
Mother is AB-
Evidence
P = ?
Our
a posteriori
Updated Belief
Remember! Links are directed from
what we seek to what we observe
16. Bayesian Inference – Belief Propagation
0 Given that the lawn is wet, what could be the reason for that?
0 Rainy weather? or
0 A turned-on sprinkler?
Weather
Lawn
Sprinkler
Hypotheses
Evidence
Prior
P(Sprinkler = ‘On’)
P(Sprinkler = ‘Off’)
Prior
P(Weather = ‘Sunny’)
P(Weather = ‘Rainy’)
17. Bayesian Inference – Belief Propagation
0 Given that the lawn is wet, what could be the reason for that?
0 Rainy weather? or
0 A turned-on sprinkler?
Weather
Lawn
Sprinkler
Hypotheses
Evidence
Prior
P(Sprinkler = ‘On’)
P(Sprinkler = ‘Off’)
Prior
P(Weather = ‘Sunny’)
P(Weather = ‘Rainy’)
A Posteriori
P (Sprinkler = ‘On’ | Lawn = ‘wet')
P (Sprinkler = ‘Off’ | Lawn = ‘wet')
A Posteriori
P(Weather = ‘Sunny’ | Lawn = ‘wet')
P(Weather = ‘Rainy’ | Lawn = ‘wet')
18. MAP = Bayes Decision Rule
0 So what to predict? Rainy weather or turned-on sprinkler?
0 MAP: choose Maximum A posteriori Probability
0 For P(Weather=‘rainy’ | Lawn=‘wet’) = 0.1 ; P(Sprinkler=‘On’ | Lawn=‘wet’) = 0.08
0Choose Weather = ‘rainy’ , i.e. given the lawn is wet it’s more
probable that a rainy weather caused it rather than a turned-on
sprinkler
Weather
Lawn
Sprinkler
Hypotheses
Evidence
A Posteriori
P(Sprinkler = ‘On’ | Lawn = ‘wet')
P(Sprinkler = ‘Off’ | Lawn = ‘wet')
A Posteriori
P(Weather = ‘Sunny’ | Lawn = ‘wet')
P(Weather = ‘Rainy’ | Lawn = ‘wet')
20. Appendix A
BBN – Likelihood Estimation
0 Parameters Estimation = Assigning probabilities to
parameters (CPTs’ entries)
0 One method of computing these probabilities is by
Likelihood Estimation, using statistics:
0 Tossing a coin for 100 times and getting
040 times {‘head’}
060 times {‘tail’}
0 Is the process of likelihood estimation of {head, tail}
parameters:
0The likelihood of ‘head’ parameter is 40% = ‘head’ is 40% likely to
happen
0The likelihood of ‘tail’ parameter is 60% = ‘tail’ is 60% likely to
happen
21. BBN – Likelihood Estimation of CPTs
0 Training:
0We observe the system for 1,000 times
0 {weather=‘cloudy’ ; sprinkler=‘off’ ; lawn=‘wet’}
0 {weather=‘sunny’ ; sprinkler=‘off’ ; lawn=‘dry’}
0 …
0Likelihood Estimation of Belief CPTs = Counting all observations
0e.g. out of 50 observed cases of {weather=‘cloudy’ ; sprinkler=‘off’ ;
lawn=*} in 30 of them lawn was dry and in 20 of them it was wet, we
then get:
0 P(lawn = ‘wet’ | weather=‘cloudy’ & sprinkler=‘off’) = 20 / 50 = 40%
0 P(lawn = ‘dry’ | weather=‘cloudy’ & sprinkler=‘off’) = 30 / 50 = 60%
23. Probabilities – could be fun
0 A model’s goal: approximating the real world as close as
possible
“A probabilistic model models the real world using probabilities”
0 A probabilistic model’s goal: estimate its underlying
joint probability distribution as accurate as possible
Weather Sprinkler Lawn Prob
Sunny On Wet 20%
Sunny On Dry 10%
Sunny Off Wet 0%
Sunny Off Dry 10%
Rainy On Wet 0%
Rainy On Dry 0%
Rainy Off Wet 60%
Rainy Off Dry 0%
table of all probabilities of all
possible combinations of
states in that world model
24. BBN - Factorization
0 BBN estimates its global underlying joint probability by
factorization:
1. Separately estimating all its belief CPTs
2. Multiplying them
P(weather, sprinkler, lawn) = P(weather) x P(sprinkler | weather) x P(lawn | sprinkler, weather)
For example: P(weather=‘sunny’, sprinkler=‘on’, lawn=‘wet’) =
= P(weather=‘sunny’) x
P(sprinkler=‘on’ | weather=‘sunny’) x
P(lawn=‘wet’ | sprinkler=‘on’ , weather=‘sunny’)
= 0.1 * 0.2 * 0.2 = 0.004
Weather (London)
Sunny 10%
Cloudy 30%
Rainy 60%
Sprinkler
Weather On Off
Sunny 20% 80%
Cloudy 10% 90%
Rainy 0% 100%
Lawn
Weather Sprinkler Wet Dry
Sunny On 20% 80%
Cloudy On 40% 60%
Rainy On 100% 0%
Sunny Off 0% 100%
Cloudy Off 10% 90%
Rainy Off 100% 0%
25. 0 BBN estimates its global underlying joint probability by
factorization:
1. Separately estimating all its belief CPTs
2. Multiplying them:
P(weather, sprinkler, lawn) = P(weather) x P(sprinkler | weather) x P(lawn | sprinkler, weather)
This should be your expression now.
Wonder why?
The answer is just one slide ahead
BBN - Factorization
26. P(weather, sprinkler, lawn) = P(weather) x P(sprinkler | weather) x P(lawn | sprinkler, weather)
0 Why is it so fascinating? It’s the basic chain rule from first
course in probability:
0P(A,B,C…) = P(A) x P(B|A) x P(C|A,B) x ….
0 That’s the beauty! By simply estimating the independent CPTs,
BBN estimates very complex networks!
CPTs
BBN - Factorization
27. Curse of Dimensionality
Reason #2 for being happy
0 Network Size = number of parameters
Weather
Sunny
Rainy
Weather
Sunny
Rainy
28. Curse of Dimensionality
Reason #2 for being happy
0 Network Size = number of parameters
Weather
Sprinkler
Sunny
Rainy
On
Off
weather sprinkler
Sunny On
Sunny Off
Rainy On
Rainy Off
Weather
Sunny
Rainy
29. Curse of Dimensionality
Reason #2 for being happy
0 Network Size = number of parameters
Weather
Lawn
Sprinkler
Sunny
Rainy
On
Off
Wet
Dry
weather sprinkler
Sunny On
Sunny Off
Rainy On
Rainy Off
Weather Sprinkler Lawn
Sunny On Wet
Sunny On Dry
Sunny Off Wet
Sunny Off Dry
Rainy On Wet
Rainy On Dry
Rainy Off Wet
Rainy Off Dry
Weather
Sunny
Rainy
30. Curse of Dimensionality
Reason #2 for being happy
0 Network Size = number of parameters
Weather
Lawn
Sprinkler
Sunny
Rainy
On
Off
Wet
Dry
weather sprinkler
Sunny On
Sunny Off
Rainy On
Rainy Off
Weather Sprinkler Lawn
Sunny On Wet
Sunny On Dry
Sunny Off Wet
Sunny Off Dry
Rainy On Wet
Rainy On Dry
Rainy Off Wet
Rainy Off Dry
Weather
Sunny
Rainy
Gardener
arrived
Yes
No
Weather Sprinkler Lawn Gardener
Arrived
Sunny On Wet Yes
Sunny On Wet No
Sunny On Dry Yes
Sunny On Dry No
Sunny Off Wet Yes
Sunny Off Wet No
Sunny Off Dry Yes
Sunny Off Dry No
Rainy On Wet Yes
Rainy On Wet No
Rainy On Dry Yes
Rainy On Dry No
Rainy Off Wet Yes
Rainy Off Wet No
Rainy Off Dry Yes
Rainy Off Dry No
31. 0 Network Size = number of parameters
0 Network grows exponentially with number of nodes ~ 2N
0Each additional node doubles the size of the network!
0 A network with 100 nodes 2100 parameters! Impractical!
0 BBN – your super hero
Weather
Lawn
Sprinkler
Weather
Sunny
Rainy
Sprinkler
Weather On Off
Sunny
Rainy
Lawn
Weather Sprinkler Wet Dry
Sunny On
Sunny Off
Rainy On
Rainy Off
BBN size = 3*2 + 5*4 + 6*8 = 74
Joint size = 214 = 16K
Curse of Dimensionality
Reason #2 for being happy
32. 0 BBN battles the curse of dimensionality
0 One of the most powerful properties of BBN
0 For estimating 74 parameters instead of 16K you need
much less training data
0 Could be priceless in real business applications
BBN size = 3*2 + 5*4 + 6*8 = 74
Joint size = 214 = 16K
Curse of Dimensionality
Reason #2 for being happy
Editor's Notes
#2: We’ll follow the so-called ‘Sprinkler Example’ to learn about BBN
#4: We’ll follow the so-called ‘Sprinkler Example’ to learn about BBN
#5: First we decipher what a network is. In its computer science sense a network is a graph.
It consists of nodes and edges.
Bayesian Networks are a DAG type of graphs, i.e. graph’s edges are directed and graphs have no loops
- Parameters are the possible set of values/states a node can take
#6: BBN is a probabilistic model, i.e. it comes to model the world with probabilities.
How does it do that?
It represents each node as a random variable, whose parameters may occur within a certain probability, and gather all these probabilities in a CPT
#7: BBN is a probabilistic model, i.e. it comes to model the world with probabilities.
How does it do that?
It represents each node as a random variable, whose parameters may occur within a certain probability, and gather all these probabilities in a CPT
#8: The CPT holds each node’s conditional probabilities, hence its name: Conditional Probability Table.Condition on what? On its parents. Sprinkler is conditioned on its Weather parent.
For example: the probability that we’ll look at the sprinkler and see it’s on, while the weather is sunny is equal to 20%.
What happens for nodes without parent(s)? They posses prior probabilities.
Prior probability incorporates our prior knowledge for this specific node.
Therefore, the prior probability for weather is different for Israel and London.
That means, we need in Insight to re-examine these probabilities for each customer
#11: We feed the engine with examples, a.k.a. BBN cases.
The training algorithm counts each occurrence of each state and generates probabilities out of these statistics, a.k.a. CPTs.
#12: Now it’s the money time: we have the model that we trained for this particular task of prediction.
Given a real situation that occur in real time we need to make a prediction (or to inference) what could be the reason for a wet lawn: A rainy weather or a turned-on sprinkler. Or in Insight: Given current status of a calling customer, what are the most likely motivations for this customer to call.
#17: BNs are used for inference/prediction.
By applying evidence to some node(s), the BN uncertainty propagation algorithm propagates this evidence through the rest of the BN to produce a posteriori distribution of the target variables, given the evidence. For example, P(Weather | evident Lawn) or P(call motivation | evident observation).
#18: BNs are used for inference/prediction.
By applying evidence to some node(s), the BN uncertainty propagation algorithm propagates this evidence through the rest of the BN to produce a posteriori distribution of the target variables, given the evidence. For example, P(Weather | evident Lawn) or P(call motivation | evident observation).
#19: Now, that a posteriori probabilities were computed using the Belief Propagation algorithm, we need to output our prediction: a rainy weather or a turned-on sprinkler?
The method to choose is called MAP – choosing the highest (posterior) probability
#23: "joint distribution". This is a table of all the probabilities of all the possible combinations of states in that world model. Such a table can become huge, since it ends up storing one probability value for every combination of states, this is the multiplication of all the numbers of states for each node.
#24: "joint distribution". This is a table of all the probabilities of all the possible combinations of states in that world model. Such a table can become huge, since it ends up storing one probability value for every combination of states, this is the multiplication of all the numbers of states for each node.
#25: "joint distribution". This is a table of all the probabilities of all the possible combinations of states in that world model. Such a table can become huge, since it ends up storing one probability value for every combination of states, this is the multiplication of all the numbers of states for each node.
#26: "joint distribution". This is a table of all the probabilities of all the possible combinations of states in that world model. Such a table can become huge, since it ends up storing one probability value for every combination of states, this is the multiplication of all the numbers of states for each node.
#27: "joint distribution". This is a table of all the probabilities of all the possible combinations of states in that world model. Such a table can become huge, since it ends up storing one probability value for every combination of states, this is the multiplication of all the numbers of states for each node.
#32: Because a Bayes net only relates nodes that are probabilistically related by some sort of causal dependency, an enormous saving of computation can result. There is no need to store all possible configurations of states, all possible worlds, if you will. All that is needed to store and work with is all possible combinations of states between sets of related parent and child nodes (families of nodes, if you will). This makes for a great saving of table space and computation.
An alternative view:
#33: Because a Bayes net only relates nodes that are probabilistically related by some sort of causal dependency, an enormous saving of computation can result. There is no need to store all possible configurations of states, all possible worlds, if you will. All that is needed to store and work with is all possible combinations of states between sets of related parent and child nodes (families of nodes, if you will). This makes for a great saving of table space and computation.
An alternative view: