This document summarizes a presentation on unsupervised and supervised machine learning techniques for automated content analysis. It recaps types of automated content analysis, describes unsupervised techniques like principal component analysis (PCA) and latent Dirichlet allocation (LDA), and supervised machine learning techniques like regression. It provides examples of applying these techniques to cluster Facebook messages and predict newspaper reading. The document concludes by noting the presenter will use a portion of labeled data to estimate models and check predictions against the remaining labeled data.