This presentation delves into the world of Natural Language Processing (NLP), exploring its goal to make human language understandable to machines. The complexities of language, such as ambiguity and complex structures, are highlighted as major challenges. The talk underscores the evolution of NLP through deep learning methodologies, leading to a new era defined by large-scale language models. However, obstacles like low-resource languages and ethical issues including bias and hallucination are acknowledged as enduring challenges in the field. Overall, the presentation provides a condensed, yet comprehensive view of NLP's accomplishments and ongoing hurdles.