SlideShare a Scribd company logo
SUBMITTED BY
M.ABINAYA
II M.SC.,CS
Big Data
• Lots of data is being collected
and warehoused
– Web data, e-commerce
– purchases at department/
grocery stores
– Bank/Credit Card
transactions
– Social Network
Three Characteristics of Big Data: V3s
Volume
•Data quantity
Velocity
•Data Speed
Variety
•Data Types
1st Character of Big Data-Volume
•A typical PC might have had 10 gigabytes of storage in 2000.
•Today, Facebook ingests 500 terabytes of new data every day.
•Boeing 737 will generate 240 terabytes of flight data during a single
flight across the US.
• The smart phones, the data they create and consume; sensors
embedded into everyday objects will soon result in billions of new,
constantly-updated data feeds containing environmental, location,
and other information, including video.
2nd Character of Big Data –Velocity
• Clickstreams and ad impressions capture user behavior at
millions of events per second
• high-frequency stock trading algorithms reflect market
changes within microseconds
• machine to machine processes exchange data between
billions of devices
• infrastructure and sensors generate massive log data in realtime
• on-line gaming systems support millions of concurrent
users, each producing multiple inputs per second.
3rd Character of Big Data-Variety
• Big Data isn't just numbers, dates, and strings. Big
Data is also geospatial data, 3D data, audio and
video, and unstructured text, including log files and
social media.
• Traditional database systems were designed to
address smaller volumes of structured data, fewer
updates or a predictable, consistent data structure.
• Big Data analysis includes different types of data
Storing Big Data
Analyzing your data characteristics
• Selecting data sources for analysis
• Eliminating redundant data
• Establishing the role of NoSQL
Overview of Big Data stores
• Data models: key value, graph, document,
column-family
• Hadoop Distributed File System
• HBase
• Hive
Selecting Big Data stores
• Choosing the correct data stores based on
your data characteristics
• Moving code to data
• Implementing polyglot data store solutions
• Aligning business goals to the appropriate
data store
Processing Big Data
Integrating disparate data stores
• Mapping data to the programming framework
• Connecting and extracting data from storage
• Transforming data for processing
• Subdividing data in preparation for Hadoop MapReduce
Employing Hadoop MapReduce
• Creating the components of Hadoop MapReduce jobs
• Distributing data processing across server farms
• Executing Hadoop MapReduce jobs
• Monitoring the progress of job flows
Type of Data
• Relational Data (Tables/Transaction/Legacy Data)
• Text Data (Web)
• Semi-structured Data (XML)
• Graph Data
– Social Network, Semantic Web (RDF), …
• Streaming Data
– You can only scan the data once
The Structure of Big Data
Structured
• Most traditional data sources
Semi-structured
• Many sources of big data
Unstructured
• Video data, audio data
Why Big Data
• Growth of Big Data is needed
– Increase of storage capacities
– Increase of processing power
– Availability of data(different data types)
– Every day we create 2.5 quintillion bytes of data; 90% of the data in the
world today has been created in the last two years alone
Big data converted

More Related Content

What's hot (20)

Overview of Bigdata Analytics
Overview of Bigdata Analytics Overview of Bigdata Analytics
Overview of Bigdata Analytics
Sankarapu Anjaneyulu
 
Bigdata Analytics using Hadoop
Bigdata Analytics using HadoopBigdata Analytics using Hadoop
Bigdata Analytics using Hadoop
Nagamani Gurram
 
Business intelligence
Business intelligence Business intelligence
Business intelligence
Ahmed Zein
 
A Gentle Introduction to Big Data
A Gentle Introduction to Big DataA Gentle Introduction to Big Data
A Gentle Introduction to Big Data
Mehmet Ali Akyol
 
Analysis of big data in pandemic case
Analysis of big data in pandemic case Analysis of big data in pandemic case
Analysis of big data in pandemic case
Muh Saleh
 
Big data
Big dataBig data
Big data
kalyani reddy
 
Introduction to Big Data & Hadoop
Introduction to Big Data & Hadoop Introduction to Big Data & Hadoop
Introduction to Big Data & Hadoop
iACT Global
 
Big data
Big dataBig data
Big data
ArchanaMani2
 
Introduction to BIG DATA
Introduction to BIG DATA Introduction to BIG DATA
Introduction to BIG DATA
Zeeshan Khan
 
Real time bi solution architecture
Real time bi solution architectureReal time bi solution architecture
Real time bi solution architecture
Sandeep Sharma IIMK Smart City,IoT,Bigdata,Cloud,BI,DW
 
InterSystems advanced data technology
InterSystems advanced data technologyInterSystems advanced data technology
InterSystems advanced data technology
Robert Bira
 
Big data? No. Big Decisions are What You Want
Big data? No. Big Decisions are What You WantBig data? No. Big Decisions are What You Want
Big data? No. Big Decisions are What You Want
Stuart Miniman
 
Thilga
ThilgaThilga
Thilga
THILAKAVATHIRAMRAJ
 
Session 10 data
Session 10 dataSession 10 data
Session 10 data
Youngjin Yoo
 
big data and hadoop
 big data and hadoop big data and hadoop
big data and hadoop
ahmed alshikh
 
Chapter 1 big data
Chapter 1 big dataChapter 1 big data
Chapter 1 big data
Prof .Pragati Khade
 
Big Data
Big DataBig Data
Big Data
Neha Mehta
 
NoSQL Type, Bigdata, and Analytics
NoSQL Type, Bigdata, and AnalyticsNoSQL Type, Bigdata, and Analytics
NoSQL Type, Bigdata, and Analytics
Sandeep Sharma IIMK Smart City,IoT,Bigdata,Cloud,BI,DW
 
Big_data_ppt
Big_data_ppt Big_data_ppt
Big_data_ppt
Sadhana Singh
 
Presentation at Google Day on Big Data
Presentation at Google Day on Big DataPresentation at Google Day on Big Data
Presentation at Google Day on Big Data
Rezaur Rahman
 

Similar to Big data converted (20)

Big data
Big dataBig data
Big data
SaraRao3
 
Content1. Introduction2. What is Big Data3. Characte.docx
Content1. Introduction2. What is Big Data3. Characte.docxContent1. Introduction2. What is Big Data3. Characte.docx
Content1. Introduction2. What is Big Data3. Characte.docx
dickonsondorris
 
BIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptxBIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptx
SinthuJa14
 
BIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptxBIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptx
SinthuJa14
 
Big data ppt
Big  data pptBig  data ppt
Big data ppt
Nasrin Hussain
 
Special issues on big data
Special issues on big dataSpecial issues on big data
Special issues on big data
Vedanand Singh
 
Bigdatappt 140225061440-phpapp01
Bigdatappt 140225061440-phpapp01Bigdatappt 140225061440-phpapp01
Bigdatappt 140225061440-phpapp01
nayanbhatia2
 
Big_Data_ppt[1] (1).pptx
Big_Data_ppt[1] (1).pptxBig_Data_ppt[1] (1).pptx
Big_Data_ppt[1] (1).pptx
TanguturiAvinash
 
ppt final.pptx
ppt final.pptxppt final.pptx
ppt final.pptx
kalai75
 
bigdatappt.pptx
bigdatappt.pptxbigdatappt.pptx
bigdatappt.pptx
KrishnaTeja570279
 
Presentation on Big Data
Presentation on Big DataPresentation on Big Data
Presentation on Big Data
Md. Salman Ahmed
 
Big data
Big dataBig data
Big data
Mahmudul Alam
 
Big data analytics and machine intelligence v5.0
Big data analytics and machine intelligence   v5.0Big data analytics and machine intelligence   v5.0
Big data analytics and machine intelligence v5.0
Amr Kamel Deklel
 
Bigdata " new level"
Bigdata " new level"Bigdata " new level"
Bigdata " new level"
Vamshikrishna Goud
 
Big data ppt
Big data pptBig data ppt
Big data ppt
SENTHIL PANDI
 
Big data and analytics
Big data and analyticsBig data and analytics
Big data and analytics
Bohitesh Misra, PMP
 
Big data by Mithlesh sadh
Big data by Mithlesh sadhBig data by Mithlesh sadh
Big data by Mithlesh sadh
Mithlesh Sadh
 
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptxUnushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
AshishHiwale1
 
Big data
Big dataBig data
Big data
roysonli
 
Big data.ppt
Big data.pptBig data.ppt
Big data.ppt
IdontKnow66967
 
Content1. Introduction2. What is Big Data3. Characte.docx
Content1. Introduction2. What is Big Data3. Characte.docxContent1. Introduction2. What is Big Data3. Characte.docx
Content1. Introduction2. What is Big Data3. Characte.docx
dickonsondorris
 
BIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptxBIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptx
SinthuJa14
 
BIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptxBIGDATA-Basics-Sources-types-Impact.pptx
BIGDATA-Basics-Sources-types-Impact.pptx
SinthuJa14
 
Special issues on big data
Special issues on big dataSpecial issues on big data
Special issues on big data
Vedanand Singh
 
Bigdatappt 140225061440-phpapp01
Bigdatappt 140225061440-phpapp01Bigdatappt 140225061440-phpapp01
Bigdatappt 140225061440-phpapp01
nayanbhatia2
 
ppt final.pptx
ppt final.pptxppt final.pptx
ppt final.pptx
kalai75
 
Big data analytics and machine intelligence v5.0
Big data analytics and machine intelligence   v5.0Big data analytics and machine intelligence   v5.0
Big data analytics and machine intelligence v5.0
Amr Kamel Deklel
 
Big data by Mithlesh sadh
Big data by Mithlesh sadhBig data by Mithlesh sadh
Big data by Mithlesh sadh
Mithlesh Sadh
 
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptxUnushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
AshishHiwale1
 

Recently uploaded (20)

HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 

Big data converted

  • 2. Big Data • Lots of data is being collected and warehoused – Web data, e-commerce – purchases at department/ grocery stores – Bank/Credit Card transactions – Social Network
  • 3. Three Characteristics of Big Data: V3s Volume •Data quantity Velocity •Data Speed Variety •Data Types
  • 4. 1st Character of Big Data-Volume •A typical PC might have had 10 gigabytes of storage in 2000. •Today, Facebook ingests 500 terabytes of new data every day. •Boeing 737 will generate 240 terabytes of flight data during a single flight across the US. • The smart phones, the data they create and consume; sensors embedded into everyday objects will soon result in billions of new, constantly-updated data feeds containing environmental, location, and other information, including video.
  • 5. 2nd Character of Big Data –Velocity • Clickstreams and ad impressions capture user behavior at millions of events per second • high-frequency stock trading algorithms reflect market changes within microseconds • machine to machine processes exchange data between billions of devices • infrastructure and sensors generate massive log data in realtime • on-line gaming systems support millions of concurrent users, each producing multiple inputs per second.
  • 6. 3rd Character of Big Data-Variety • Big Data isn't just numbers, dates, and strings. Big Data is also geospatial data, 3D data, audio and video, and unstructured text, including log files and social media. • Traditional database systems were designed to address smaller volumes of structured data, fewer updates or a predictable, consistent data structure. • Big Data analysis includes different types of data
  • 7. Storing Big Data Analyzing your data characteristics • Selecting data sources for analysis • Eliminating redundant data • Establishing the role of NoSQL Overview of Big Data stores • Data models: key value, graph, document, column-family • Hadoop Distributed File System • HBase • Hive
  • 8. Selecting Big Data stores • Choosing the correct data stores based on your data characteristics • Moving code to data • Implementing polyglot data store solutions • Aligning business goals to the appropriate data store
  • 9. Processing Big Data Integrating disparate data stores • Mapping data to the programming framework • Connecting and extracting data from storage • Transforming data for processing • Subdividing data in preparation for Hadoop MapReduce Employing Hadoop MapReduce • Creating the components of Hadoop MapReduce jobs • Distributing data processing across server farms • Executing Hadoop MapReduce jobs • Monitoring the progress of job flows
  • 10. Type of Data • Relational Data (Tables/Transaction/Legacy Data) • Text Data (Web) • Semi-structured Data (XML) • Graph Data – Social Network, Semantic Web (RDF), … • Streaming Data – You can only scan the data once
  • 11. The Structure of Big Data Structured • Most traditional data sources Semi-structured • Many sources of big data Unstructured • Video data, audio data
  • 12. Why Big Data • Growth of Big Data is needed – Increase of storage capacities – Increase of processing power – Availability of data(different data types) – Every day we create 2.5 quintillion bytes of data; 90% of the data in the world today has been created in the last two years alone