SlideShare a Scribd company logo
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 1
Big Data Hadoop
Local and Public Cloud
Hands On Workshop
Dr.Thanachart Numnonda
thanachart@imcinstitute.com
Danairat T.
Certified Java Programmer, TOGAF – Silver
danairat@gmail.com, +66-81-559-1446
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 2
Hands-On: Running Hadoop
on Amazon Elastic MapReduce
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 3
Architecture Overview of Amazon EMR
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 4
Creating an AWS account
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 5
Signing up for the necessary services
●
Simple Storage Service (S3)
●
Elastic Compute Cloud (EC2)
●
Elastic MapReduce (EMR)
Caution! This costs real money!
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 6
Creating Amazon EC2 Instance
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 7
Creating Amazon S3 bucket
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 8
Create access key using Security Credentials
in the AWS Management Console
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 9
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 10
Creating a new Job Flow in EMR
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 11
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 12
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 13
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 14
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 15
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 16
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 17
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 18
View Result from the S3 bucket
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 19
Lecture: Understanding Map Reduce
Processing
Client
Name Node Job Tracker
Data Node
Task Tracker
Data Node
Task Tracker
Data Node
Task Tracker
Map Reduce
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 20
MapReduce Framework
map: (K1, V1) -> list(K2, V2))
reduce: (K2, list(V2)) -> list(K3, V3)
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 21
MapReduce Processing – The Data
flow
1. InputFormat, InputSplits, RecordReader
2. Mapper - your focus is here
3. Partition, Shuffle & Sort
4. Reducer - your focus is here
5. OutputFormat, RecordWriter
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 22
How does the MapReduce work?
Output in a list of (Key, List of Values)
in the intermediate file
Sorting
Partitioning
Output in a list of (Key, Value)
in the intermediate file
InputSplit
RecordReader
RecordWriter
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 23
How does the MapReduce work?
Sorting
Partitioning
Combining
Car, 2
Car, 2
Bear, {1,1}
Car, {2,1}
River, {1,1}
Deer, {1,1}
Output in a list of (Key, List of Values)
in the intermediate file
Output in a list of (Key, Value)
in the intermediate file
InputSplit
RecordReader
RecordWriter
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 24
Hands-On: Writing you own Map
Reduce Program
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 25
Wordcount (HelloWord in Hadoop)
1. package org.myorg;
2.
3. import java.io.IOException;
4. import java.util.*;
5.
6. import org.apache.hadoop.fs.Path;
7. import org.apache.hadoop.conf.*;
8. import org.apache.hadoop.io.*;
9. import org.apache.hadoop.mapred.*;
10. import org.apache.hadoop.util.*;
11.
12. public class WordCount {
13.
14.
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text,
IntWritable> {
15. private final static IntWritable one = new IntWritable(1);
16. private Text word = new Text();
17.
18.
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {
19. String line = value.toString();
20. StringTokenizer tokenizer = new StringTokenizer(line);
21. while (tokenizer.hasMoreTokens()) {
22. word.set(tokenizer.nextToken());
23. output.collect(word, one);
24. }
25. }
26. }
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 26
Wordcount (HelloWord in Hadoop)
27.
28. public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text,
IntWritable> {
29.
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable>
output, Reporter reporter) throws IOException {
30. int sum = 0;
31. while (values.hasNext()) {
32. sum += values.next().get();
33. }
34. output.collect(key, new IntWritable(sum));
35. }
36. }
37.
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 27
Wordcount (HelloWord in Hadoop)
38. public static void main(String[] args) throws Exception {
39. JobConf conf = new JobConf(WordCount.class);
40. conf.setJobName("wordcount");
41.
42. conf.setOutputKeyClass(Text.class);
43. conf.setOutputValueClass(IntWritable.class);
44.
45. conf.setMapperClass(Map.class);
46.
47. conf.setReducerClass(Reduce.class);
48.
49. conf.setInputFormat(TextInputFormat.class);
50. conf.setOutputFormat(TextOutputFormat.class);
51.
52. FileInputFormat.setInputPaths(conf, new Path(args[0]));
53. FileOutputFormat.setOutputPath(conf, new Path(args[1]));
54.
55. JobClient.runJob(conf);
57. }
58. }
59.
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 28
Hands-On: Packaging Map Reduce
and Deploying to Hadoop Runtime
Environment
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 29
Packaging Map Reduce Program
Usage
Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the Hadoop version
installed, compile WordCount.java and create a jar:
$ mkdir /home/hduser/wordcount_classes
$ cd /home/hduser
$ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d wordcount_classes WordCount.java
$ jar -cvf ./wordcount.jar -C wordcount_classes/ .
$ hadoop jar ./wordcount.jar org.myorg.WordCount /input/* /output/wordcount_output_dir
Output:
…….
$ hadoop dfs -cat /output/wordcount_output_dir/part-00000
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 30
Hands-On: Running WordCount.jar
on Amazon EMR
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 31
Upload .jar file and input file to
Amazon S3
1. Select <yourbucket> in Amazon S3 service
2. Create folder : applications
3. Upload wordcount.jar to the applications folder
4. Create another folder: input
5. Upload input_test.txt to the input folder
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 32
Running a new Job Flow in EMR
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 33
Input JAR Location and Arguments
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 34
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 35
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 36
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 37
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 38
View the Result
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 39
Hands-On: Analytics Using
MapReduce
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 40
Three Analytic MapReduce Examples
1. Simple analytics using MapReduce
2. Performing Group-By using MapReduce
3. Calculating frequency distributions and
sorting using MapReduce
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 41
NASA weblog dataset available from
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
is a real-life dataset collected using the requests received by NASA web servers.
Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We call the extracted folder as DATA_DIR.
$ hadoopdfs -mkdir /data
$ hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1
Preparing Example Data
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 42
Aggregative values (for example, Mean, Max, Min, standard deviation, and so on)
provide the basic analytics about a dataset..
Simple analytics using MapReduce
Source: Hadoop MapReduce CookBook
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 43
package analysis;
import java.io.IOException;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
import org.apache.hadoop.conf.*;
public class WebLogMessageSizeAggregator {
public static final Pattern httplogPattern = Pattern
.compile("([^s]+) - - [(.+)] "([^s]+) (/[^s]*) HTTP/[^s]+"
[^s]+ ([0-9]+)");
public static class AMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, IntWritable> {
WebLogMessageSizeAggregator.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 44
public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output,Reporter reporter) throws IOException {
Matcher matcher = httplogPattern.matcher(value.toString());
if (matcher.matches()) {
int size = Integer.parseInt(matcher.group(5));
output.collect(new Text("msgSize"), new IntWritable(size));
}
}
}
WebLogMessageSizeAggregator.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 45
public static class AReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException {
double tot = 0;
int count = 0;
int min = Integer.MAX_VALUE;
int max = 0;
while (values.hasNext()) {
int value = values.next().get();
tot = tot + value;
count++;
if (value < min) {
min = value;
}
if (value > max) {
max = value;
}
}
WebLogMessageSizeAggregator.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 46
output.collect(new Text("Mean"), new IntWritable((int) tot / count));
output.collect(new Text("Max"), new IntWritable(max));
output.collect(new Text("Min"), new IntWritable(min));
}
}
public static void main(String[] args) throws Exception {
JobConf job = new JobConf(WebLogMessageSizeAggregator.class);
job.setJarByClass(WebLogMessageSizeAggregator.class);
job.setMapperClass(AMapper.class);
job.setReducerClass(AReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
JobClient.runJob(job);
}
}
WebLogMessageSizeAggregator.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 47
Compile, Build JAR, Submit Job, Review Result
$ cd /home/hduser
$ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLog WebLogMessageSizeAggregator.java
$ jar -cvf ./weblog.jar -C WebLog .
$ hadoop jar ./weblog.jar analysis.WebLogMessageSizeAggregator /data/* /output/result_weblog
Output:
......
$ hadoop dfs -cat /output/result_weblog/part-00000
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 48
A MapReduce to group data into simple groups and calculate the analytics for
each group.
Performing Group-By using MapReduce
Source: Hadoop MapReduce CookBook
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 49
public class WeblogHitsByLinkProcessor {
public static final Pattern httplogPattern = Pattern
.compile("([^s]+) - - [(.+)] "([^s]+) (/[^s]*) HTTP/[^s]+"
[^s]+ ([0-9]+)");
public static class AMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output,Reporter reporter) throws IOException {
Matcher matcher = httplogPattern.matcher(value.toString());
if (matcher.matches()) {
String linkUrl = matcher.group(4);
word.set(linkUrl);
output.collect(word, one);
}
}
}
WeblogHitsByLinkProcessor.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 50
public static class AReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
result.set(sum);
output.collect(key, result);
}
}
WeblogHitsByLinkProcessor.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 51
Compile, Build JAR, Submit Job, Review Result
$ cd /home/hduser
$ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLogHit WeblogHitsByLinkProcessor.java
$ jar -cvf ./webloghit.jar -C WebLogHit .
$ hadoop jar ./webloghit.jar analysis.WeblogHitsByLinkProcessor /data/* /output/result_webloghit
Output:
......
$ hadoop dfs -cat /output/result_webloghit/part-00000
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 52
Frequency distribution is the number of hits received by each URL sorted in the
Ascending order, by the number hits received by a URL. We have already calculated
the number of hits inthe previous program.
Calculating frequency distributions and
sorting using MapReduce
Source: Hadoop MapReduce CookBook
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 53
public class WeblogFrequencyDistributionProcessor {
public static final Pattern httplogPattern = Pattern.compile("([^s]+) - - [(.
+)] "([^s]+) (/[^s]*) HTTP/[^s]+" [^s]+ ([0-9]+)");
public static class AMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, IntWritable> {
public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output,Reporter reporter) throws IOException {
String[] tokens = value.toString().split("s");
output.collect(new Text(tokens[0]),new
IntWritable(Integer.parseInt(tokens[1])));
}
}
WeblogFrequencyDistributionProcessor.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 54
/**
* <p>Reduce function receives all the values that has the same key as the input,
and it output the key
* and the number of occurrences of the key as the output.</p>
*/
public static class AReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException {
if(values.hasNext()){
output.collect(key, values.next());
}
}
}
WeblogFrequencyDistributionProcessor.java
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 55
Compile, Build JAR, Submit Job, Review Result
$ cd /home/hduser
$ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLogFreq
WWeblogFrequencyDistributionProcessor.java
$ jar -cvf ./weblogfreq.jar -C WebLogFreq .
$ hadoop jar ./weblogfreq.jar analysis.WeblogFrequencyDistributionProcessor /output/result_webloghit/*
/output/result_weblogfreq
Output:
......
$ hadoop dfs -cat /output/result_weblogfreq/part-00000
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 56
Exercise: Runming the analytic
programs on Amazon EMR.
Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 57
Thank you

More Related Content

What's hot (20)

PDF
Hadoop Workshop on EC2 : March 2015
IMC Institute
 
DOCX
Hadoop Report
Nishant Gandhi
 
PPTX
Python for Big Data Analytics
Edureka!
 
PPT
Hadoop summit 2010 frameworks panel elephant bird
Kevin Weil
 
PDF
Big data Hadoop Analytic and Data warehouse comparison guide
Danairat Thanabodithammachari
 
PPTX
Python for Big Data Analytics
Edureka!
 
PPTX
Introduction to MapReduce | MapReduce Architecture | MapReduce Fundamentals
Skillspeed
 
PDF
Introduction To Apache Pig at WHUG
Adam Kawa
 
PPTX
Hadoop for Java Professionals
Edureka!
 
PPTX
Introduction to Apache Hadoop
Christopher Pezza
 
PPTX
R Hadoop integration
Dzung Nguyen
 
PDF
R, Hadoop and Amazon Web Services
Portland R User Group
 
DOCX
10 Popular Hadoop Technical Interview Questions
ZaranTech LLC
 
PDF
Hadoop MapReduce Framework
Edureka!
 
PPTX
The hadoop 2.0 ecosystem and yarn
Michael Joseph
 
PDF
Fishing Graphs in a Hadoop Data Lake by Jörg Schad and Max Neunhoeffer at Big...
Big Data Spain
 
PDF
Hadoop Pig: MapReduce the easy way!
Nathan Bijnens
 
PPT
hadoop&zing
zingopen
 
PPTX
Big data-denis-rothman
Denis Rothman
 
PDF
Introduction and Overview of BigData, Hadoop, Distributed Computing - BigData...
Mahantesh Angadi
 
Hadoop Workshop on EC2 : March 2015
IMC Institute
 
Hadoop Report
Nishant Gandhi
 
Python for Big Data Analytics
Edureka!
 
Hadoop summit 2010 frameworks panel elephant bird
Kevin Weil
 
Big data Hadoop Analytic and Data warehouse comparison guide
Danairat Thanabodithammachari
 
Python for Big Data Analytics
Edureka!
 
Introduction to MapReduce | MapReduce Architecture | MapReduce Fundamentals
Skillspeed
 
Introduction To Apache Pig at WHUG
Adam Kawa
 
Hadoop for Java Professionals
Edureka!
 
Introduction to Apache Hadoop
Christopher Pezza
 
R Hadoop integration
Dzung Nguyen
 
R, Hadoop and Amazon Web Services
Portland R User Group
 
10 Popular Hadoop Technical Interview Questions
ZaranTech LLC
 
Hadoop MapReduce Framework
Edureka!
 
The hadoop 2.0 ecosystem and yarn
Michael Joseph
 
Fishing Graphs in a Hadoop Data Lake by Jörg Schad and Max Neunhoeffer at Big...
Big Data Spain
 
Hadoop Pig: MapReduce the easy way!
Nathan Bijnens
 
hadoop&zing
zingopen
 
Big data-denis-rothman
Denis Rothman
 
Introduction and Overview of BigData, Hadoop, Distributed Computing - BigData...
Mahantesh Angadi
 

Similar to Big Data Hadoop Local and Public Cloud (Amazon EMR) (20)

PDF
Learning How to Learn Hadoop
Silicon Halton
 
PPTX
Hadoop and Mapreduce for .NET User Group
Csaba Toth
 
KEY
Getting Started on Hadoop
Paco Nathan
 
DOCX
My First Hadoop Program !!!
Ayapparaj SKS
 
PDF
Basics of big data analytics hadoop
Ambuj Kumar
 
PPTX
Basic of Big Data
Amar kumar
 
PPT
L19CloudMapReduce introduction for cloud computing .ppt
MaruthiPrasad96
 
PPT
Hadoop MapReduce Fundamentals
Lynn Langit
 
PDF
Hadoop breizhjug
David Morin
 
PDF
Hadoop Tutorial with @techmilind
EMC
 
PPTX
Hadoop for Data Science
Donald Miner
 
PPTX
Data science and Hadoop
Donald Miner
 
PDF
Big data using Hadoop, Hive, Sqoop with Installation
mellempudilavanya999
 
PPT
Finding the needles in the haystack. An Overview of Analyzing Big Data with H...
Chris Baglieri
 
PPTX
Hands on Hadoop and pig
Sudar Muthu
 
PPTX
Not Just Another Overview of Apache Hadoop
Adaryl "Bob" Wakefield, MBA
 
PDF
2. Develop a MapReduce program to calculate the frequency of a given word in ...
Prof. Maulik Trivedi
 
PDF
Introduction to apache hadoop
Shashwat Shriparv
 
PPTX
Map-Reduce and Apache Hadoop
Svetlin Nakov
 
PPTX
Hadoop/MapReduce/HDFS
praveen bhat
 
Learning How to Learn Hadoop
Silicon Halton
 
Hadoop and Mapreduce for .NET User Group
Csaba Toth
 
Getting Started on Hadoop
Paco Nathan
 
My First Hadoop Program !!!
Ayapparaj SKS
 
Basics of big data analytics hadoop
Ambuj Kumar
 
Basic of Big Data
Amar kumar
 
L19CloudMapReduce introduction for cloud computing .ppt
MaruthiPrasad96
 
Hadoop MapReduce Fundamentals
Lynn Langit
 
Hadoop breizhjug
David Morin
 
Hadoop Tutorial with @techmilind
EMC
 
Hadoop for Data Science
Donald Miner
 
Data science and Hadoop
Donald Miner
 
Big data using Hadoop, Hive, Sqoop with Installation
mellempudilavanya999
 
Finding the needles in the haystack. An Overview of Analyzing Big Data with H...
Chris Baglieri
 
Hands on Hadoop and pig
Sudar Muthu
 
Not Just Another Overview of Apache Hadoop
Adaryl "Bob" Wakefield, MBA
 
2. Develop a MapReduce program to calculate the frequency of a given word in ...
Prof. Maulik Trivedi
 
Introduction to apache hadoop
Shashwat Shriparv
 
Map-Reduce and Apache Hadoop
Svetlin Nakov
 
Hadoop/MapReduce/HDFS
praveen bhat
 
Ad

More from IMC Institute (20)

PDF
นิตยสาร Digital Trends ฉบับที่ 14
IMC Institute
 
PDF
Digital trends Vol 4 No. 13 Sep-Dec 2019
IMC Institute
 
PDF
บทความ The evolution of AI
IMC Institute
 
PDF
IT Trends eMagazine Vol 4. No.12
IMC Institute
 
PDF
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
IMC Institute
 
PDF
IT Trends 2019: Putting Digital Transformation to Work
IMC Institute
 
PDF
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
IMC Institute
 
PDF
IT Trends eMagazine Vol 4. No.11
IMC Institute
 
PDF
แนวทางการทำ Digital transformation
IMC Institute
 
PDF
บทความ The New Silicon Valley
IMC Institute
 
PDF
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
IMC Institute
 
PDF
แนวทางการทำ Digital transformation
IMC Institute
 
PDF
The Power of Big Data for a new economy (Sample)
IMC Institute
 
PDF
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
IMC Institute
 
PDF
IT Trends eMagazine Vol 3. No.9
IMC Institute
 
PDF
Thailand software & software market survey 2016
IMC Institute
 
PPTX
Developing Business Blockchain Applications on Hyperledger
IMC Institute
 
PDF
Digital transformation @thanachart.org
IMC Institute
 
PDF
บทความ Big Data จากบล็อก thanachart.org
IMC Institute
 
PDF
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation
IMC Institute
 
นิตยสาร Digital Trends ฉบับที่ 14
IMC Institute
 
Digital trends Vol 4 No. 13 Sep-Dec 2019
IMC Institute
 
บทความ The evolution of AI
IMC Institute
 
IT Trends eMagazine Vol 4. No.12
IMC Institute
 
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
IMC Institute
 
IT Trends 2019: Putting Digital Transformation to Work
IMC Institute
 
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
IMC Institute
 
IT Trends eMagazine Vol 4. No.11
IMC Institute
 
แนวทางการทำ Digital transformation
IMC Institute
 
บทความ The New Silicon Valley
IMC Institute
 
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
IMC Institute
 
แนวทางการทำ Digital transformation
IMC Institute
 
The Power of Big Data for a new economy (Sample)
IMC Institute
 
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
IMC Institute
 
IT Trends eMagazine Vol 3. No.9
IMC Institute
 
Thailand software & software market survey 2016
IMC Institute
 
Developing Business Blockchain Applications on Hyperledger
IMC Institute
 
Digital transformation @thanachart.org
IMC Institute
 
บทความ Big Data จากบล็อก thanachart.org
IMC Institute
 
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation
IMC Institute
 
Ad

Recently uploaded (20)

PPTX
Talbott's brief History of Computers for CollabDays Hamburg 2025
Talbott Crowell
 
PDF
Software Development Company Keene Systems, Inc (1).pdf
Custom Software Development Company | Keene Systems, Inc.
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PDF
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
PDF
NASA A Researcher’s Guide to International Space Station : Fundamental Physics
Dr. PANKAJ DHUSSA
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PPTX
Securing Model Context Protocol with Keycloak: AuthN/AuthZ for MCP Servers
Hitachi, Ltd. OSS Solution Center.
 
PDF
99 Bottles of Trust on the Wall — Operational Principles for Trust in Cyber C...
treyka
 
PDF
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
PDF
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
PPTX
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
“ONNX and Python to C++: State-of-the-art Graph Compilation,” a Presentation ...
Edge AI and Vision Alliance
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
PPTX
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
PDF
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Talbott's brief History of Computers for CollabDays Hamburg 2025
Talbott Crowell
 
Software Development Company Keene Systems, Inc (1).pdf
Custom Software Development Company | Keene Systems, Inc.
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
NASA A Researcher’s Guide to International Space Station : Fundamental Physics
Dr. PANKAJ DHUSSA
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Securing Model Context Protocol with Keycloak: AuthN/AuthZ for MCP Servers
Hitachi, Ltd. OSS Solution Center.
 
99 Bottles of Trust on the Wall — Operational Principles for Trust in Cyber C...
treyka
 
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
“ONNX and Python to C++: State-of-the-art Graph Compilation,” a Presentation ...
Edge AI and Vision Alliance
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 

Big Data Hadoop Local and Public Cloud (Amazon EMR)

  • 1. Danairat T., 2013, [email protected] Data Hadoop – Hands On Workshop 1 Big Data Hadoop Local and Public Cloud Hands On Workshop Dr.Thanachart Numnonda [email protected] Danairat T. Certified Java Programmer, TOGAF – Silver [email protected], +66-81-559-1446
  • 2. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 2 Hands-On: Running Hadoop on Amazon Elastic MapReduce
  • 3. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 3 Architecture Overview of Amazon EMR
  • 4. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 4 Creating an AWS account
  • 5. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 5 Signing up for the necessary services ● Simple Storage Service (S3) ● Elastic Compute Cloud (EC2) ● Elastic MapReduce (EMR) Caution! This costs real money!
  • 6. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 6 Creating Amazon EC2 Instance
  • 7. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 7 Creating Amazon S3 bucket
  • 8. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 8 Create access key using Security Credentials in the AWS Management Console
  • 9. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 9
  • 10. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 10 Creating a new Job Flow in EMR
  • 11. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 11
  • 12. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 12
  • 13. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 13
  • 14. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 14
  • 15. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 15
  • 16. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 16
  • 17. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 17
  • 18. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 18 View Result from the S3 bucket
  • 19. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 19 Lecture: Understanding Map Reduce Processing Client Name Node Job Tracker Data Node Task Tracker Data Node Task Tracker Data Node Task Tracker Map Reduce
  • 20. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 20 MapReduce Framework map: (K1, V1) -> list(K2, V2)) reduce: (K2, list(V2)) -> list(K3, V3)
  • 21. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 21 MapReduce Processing – The Data flow 1. InputFormat, InputSplits, RecordReader 2. Mapper - your focus is here 3. Partition, Shuffle & Sort 4. Reducer - your focus is here 5. OutputFormat, RecordWriter
  • 22. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 22 How does the MapReduce work? Output in a list of (Key, List of Values) in the intermediate file Sorting Partitioning Output in a list of (Key, Value) in the intermediate file InputSplit RecordReader RecordWriter
  • 23. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 23 How does the MapReduce work? Sorting Partitioning Combining Car, 2 Car, 2 Bear, {1,1} Car, {2,1} River, {1,1} Deer, {1,1} Output in a list of (Key, List of Values) in the intermediate file Output in a list of (Key, Value) in the intermediate file InputSplit RecordReader RecordWriter
  • 24. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 24 Hands-On: Writing you own Map Reduce Program
  • 25. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 25 Wordcount (HelloWord in Hadoop) 1. package org.myorg; 2. 3. import java.io.IOException; 4. import java.util.*; 5. 6. import org.apache.hadoop.fs.Path; 7. import org.apache.hadoop.conf.*; 8. import org.apache.hadoop.io.*; 9. import org.apache.hadoop.mapred.*; 10. import org.apache.hadoop.util.*; 11. 12. public class WordCount { 13. 14. public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { 15. private final static IntWritable one = new IntWritable(1); 16. private Text word = new Text(); 17. 18. public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { 19. String line = value.toString(); 20. StringTokenizer tokenizer = new StringTokenizer(line); 21. while (tokenizer.hasMoreTokens()) { 22. word.set(tokenizer.nextToken()); 23. output.collect(word, one); 24. } 25. } 26. }
  • 26. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 26 Wordcount (HelloWord in Hadoop) 27. 28. public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { 29. public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { 30. int sum = 0; 31. while (values.hasNext()) { 32. sum += values.next().get(); 33. } 34. output.collect(key, new IntWritable(sum)); 35. } 36. } 37.
  • 27. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 27 Wordcount (HelloWord in Hadoop) 38. public static void main(String[] args) throws Exception { 39. JobConf conf = new JobConf(WordCount.class); 40. conf.setJobName("wordcount"); 41. 42. conf.setOutputKeyClass(Text.class); 43. conf.setOutputValueClass(IntWritable.class); 44. 45. conf.setMapperClass(Map.class); 46. 47. conf.setReducerClass(Reduce.class); 48. 49. conf.setInputFormat(TextInputFormat.class); 50. conf.setOutputFormat(TextOutputFormat.class); 51. 52. FileInputFormat.setInputPaths(conf, new Path(args[0])); 53. FileOutputFormat.setOutputPath(conf, new Path(args[1])); 54. 55. JobClient.runJob(conf); 57. } 58. } 59.
  • 28. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 28 Hands-On: Packaging Map Reduce and Deploying to Hadoop Runtime Environment
  • 29. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 29 Packaging Map Reduce Program Usage Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the Hadoop version installed, compile WordCount.java and create a jar: $ mkdir /home/hduser/wordcount_classes $ cd /home/hduser $ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d wordcount_classes WordCount.java $ jar -cvf ./wordcount.jar -C wordcount_classes/ . $ hadoop jar ./wordcount.jar org.myorg.WordCount /input/* /output/wordcount_output_dir Output: ……. $ hadoop dfs -cat /output/wordcount_output_dir/part-00000
  • 30. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 30 Hands-On: Running WordCount.jar on Amazon EMR
  • 31. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 31 Upload .jar file and input file to Amazon S3 1. Select <yourbucket> in Amazon S3 service 2. Create folder : applications 3. Upload wordcount.jar to the applications folder 4. Create another folder: input 5. Upload input_test.txt to the input folder
  • 32. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 32 Running a new Job Flow in EMR
  • 33. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 33 Input JAR Location and Arguments
  • 34. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 34
  • 35. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 35
  • 36. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 36
  • 37. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 37
  • 38. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 38 View the Result
  • 39. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 39 Hands-On: Analytics Using MapReduce
  • 40. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 40 Three Analytic MapReduce Examples 1. Simple analytics using MapReduce 2. Performing Group-By using MapReduce 3. Calculating frequency distributions and sorting using MapReduce
  • 41. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 41 NASA weblog dataset available from http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html is a real-life dataset collected using the requests received by NASA web servers. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_ access_log_Jul95.gz and unzip it. We call the extracted folder as DATA_DIR. $ hadoopdfs -mkdir /data $ hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1 Preparing Example Data
  • 42. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 42 Aggregative values (for example, Mean, Max, Min, standard deviation, and so on) provide the basic analytics about a dataset.. Simple analytics using MapReduce Source: Hadoop MapReduce CookBook
  • 43. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 43 package analysis; import java.io.IOException; import java.util.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; import org.apache.hadoop.conf.*; public class WebLogMessageSizeAggregator { public static final Pattern httplogPattern = Pattern .compile("([^s]+) - - [(.+)] "([^s]+) (/[^s]*) HTTP/[^s]+" [^s]+ ([0-9]+)"); public static class AMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { WebLogMessageSizeAggregator.java
  • 44. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 44 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { Matcher matcher = httplogPattern.matcher(value.toString()); if (matcher.matches()) { int size = Integer.parseInt(matcher.group(5)); output.collect(new Text("msgSize"), new IntWritable(size)); } } } WebLogMessageSizeAggregator.java
  • 45. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 45 public static class AReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { double tot = 0; int count = 0; int min = Integer.MAX_VALUE; int max = 0; while (values.hasNext()) { int value = values.next().get(); tot = tot + value; count++; if (value < min) { min = value; } if (value > max) { max = value; } } WebLogMessageSizeAggregator.java
  • 46. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 46 output.collect(new Text("Mean"), new IntWritable((int) tot / count)); output.collect(new Text("Max"), new IntWritable(max)); output.collect(new Text("Min"), new IntWritable(min)); } } public static void main(String[] args) throws Exception { JobConf job = new JobConf(WebLogMessageSizeAggregator.class); job.setJarByClass(WebLogMessageSizeAggregator.class); job.setMapperClass(AMapper.class); job.setReducerClass(AReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); JobClient.runJob(job); } } WebLogMessageSizeAggregator.java
  • 47. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 47 Compile, Build JAR, Submit Job, Review Result $ cd /home/hduser $ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLog WebLogMessageSizeAggregator.java $ jar -cvf ./weblog.jar -C WebLog . $ hadoop jar ./weblog.jar analysis.WebLogMessageSizeAggregator /data/* /output/result_weblog Output: ...... $ hadoop dfs -cat /output/result_weblog/part-00000
  • 48. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 48 A MapReduce to group data into simple groups and calculate the analytics for each group. Performing Group-By using MapReduce Source: Hadoop MapReduce CookBook
  • 49. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 49 public class WeblogHitsByLinkProcessor { public static final Pattern httplogPattern = Pattern .compile("([^s]+) - - [(.+)] "([^s]+) (/[^s]*) HTTP/[^s]+" [^s]+ ([0-9]+)"); public static class AMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { Matcher matcher = httplogPattern.matcher(value.toString()); if (matcher.matches()) { String linkUrl = matcher.group(4); word.set(linkUrl); output.collect(word, one); } } } WeblogHitsByLinkProcessor.java
  • 50. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 50 public static class AReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } result.set(sum); output.collect(key, result); } } WeblogHitsByLinkProcessor.java
  • 51. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 51 Compile, Build JAR, Submit Job, Review Result $ cd /home/hduser $ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLogHit WeblogHitsByLinkProcessor.java $ jar -cvf ./webloghit.jar -C WebLogHit . $ hadoop jar ./webloghit.jar analysis.WeblogHitsByLinkProcessor /data/* /output/result_webloghit Output: ...... $ hadoop dfs -cat /output/result_webloghit/part-00000
  • 52. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 52 Frequency distribution is the number of hits received by each URL sorted in the Ascending order, by the number hits received by a URL. We have already calculated the number of hits inthe previous program. Calculating frequency distributions and sorting using MapReduce Source: Hadoop MapReduce CookBook
  • 53. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 53 public class WeblogFrequencyDistributionProcessor { public static final Pattern httplogPattern = Pattern.compile("([^s]+) - - [(. +)] "([^s]+) (/[^s]*) HTTP/[^s]+" [^s]+ ([0-9]+)"); public static class AMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { String[] tokens = value.toString().split("s"); output.collect(new Text(tokens[0]),new IntWritable(Integer.parseInt(tokens[1]))); } } WeblogFrequencyDistributionProcessor.java
  • 54. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 54 /** * <p>Reduce function receives all the values that has the same key as the input, and it output the key * and the number of occurrences of the key as the output.</p> */ public static class AReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { if(values.hasNext()){ output.collect(key, values.next()); } } } WeblogFrequencyDistributionProcessor.java
  • 55. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 55 Compile, Build JAR, Submit Job, Review Result $ cd /home/hduser $ javac -classpath /usr/local/hadoop/hadoop-core-0.20.205.0.jar -d WebLogFreq WWeblogFrequencyDistributionProcessor.java $ jar -cvf ./weblogfreq.jar -C WebLogFreq . $ hadoop jar ./weblogfreq.jar analysis.WeblogFrequencyDistributionProcessor /output/result_webloghit/* /output/result_weblogfreq Output: ...... $ hadoop dfs -cat /output/result_weblogfreq/part-00000
  • 56. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 56 Exercise: Runming the analytic programs on Amazon EMR.
  • 57. Thanachart Numnonda and Danairat T, July 2013Big Data Hadoop – Hands On Workshop 57 Thank you