We hope this session was valuable in teaching you more about Cloudera Enterprise on AWS, and how fast and easy it is to deploy a modern data management platform—in your cloud and on your terms.
Self-service Big Data Analytics on Microsoft AzureCloudera, Inc.
In this presentation Microsoft will join Cloudera to introduce a new Platform-as-a-Service (PaaS) offering that helps data engineers use on-demand cloud infrastructure to speed the creation and operation of data pipelines that power sophisticated, data-driven applications - without onerous administration.
Big data journey to the cloud rohit pujari 5.30.18Cloudera, Inc.
We hope this session was valuable in teaching you more about Cloudera Enterprise on AWS, and how fast and easy it is to deploy a modern data management platform—in your cloud and on your terms.
Preparing data for analysis and insights is the foundation of any data-driven exercise. Moving workloads to a PaaS, be it data engineering, analytic database, or data science requires a two step leap of faith - in trusting the public cloud, and then your PaaS vendor. In this webinar we will discuss the architecture of a PaaS solution for data management and understand the nitty gritty details of what exactly this involves with the following:
An exploration of the architecture of Cloudera Altus PaaS - the industry’s first multi-function, multi-cloud data and analytic platform-as-a-service
A dive into use cases and a demo of Altus
The synergy between AWS and Altus to help you securely standardize on a combination of public cloud and data management
3 things to learn:
An exploration of the architecture of Cloudera Altus PaaS - the industry’s first multi-function, multi-cloud data and analytic platform-as-a-service
A dive into use cases and a demo of Altus
The synergy between AWS and Altus to help you securely standardize on a combination of public cloud and data management
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18Cloudera, Inc.
Webinar on Cloudera Enterprise 6.0 where we will discuss how to build new applications on the modern platform for machine learning and analytics. This webinar will take a look at the latest software enhancements and how they’ll help you improve your productivity and innovate new analytics applications.
Get started with Cloudera's cyber solutionCloudera, Inc.
Cloudera empowers cybersecurity innovators to proactively secure the enterprise by accelerating threat detection, investigation, and response through machine learning and complete enterprise visibility. Cloudera’s cybersecurity solution, based on Apache Spot, enables anomaly detection, behavior analytics, and comprehensive access across all enterprise data using an open, scalable platform. But what’s the easiest way to get started?
Making Self-Service BI a Reality in the EnterpriseCloudera, Inc.
For most analysts, the pace of analytics and data science can be frustrating. The common waterfall approach works well for the fixed reports, but it can be a lengthy process to request additional data sets, create new reports, or serve new use cases. So it’s no surprise that organizations are looking to shift towards a self-service model, empowering business users to discover and iterate quickly.
However, it’s not just about opening up this access, but also ensuring the results are accurate and trusted. When there are petabytes of data, how does a user know which tables to use and which are most relevant? How do you strike the balance between discovery and agility, while still meeting enterprise governance standards to truly get more value from your data?
During this webinar, you’ll learn how to empower end-users to make self-service BI a reality within your organization while fostering governance collaboration between all data stakeholders. We’ll discuss and demo:
Strategies of consolidating data across silos for fast, flexible access
Enabling easy discovery and exploration, including understanding which data to trust and where to start
New capabilities for intelligent query assistance as well as immediate performance optimizations and recommendations as-you-go
Collaboration and access outside of just SQL for data science and beyond
In addition, we will walk through best practices and considerations when developing your organizational strategy around self-service analytics, and highlight several real-world success stories from a wide range of industries.
3 things to learn:
Strategies of consolidating data across silos for fast, flexible access
Enabling easy discovery and exploration, including understanding which data to trust and where to start
New capabilities for intelligent query assistance as well as immediate performance optimizations and recommendations as-you-go
Cloudera - The Modern Platform for AnalyticsCloudera, Inc.
This presentation provides an overview of Cloudera and how a modern platform for Machine Learning and Analytics better enables a data-driven enterprise.
Leveraging the Cloud for Big Data Analytics 12.11.18Cloudera, Inc.
Learn how organizations are deriving unique customer insights, improving product and services efficiency, and reducing business risk with a modern big data architecture powered by Cloudera on AWS. In this webinar, you see how fast and easy it is to deploy a modern data management platform—in your cloud, on your terms.
Consolidate your data marts for fast, flexible analytics 5.24.18Cloudera, Inc.
In this webinar, Cloudera and AtScale will showcase:
How a company can modernize their analytic architecture to deliver flexibility and agility to more end-users.
How using AtScale’s Universal Semantic layer can end the data chaos and allow business users to use the data in the modern platform.
Highlight the performance of AtScale and Cloudera’s analytic database with newly completed TPC-DS standard benchmarking.
Best practices for migrating from legacy appliances.
Cloudera Altus: Big Data in the Cloud Made EasyCloudera, Inc.
Cloudera Altus makes it easier for data engineers, ETL developers, and anyone who regularly works with raw data to process that data in the cloud efficiently and cost effectively. In this webinar we introduce our new platform-as-a-service offering and explore challenges associated with data processing in the cloud today, how Altus abstracts cluster overhead to deliver easy, efficient data processing, and unique features and benefits of Cloudera Altus.
The Vision & Challenge of Applied Machine LearningCloudera, Inc.
Learn how Cloudera provides a unified platform that breaks down data silos commonly seen in organizations. By unifying the data needed for applied machine learning, organizations are better equipped to gather valuable insights from their data.
3 Things to Learn:
-How data is driving digital transformation to help businesses innovate rapidly
-How Choice Hotels (one of largest hoteliers) is using Cloudera Enterprise to gain meaningful insights that drive their business
-How Choice Hotels has transformed business through innovative use of Apache Hadoop, Cloudera Enterprise, and deployment in the cloud — from developing customer experiences to meeting IT compliance requirements
Leveraging the cloud for analytics and machine learning 1.29.19Cloudera, Inc.
Learn how organizations are deriving unique customer insights, improving product and services efficiency, and reducing business risk with a modern big data architecture powered by Cloudera on Azure. In this webinar, you see how fast and easy it is to deploy a modern data management platform—in your cloud, on your terms.
Data Science and Machine Learning for the EnterpriseCloudera, Inc.
Overview of Machine Learning and how the Cloudera Data Science Workbench provides full access to data while supporting IT SLAs. The presentation includes details on Fast Forward Labs and The Value of Interpretability in Models.
In this webinar, we’ll show you how Cloudera SDX reduces the complexity in your data management environment and lets you deliver diverse analytics with consistent security, governance, and lifecycle management against a shared data catalog.
How komatsu is driving operational efficiencies using io t and machine learni...Cloudera, Inc.
In this joint webinar, Jason Knuth, data scientist and analytics lead at Komatsu shares how they are analyzing over 17 billion data points every day from connected devices and using machine learning and analytics to improve mining operations.
How to Build Multi-disciplinary Analytics Applications on a Shared Data PlatformCloudera, Inc.
The document discusses building multi-disciplinary analytics applications on a shared data platform. It describes challenges with traditional fragmented approaches using multiple data silos and tools. A shared data platform with Cloudera SDX provides a common data experience across workloads through shared metadata, security, and governance services. This approach optimizes key design goals and provides business benefits like increased insights, agility, and decreased costs compared to siloed environments. An example application of predictive maintenance is given to improve fleet performance.
Big data journey to the cloud maz chaudhri 5.30.18Cloudera, Inc.
We hope this session was valuable in teaching you more about Cloudera Enterprise on AWS, and how fast and easy it is to deploy a modern data management platform—in your cloud and on your terms.
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)Cloudera, Inc.
In this workshop, we will look outside the box and help expand the problem space to include issues you may not have thought were possible before Big Data. From Near Real Time (NRT) recommendation engines, loan applications to churn detection, Big Data is answering new questions and providing organisations with a competitive edge through revenue increase, cost savings and risk mitigation. We will take a special look at the role the Cloud can play in elevating your analytics environment. We will discuss real world examples of how Big Data answers these questions and does it at a lower cost outlay.
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the CloudCloudera, Inc.
3 Things to Learn About:
*On-premises versus the cloud
*Design & benefits of real-time operational data in the cloud
*Best practices and architectural considerations
The document discusses running Hadoop on the cloud using Cloudera Director. It begins with an introduction of the speaker and Cloudera Director. Several common architectural patterns for running Hadoop in the cloud are presented, including using object storage and running short-term ETL/modeling clusters versus long-term analytics clusters. The presentation envisions a future with a more portable, self-service, self-healing, and granularly secure experience for managing Hadoop in the cloud.
Machine Learning Models: From Research to Production 6.13.18Cloudera, Inc.
Learn more about how data scientists can have the complete self-service capability to rapidly build, train, and deploy machine learning models, and how organisations can accelerate machine learning from research to production, while preserving the flexibility and agility data scientists and modern business use cases demand.
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...Cloudera, Inc.
This presentation provides detail on how we are now in the 6th wave of automation, that is based on Machine Learning. In this 6th wave, Cloudera plays a critical role in providing the data platform for Machine Learning and Analytics built for the Cloud.
Managing Successful Data Projects: Technology Selection and Team BuildingCloudera, Inc.
Recent years have seen dramatic advancements in the technologies available for managing and processing data. While these technologies provide powerful tools to build data applications, they also require new skills. Ted Malaska and Jonathan Seidman explain how to evaluate these new technologies and build teams to effectively leverage these technologies and achieve ROI with your data initiatives.
Topics including: The transformative value of real-time data and analytics, and current barriers to adoption. The importance of an end-to-end solution for data-in-motion that includes ingestion, processing, and serving. Apache Kudu’s role in simplifying real-time architectures.
Cloudera Data Science Workbench: sparklyr, implyr, and More - dplyr Interfac...Cloudera, Inc.
You like to use R, and you need to use big data. dplyr, one of the most popular packages for R, makes it easy to query large data sets in scalable processing engines like Apache Spark and Apache Impala.
But there can be pitfalls: dplyr works differently with different data sources—and those differences can bite you if you don’t know what you’re doing.
Ian Cook is a data scientist, an R contributor, and a curriculum developer at Cloudera University. In this webinar, Ian will show you exactly what you need to know about sparklyr (from RStudio) and the package implyr (from Cloudera). He will show you how to write dplyr code that works across these different interfaces. And, he will solve mysteries:
Do I need to know SQL to use dplyr?
When is a “tbl” not a “tibble”?
Why is 1 not always equal to 1?
When should you collect(), collapse(), and compute()?
How can you use dplyr to combine data stored in different systems?
3 things to learn:
Do I need to know SQL to use dplyr?
When should you collect(), collapse(), and compute()?
How can you use dplyr to combine data stored in different systems?
Building a Data Hub that Empowers Customer Insight (Technical Workshop)Cloudera, Inc.
We have seen the evolution with the Bi and Data Science fields from the structured data warehouse to data lake and finally, to the data hub. This session will cover the key steps required to building a data hub, examining how best to align and engage stakeholders and develop architectural sanction to enable your organisations to realise new customer insights and better enable you to achieve business objectives.
A deep dive into running data analytic workloads in the cloudCloudera, Inc.
This document discusses running data analytic workloads in the cloud using Cloudera Altus. It introduces Altus, which provides a platform-as-a-service for analyzing and processing data at scale in public clouds. The document outlines Altus features like low cost per-hour pricing, end-user focus, and cloud-native deployment. It then describes hands-on examples using Altus Data Engineering for ETL and the Altus Analytic Database for exploration and analytics. Workload analytics capabilities are also introduced for troubleshooting and optimizing jobs.
This deck covers key considerations and provides advice for enterprises looking to run production-scale Cloudera on AWS. We touch on everything from security to governance to selecting the right instance type for your Hadoop workload (Spark, Impala, Search, etc).
Consolidate your data marts for fast, flexible analytics 5.24.18Cloudera, Inc.
In this webinar, Cloudera and AtScale will showcase:
How a company can modernize their analytic architecture to deliver flexibility and agility to more end-users.
How using AtScale’s Universal Semantic layer can end the data chaos and allow business users to use the data in the modern platform.
Highlight the performance of AtScale and Cloudera’s analytic database with newly completed TPC-DS standard benchmarking.
Best practices for migrating from legacy appliances.
Cloudera Altus: Big Data in the Cloud Made EasyCloudera, Inc.
Cloudera Altus makes it easier for data engineers, ETL developers, and anyone who regularly works with raw data to process that data in the cloud efficiently and cost effectively. In this webinar we introduce our new platform-as-a-service offering and explore challenges associated with data processing in the cloud today, how Altus abstracts cluster overhead to deliver easy, efficient data processing, and unique features and benefits of Cloudera Altus.
The Vision & Challenge of Applied Machine LearningCloudera, Inc.
Learn how Cloudera provides a unified platform that breaks down data silos commonly seen in organizations. By unifying the data needed for applied machine learning, organizations are better equipped to gather valuable insights from their data.
3 Things to Learn:
-How data is driving digital transformation to help businesses innovate rapidly
-How Choice Hotels (one of largest hoteliers) is using Cloudera Enterprise to gain meaningful insights that drive their business
-How Choice Hotels has transformed business through innovative use of Apache Hadoop, Cloudera Enterprise, and deployment in the cloud — from developing customer experiences to meeting IT compliance requirements
Leveraging the cloud for analytics and machine learning 1.29.19Cloudera, Inc.
Learn how organizations are deriving unique customer insights, improving product and services efficiency, and reducing business risk with a modern big data architecture powered by Cloudera on Azure. In this webinar, you see how fast and easy it is to deploy a modern data management platform—in your cloud, on your terms.
Data Science and Machine Learning for the EnterpriseCloudera, Inc.
Overview of Machine Learning and how the Cloudera Data Science Workbench provides full access to data while supporting IT SLAs. The presentation includes details on Fast Forward Labs and The Value of Interpretability in Models.
In this webinar, we’ll show you how Cloudera SDX reduces the complexity in your data management environment and lets you deliver diverse analytics with consistent security, governance, and lifecycle management against a shared data catalog.
How komatsu is driving operational efficiencies using io t and machine learni...Cloudera, Inc.
In this joint webinar, Jason Knuth, data scientist and analytics lead at Komatsu shares how they are analyzing over 17 billion data points every day from connected devices and using machine learning and analytics to improve mining operations.
How to Build Multi-disciplinary Analytics Applications on a Shared Data PlatformCloudera, Inc.
The document discusses building multi-disciplinary analytics applications on a shared data platform. It describes challenges with traditional fragmented approaches using multiple data silos and tools. A shared data platform with Cloudera SDX provides a common data experience across workloads through shared metadata, security, and governance services. This approach optimizes key design goals and provides business benefits like increased insights, agility, and decreased costs compared to siloed environments. An example application of predictive maintenance is given to improve fleet performance.
Big data journey to the cloud maz chaudhri 5.30.18Cloudera, Inc.
We hope this session was valuable in teaching you more about Cloudera Enterprise on AWS, and how fast and easy it is to deploy a modern data management platform—in your cloud and on your terms.
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)Cloudera, Inc.
In this workshop, we will look outside the box and help expand the problem space to include issues you may not have thought were possible before Big Data. From Near Real Time (NRT) recommendation engines, loan applications to churn detection, Big Data is answering new questions and providing organisations with a competitive edge through revenue increase, cost savings and risk mitigation. We will take a special look at the role the Cloud can play in elevating your analytics environment. We will discuss real world examples of how Big Data answers these questions and does it at a lower cost outlay.
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the CloudCloudera, Inc.
3 Things to Learn About:
*On-premises versus the cloud
*Design & benefits of real-time operational data in the cloud
*Best practices and architectural considerations
The document discusses running Hadoop on the cloud using Cloudera Director. It begins with an introduction of the speaker and Cloudera Director. Several common architectural patterns for running Hadoop in the cloud are presented, including using object storage and running short-term ETL/modeling clusters versus long-term analytics clusters. The presentation envisions a future with a more portable, self-service, self-healing, and granularly secure experience for managing Hadoop in the cloud.
Machine Learning Models: From Research to Production 6.13.18Cloudera, Inc.
Learn more about how data scientists can have the complete self-service capability to rapidly build, train, and deploy machine learning models, and how organisations can accelerate machine learning from research to production, while preserving the flexibility and agility data scientists and modern business use cases demand.
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...Cloudera, Inc.
This presentation provides detail on how we are now in the 6th wave of automation, that is based on Machine Learning. In this 6th wave, Cloudera plays a critical role in providing the data platform for Machine Learning and Analytics built for the Cloud.
Managing Successful Data Projects: Technology Selection and Team BuildingCloudera, Inc.
Recent years have seen dramatic advancements in the technologies available for managing and processing data. While these technologies provide powerful tools to build data applications, they also require new skills. Ted Malaska and Jonathan Seidman explain how to evaluate these new technologies and build teams to effectively leverage these technologies and achieve ROI with your data initiatives.
Topics including: The transformative value of real-time data and analytics, and current barriers to adoption. The importance of an end-to-end solution for data-in-motion that includes ingestion, processing, and serving. Apache Kudu’s role in simplifying real-time architectures.
Cloudera Data Science Workbench: sparklyr, implyr, and More - dplyr Interfac...Cloudera, Inc.
You like to use R, and you need to use big data. dplyr, one of the most popular packages for R, makes it easy to query large data sets in scalable processing engines like Apache Spark and Apache Impala.
But there can be pitfalls: dplyr works differently with different data sources—and those differences can bite you if you don’t know what you’re doing.
Ian Cook is a data scientist, an R contributor, and a curriculum developer at Cloudera University. In this webinar, Ian will show you exactly what you need to know about sparklyr (from RStudio) and the package implyr (from Cloudera). He will show you how to write dplyr code that works across these different interfaces. And, he will solve mysteries:
Do I need to know SQL to use dplyr?
When is a “tbl” not a “tibble”?
Why is 1 not always equal to 1?
When should you collect(), collapse(), and compute()?
How can you use dplyr to combine data stored in different systems?
3 things to learn:
Do I need to know SQL to use dplyr?
When should you collect(), collapse(), and compute()?
How can you use dplyr to combine data stored in different systems?
Building a Data Hub that Empowers Customer Insight (Technical Workshop)Cloudera, Inc.
We have seen the evolution with the Bi and Data Science fields from the structured data warehouse to data lake and finally, to the data hub. This session will cover the key steps required to building a data hub, examining how best to align and engage stakeholders and develop architectural sanction to enable your organisations to realise new customer insights and better enable you to achieve business objectives.
A deep dive into running data analytic workloads in the cloudCloudera, Inc.
This document discusses running data analytic workloads in the cloud using Cloudera Altus. It introduces Altus, which provides a platform-as-a-service for analyzing and processing data at scale in public clouds. The document outlines Altus features like low cost per-hour pricing, end-user focus, and cloud-native deployment. It then describes hands-on examples using Altus Data Engineering for ETL and the Altus Analytic Database for exploration and analytics. Workload analytics capabilities are also introduced for troubleshooting and optimizing jobs.
This deck covers key considerations and provides advice for enterprises looking to run production-scale Cloudera on AWS. We touch on everything from security to governance to selecting the right instance type for your Hadoop workload (Spark, Impala, Search, etc).
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...Cloudera, Inc.
Maschinelles Lernen und Analyseanwendungen explodieren im Unternehmen und ermöglichen Anwendungsfällen in Bereichen wie vorbeugende Wartung, Bereitstellung neuer, wünschenswerter Produktangebote für Kunden zum richtigen Zeitpunkt und Bekämpfung von Insider-Bedrohungen für Ihr Unternehmen.
High-Performance Analytics in the Cloud with Apache ImpalaCloudera, Inc.
With more and more data being generated and stored in the cloud, you need a modern data platform that can extend to any environment so you can derive value from all your data. Cloudera Enterprise is the leading enterprise Hadoop platform for cloud deployments. It’s the easiest way to manage and secure Hadoop data across any cloud environment and includes component-level support for cloud-native object stores. This makes the platform uniquely suited to handle transient jobs like ETL and BI analytics, as well as persistent workloads like stream processing and advanced analytics.
With the recent release of Cloudera 5.8, Apache Impala (incubating) has added support for Amazon S3, enabling business analysts to get instant insights from all data through high-performance exploratory analytics and BI.
3 Things to learn:
Join David Tishgart, Director of Product Marketing, and James Curtis, Senior Analyst Data Platforms & Analytics at 451 Research, as they discuss:
* Best practices for analytic workloads in the cloud
* A live demo and real-world use cases
* What’s next for Cloudera and the cloud
Cloudera Altus: Big Data in der Cloud einfach gemachtCloudera, Inc.
Neueste Studien zeigen, dass Data Scientisten und Analysten bis zu 80% ihrer Zeit dafür nutzen, Daten zu reinigen und vorzubereiten.
Eine ohnehin schon zeitaufwändige Aufgabe kann in der Cloud noch weiter erschwert werden, da das Cluster Management und Operations die Komplexität noch erhöhen.
Nutzer wünschen sich daher, diese komplexen Workflows zu vereinheitlichen und zu vereinfachen.
Um Big Data und Machine Learning Initiativen voranzutreiben, benötigen Unternehmen eine skalierbare und überall verfügbare Plattform. Diese muss Self-Service ermöglichen und Datensilos eliminieren.
Data platform modernization with Databricks.pptxCalvinSim10
The document discusses modernizing a healthcare organization's data platform from version 1.0 to 2.0 using Azure Databricks. Version 1.0 used Azure HDInsight (HDI) which was challenging to scale and maintain. It presented performance issues and lacked integrations. Version 2.0 with Databricks will provide improved scalability, cost optimization, governance, and ease of use through features like Delta Lake, Unity Catalog, and collaborative notebooks. This will help address challenges faced by consumers, data engineers, and the client.
Comment développer une stratégie Big Data dans le cloud public avec l'offre P...Cloudera, Inc.
Le cloud public est une proposition attractive pour les entreprises à la recherche d’agilité dans leurs projets big data, qu’il s’agisse de traiter des données en masse ou d’y exécuter des analyses complexes pour une meilleure prise de décision.
Cloud Data Warehousing with Cloudera Altus 7.24.18Cloudera, Inc.
This webinar will help you maximize the full potential of the cloud. Understand how to leverage cloud environments for different analytic workloads to empower business analysts and keep IT happy. An intricate, beautiful balance. The learn best practices in design, performance tuning, workload considerations, and hybrid or multi-cloud strategies.
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Stefan Lipp
Take Data Management to the next level: Connect Analytics and Machine Learning in a single governed platform consisting of a curated protable open source stack. Run this platform on-prem, hybrid or multicloud, reuse code and models avoid lock-in.
Big Data LDN 2018: MICROSOFT AZURE AND CLOUDERA – FLEXIBLE CLOUD, WHATEVER TH...Matt Stubbs
Microsoft and Cloudera have partnered to help customers realize insights from big data using cloud services. With Cloudera Enterprise deployed on Azure, customers can visualize data with Power BI and gain insights within minutes. Cloudera provides solutions for data warehousing, data science, and hybrid deployments that fulfill enterprise requirements around flexibility, manageability, and security on Azure.
Cloud Migration Paths: Kubernetes, IaaS, or DBaaSEDB
Moving to the cloud is hard, and moving Postgres databases to the cloud is even harder. Public cloud or private cloud? Infrastructure as a Service (IaaS), or Platform as a Service (PaaS)? Kubernetes for the application, or for the database and the application? This talk will juxtapose self-managed Kubernetes and container-based database solutions, Postgres deployments on IaaS, and Postgres DBaaS solutions of which EDB’s DBaaS BigAnimal is the latest example.
This document discusses migrating and modernizing Oracle Siebel applications. It provides reasons why customers invest in application modernization such as needing to innovate faster, reduce costs, improve scalability and performance, and support modern development processes. The document then discusses challenges with existing monolithic applications and developing new cloud-native applications. It introduces Oracle Cloud Infrastructure (OCI) services that can optimize, modernize, and innovate existing applications, including migrating them to OCI and developing new applications.
Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...Cloudera, Inc.
For self-service BI and exploratory analytic workloads, the cloud can provide a number of key benefits, but the move to the cloud isn’t all-or-nothing. Gartner predicts nearly 80 percent of businesses will adopt a hybrid strategy. Learn how a modern analytic database can power your business-critical workloads across multi-cloud and hybrid environments, while maintaining data portability. We'll also discuss how to best leverage the increased agility cloud provides, while maintaining peak performance.
Azure Arc is a solution that simplifies management across different hybrid clouds or multi-clouds. Azure Arc extends Azure management and security beyond the walls of Azure to other cloud platforms or on-premises environments enabling you to make use of Azure services to manage infrastructure at these environments. In this session, you will be introduced to Azure Arc, why should you use it and how to make use of it in different scenarios.
Get Started with Cloudera’s Cyber SolutionCloudera, Inc.
Cloudera empowers cybersecurity innovators to proactively secure the enterprise by accelerating threat detection, investigation, and response through machine learning and complete enterprise visibility. Cloudera’s cybersecurity solution, based on Apache Spot, enables anomaly detection, behavior analytics, and comprehensive access across all enterprise data using an open, scalable platform. But what’s the easiest way to get started?
Join Cloudera, StreamSets, and Arcadia Data as we show you first hand how we have made it easier to get your first use case up and running. During this session you will learn:
Signs you need Cloudera’s cybersecurity solution
How StreamSets can help increase enterprise visibility
Providing your security analyst the right context at the right time with modern visualizations
3 things to learn:
Signs you need Cloudera’s cybersecurity solution
How StreamSets can help increase enterprise visibility
Providing your security analyst the right context at the right time with modern visualizations
Cloudera GoDataFest Deploying Cloudera in the CloudGoDataDriven
This document discusses deploying Cloudera in the cloud using Cloudera Director and Cloudera Altus. Cloudera Director is a tool for managing the lifecycle of long-running Cloudera clusters in cloud environments, while Cloudera Altus is a platform-as-a-service for transient data engineering workloads like ETL and machine learning. The document provides an example of using Cloudera Altus for data processing and Cloudera Director for interactive querying, and demonstrates Altus and Director in a scenario of a data analyst using them to analyze website sales data.
Travis Cox from Inductive Automation and Arlen Nipper from Cirrus Link Solutions discusses the various ways that tag data can be leveraged through cloud services provided by Amazon Web Services and Microsoft Azure. These experts will also show you different ways to get data up to the cloud in a simple, efficient, and secure manner.
Learn more about cloud services such as:
- Machine learning
- Analytics
- Business intelligence
- Data lakes
- Cloud databases
- And more
It’s becoming clear that enterprises need more than one cloud. Hybrid enables enterprises to optimize how their business works – public cloud for elasticity and scale, multi-cloud for redundancy and choice, and on-premises for performance and privacy. Cloudera delivers a hybrid cloud solution that works where enterprises work, with the agility, security and governance enterprise IT needs, and the self-service analytics business people and enterprise data professionals demand. In this session, we will talk about how Cloudera helps deliver hybrid solutions for enterprises and will run a hands-on Cloudera PaaS demo to exhibit:
- Altus Environment Setup
- Configure Altus SDX
- Spin-up transient clusters with Altus
- Execute workload on Altus Data Engineering clusters
- Run interactive queries on object store with Altus Data Warehouse
- Job Analytics with Workload Experience Manager (WXM)
Speaker: Junaid Rao, Senior Cloud Sales Engineer, Cloudera
The document discusses using Cloudera DataFlow to address challenges with collecting, processing, and analyzing log data across many systems and devices. It provides an example use case of logging modernization to reduce costs and enable security solutions by filtering noise from logs. The presentation shows how DataFlow can extract relevant events from large volumes of raw log data and normalize the data to make security threats and anomalies easier to detect across many machines.
Cloudera Data Impact Awards 2021 - Finalists Cloudera, Inc.
The document outlines the 2021 finalists for the annual Data Impact Awards program, which recognizes organizations using Cloudera's platform and the impactful applications they have developed. It provides details on the challenges, solutions, and outcomes for each finalist project in the categories of Data Lifecycle Connection, Cloud Innovation, Data for Enterprise AI, Security & Governance Leadership, Industry Transformation, People First, and Data for Good. There are multiple finalists highlighted in each category demonstrating innovative uses of data and analytics.
2020 Cloudera Data Impact Awards FinalistsCloudera, Inc.
Cloudera is proud to present the 2020 Data Impact Awards Finalists. This annual program recognizes organizations running the Cloudera platform for the applications they've built and the impact their data projects have on their organizations, their industries, and the world. Nominations were evaluated by a panel of independent thought-leaders and expert industry analysts, who then selected the finalists and winners. Winners exemplify the most-cutting edge data projects and represent innovation and leadership in their respective industries.
The document outlines the agenda for Cloudera's Enterprise Data Cloud event in Vienna. It includes welcome remarks, keynotes on Cloudera's vision and customer success stories. There will be presentations on the new Cloudera Data Platform and customer case studies, followed by closing remarks. The schedule includes sessions on Cloudera's approach to data warehousing, machine learning, streaming and multi-cloud capabilities.
Machine Learning with Limited Labeled Data 4/3/19Cloudera, Inc.
Cloudera Fast Forward Labs’ latest research report and prototype explore learning with limited labeled data. This capability relaxes the stringent labeled data requirement in supervised machine learning and opens up new product possibilities. It is industry invariant, addresses the labeling pain point and enables applications to be built faster and more efficiently.
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Cloudera, Inc.
In this session, we will cover how to move beyond structured, curated reports based on known questions on known data, to an ad-hoc exploration of all data to optimize business processes and into the unknown questions on unknown data, where machine learning and statistically motivated predictive analytics are shaping business strategy.
Introducing Cloudera DataFlow (CDF) 2.13.19Cloudera, Inc.
Watch this webinar to understand how Hortonworks DataFlow (HDF) has evolved into the new Cloudera DataFlow (CDF). Learn about key capabilities that CDF delivers such as -
-Powerful data ingestion powered by Apache NiFi
-Edge data collection by Apache MiNiFi
-IoT-scale streaming data processing with Apache Kafka
-Enterprise services to offer unified security and governance from edge-to-enterprise
Introducing Cloudera Data Science Workbench for HDP 2.12.19Cloudera, Inc.
Cloudera’s Data Science Workbench (CDSW) is available for Hortonworks Data Platform (HDP) clusters for secure, collaborative data science at scale. During this webinar, we provide an introductory tour of CDSW and a demonstration of a machine learning workflow using CDSW on HDP.
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Cloudera, Inc.
Join Cloudera as we outline how we use Cloudera technology to strengthen sales engagement, minimize marketing waste, and empower line of business leaders to drive successful outcomes.
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Cloudera, Inc.
Join us to learn about the challenges of legacy data warehousing, the goals of modern data warehousing, and the design patterns and frameworks that help to accelerate modernization efforts.
Explore new trends and use cases in data warehousing including exploration and discovery, self-service ad-hoc analysis, predictive analytics and more ways to get deeper business insight. Modern Data Warehousing Fundamentals will show how to modernize your data warehouse architecture and infrastructure for benefits to both traditional analytics practitioners and data scientists and engineers.
Explore new trends and use cases in data warehousing including exploration and discovery, self-service ad-hoc analysis, predictive analytics and more ways to get deeper business insight. Modern Data Warehousing Fundamentals will show how to modernize your data warehouse architecture and infrastructure for benefits to both traditional analytics practitioners and data scientists and engineers.
The document discusses the benefits and trends of modernizing a data warehouse. It outlines how a modern data warehouse can provide deeper business insights at extreme speed and scale while controlling resources and costs. Examples are provided of companies that have improved fraud detection, customer retention, and machine performance by implementing a modern data warehouse that can handle large volumes and varieties of data from many sources.
Extending Cloudera SDX beyond the PlatformCloudera, Inc.
Cloudera SDX is by no means no restricted to just the platform; it extends well beyond. In this webinar, we show you how Bardess Group’s Zero2Hero solution leverages the shared data experience to coordinate Cloudera, Trifacta, and Qlik to deliver complete customer insight.
Federated Learning: ML with Privacy on the Edge 11.15.18Cloudera, Inc.
Join Cloudera Fast Forward Labs Research Engineer, Mike Lee Williams, to hear about their latest research report and prototype on Federated Learning. Learn more about what it is, when it’s applicable, how it works, and the current landscape of tools and libraries.
Analyst Webinar: Doing a 180 on Customer 360Cloudera, Inc.
451 Research Analyst Sheryl Kingstone, and Cloudera’s Steve Totman recently discussed how a growing number of organizations are replacing legacy Customer 360 systems with Customer Insights Platforms.
Build a modern platform for anti-money laundering 9.19.18Cloudera, Inc.
In this webinar, you will learn how Cloudera and BAH riskCanvas can help you build a modern AML platform that reduces false positive rates, investigation costs, technology sprawl, and regulatory risk.
Introducing the data science sandbox as a service 8.30.18Cloudera, Inc.
How can companies integrate data science into their businesses more effectively? Watch this recorded webinar and demonstration to hear more about operationalizing data science with Cloudera Data Science Workbench on Cazena’s fully-managed cloud platform.
Workload Experience Manager (XM) gives you the visibility necessary to efficiently migrate, analyze, optimize, and scale workloads running in a modern data warehouse. In this recorded webinar we discuss common challenges running at scale with modern data warehouse, benefits of end-to-end visibility into workload lifecycles, overview of Workload XM and live demo, real-life customer before/after scenarios, and what's next for Workload XM.
Spark and Deep Learning Frameworks at Scale 7.19.18Cloudera, Inc.
We'll outline approaches for preprocessing, training, inference, and deployment across datasets (time series, audio, video, text, etc.) that leverage Spark, along with its extended ecosystem of libraries and deep learning frameworks using Cloudera's Data Science Workbench.
What is Model Context Protocol(MCP) - The new technology for communication bw...Vishnu Singh Chundawat
The MCP (Model Context Protocol) is a framework designed to manage context and interaction within complex systems. This SlideShare presentation will provide a detailed overview of the MCP Model, its applications, and how it plays a crucial role in improving communication and decision-making in distributed systems. We will explore the key concepts behind the protocol, including the importance of context, data management, and how this model enhances system adaptability and responsiveness. Ideal for software developers, system architects, and IT professionals, this presentation will offer valuable insights into how the MCP Model can streamline workflows, improve efficiency, and create more intuitive systems for a wide range of use cases.
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025BookNet Canada
Book industry standards are evolving rapidly. In the first part of this session, we’ll share an overview of key developments from 2024 and the early months of 2025. Then, BookNet’s resident standards expert, Tom Richardson, and CEO, Lauren Stewart, have a forward-looking conversation about what’s next.
Link to recording, transcript, and accompanying resource: https://bnctechforum.ca/sessions/standardsgoals-for-2025-standards-certification-roundup/
Presented by BookNet Canada on May 6, 2025 with support from the Department of Canadian Heritage.
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxJustin Reock
Building 10x Organizations with Modern Productivity Metrics
10x developers may be a myth, but 10x organizations are very real, as proven by the influential study performed in the 1980s, ‘The Coding War Games.’
Right now, here in early 2025, we seem to be experiencing YAPP (Yet Another Productivity Philosophy), and that philosophy is converging on developer experience. It seems that with every new method we invent for the delivery of products, whether physical or virtual, we reinvent productivity philosophies to go alongside them.
But which of these approaches actually work? DORA? SPACE? DevEx? What should we invest in and create urgency behind today, so that we don’t find ourselves having the same discussion again in a decade?
Artificial Intelligence is providing benefits in many areas of work within the heritage sector, from image analysis, to ideas generation, and new research tools. However, it is more critical than ever for people, with analogue intelligence, to ensure the integrity and ethical use of AI. Including real people can improve the use of AI by identifying potential biases, cross-checking results, refining workflows, and providing contextual relevance to AI-driven results.
News about the impact of AI often paints a rosy picture. In practice, there are many potential pitfalls. This presentation discusses these issues and looks at the role of analogue intelligence and analogue interfaces in providing the best results to our audiences. How do we deal with factually incorrect results? How do we get content generated that better reflects the diversity of our communities? What roles are there for physical, in-person experiences in the digital world?
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxAnoop Ashok
In today's fast-paced retail environment, efficiency is key. Every minute counts, and every penny matters. One tool that can significantly boost your store's efficiency is a well-executed planogram. These visual merchandising blueprints not only enhance store layouts but also save time and money in the process.
Generative Artificial Intelligence (GenAI) in BusinessDr. Tathagat Varma
My talk for the Indian School of Business (ISB) Emerging Leaders Program Cohort 9. In this talk, I discussed key issues around adoption of GenAI in business - benefits, opportunities and limitations. I also discussed how my research on Theory of Cognitive Chasms helps address some of these issues
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
TrsLabs - Fintech Product & Business ConsultingTrs Labs
Hybrid Growth Mandate Model with TrsLabs
Strategic Investments, Inorganic Growth, Business Model Pivoting are critical activities that business don't do/change everyday. In cases like this, it may benefit your business to choose a temporary external consultant.
An unbiased plan driven by clearcut deliverables, market dynamics and without the influence of your internal office equations empower business leaders to make right choices.
Getting things done within a budget within a timeframe is key to Growing Business - No matter whether you are a start-up or a big company
Talk to us & Unlock the competitive advantage
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...SOFTTECHHUB
I started my online journey with several hosting services before stumbling upon Ai EngineHost. At first, the idea of paying one fee and getting lifetime access seemed too good to pass up. The platform is built on reliable US-based servers, ensuring your projects run at high speeds and remain safe. Let me take you step by step through its benefits and features as I explain why this hosting solution is a perfect fit for digital entrepreneurs.
How Can I use the AI Hype in my Business Context?Daniel Lehner
𝙄𝙨 𝘼𝙄 𝙟𝙪𝙨𝙩 𝙝𝙮𝙥𝙚? 𝙊𝙧 𝙞𝙨 𝙞𝙩 𝙩𝙝𝙚 𝙜𝙖𝙢𝙚 𝙘𝙝𝙖𝙣𝙜𝙚𝙧 𝙮𝙤𝙪𝙧 𝙗𝙪𝙨𝙞𝙣𝙚𝙨𝙨 𝙣𝙚𝙚𝙙𝙨?
Everyone’s talking about AI but is anyone really using it to create real value?
Most companies want to leverage AI. Few know 𝗵𝗼𝘄.
✅ What exactly should you ask to find real AI opportunities?
✅ Which AI techniques actually fit your business?
✅ Is your data even ready for AI?
If you’re not sure, you’re not alone. This is a condensed version of the slides I presented at a Linkedin webinar for Tecnovy on 28.04.2025.
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfAbi john
Analyze the growth of meme coins from mere online jokes to potential assets in the digital economy. Explore the community, culture, and utility as they elevate themselves to a new era in cryptocurrency.
AI and Data Privacy in 2025: Global TrendsInData Labs
In this infographic, we explore how businesses can implement effective governance frameworks to address AI data privacy. Understanding it is crucial for developing effective strategies that ensure compliance, safeguard customer trust, and leverage AI responsibly. Equip yourself with insights that can drive informed decision-making and position your organization for success in the future of data privacy.
This infographic contains:
-AI and data privacy: Key findings
-Statistics on AI data privacy in the today’s world
-Tips on how to overcome data privacy challenges
-Benefits of AI data security investments.
Keep up-to-date on how AI is reshaping privacy standards and what this entails for both individuals and organizations.
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveScyllaDB
Want to learn practical tips for designing systems that can scale efficiently without compromising speed?
Join us for a workshop where we’ll address these challenges head-on and explore how to architect low-latency systems using Rust. During this free interactive workshop oriented for developers, engineers, and architects, we’ll cover how Rust’s unique language features and the Tokio async runtime enable high-performance application development.
As you explore key principles of designing low-latency systems with Rust, you will learn how to:
- Create and compile a real-world app with Rust
- Connect the application to ScyllaDB (NoSQL data store)
- Negotiate tradeoffs related to data modeling and querying
- Manage and monitor the database for consistently low latencies
Book industry standards are evolving rapidly. In the first part of this session, we’ll share an overview of key developments from 2024 and the early months of 2025. Then, BookNet’s resident standards expert, Tom Richardson, and CEO, Lauren Stewart, have a forward-looking conversation about what’s next.
Link to recording, presentation slides, and accompanying resource: https://bnctechforum.ca/sessions/standardsgoals-for-2025-standards-certification-roundup/
Presented by BookNet Canada on May 6, 2025 with support from the Department of Canadian Heritage.
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersToradex
Toradex brings robust Linux support to SMARC (Smart Mobility Architecture), ensuring high performance and long-term reliability for embedded applications. Here’s how:
• Optimized Torizon OS & Yocto Support – Toradex provides Torizon OS, a Debian-based easy-to-use platform, and Yocto BSPs for customized Linux images on SMARC modules.
• Seamless Integration with i.MX 8M Plus and i.MX 95 – Toradex SMARC solutions leverage NXP’s i.MX 8 M Plus and i.MX 95 SoCs, delivering power efficiency and AI-ready performance.
• Secure and Reliable – With Secure Boot, over-the-air (OTA) updates, and LTS kernel support, Toradex ensures industrial-grade security and longevity.
• Containerized Workflows for AI & IoT – Support for Docker, ROS, and real-time Linux enables scalable AI, ML, and IoT applications.
• Strong Ecosystem & Developer Support – Toradex offers comprehensive documentation, developer tools, and dedicated support, accelerating time-to-market.
With Toradex’s Linux support for SMARC, developers get a scalable, secure, and high-performance solution for industrial, medical, and AI-driven applications.
Do you have a specific project or application in mind where you're considering SMARC? We can help with Free Compatibility Check and help you with quick time-to-market
For more information: https://www.toradex.com/computer-on-modules/smarc-arm-family