SlideShare a Scribd company logo
Beyond the Big Elephant
Satish Mohan
Data
Big data ecosystem is evolving and changing rapidly.
• Data grows faster than Moore’s law
• massive, unstructured, and dirty
• don’t always know what questions to answer
• Driving architectural transition
• scale up -> scale out
• compute, network, storage
0
2
4
6
8
10
12
14
2010 2011 2012 2013 2014 2015
Moore's Law
Overall Data
Growing Landscape
Databases / Data warehousing
Dremel
Hadoop
Data Analysis & Platforms Operational
Big Data search
Business Intelligence Data Mining
jHepWork
Social
Corona
Graphs
Document Store
Raven DB
KeyValue
Multimodel
Object databases
Picolisp
XML Databses
Grid Solutions
Multidimensional
Multivalue database
Data aggregation
Created by: www.bigdata-startups.com
Growing Landscape
Databases / Data warehousing
Dremel
Hadoop
Data Analysis & Platforms Operational
Big Data search
Business Intelligence Data Mining
jHepWork
Social
Corona
Graphs
Document Store
Raven DB
KeyValue
Multimodel
Object databases
Picolisp
XML Databses
Grid Solutions
Multidimensional
Multivalue database
Data aggregation
Created by: www.bigdata-startups.com
A major driver of IT spending
• $232 billion in spending through 2016 (Gartner)
• $3.6 billion injected into startups focused on big data (2013)
!
!
!
Wikibon big data market distribution
!
!
!
!
Services
44%
Software
19%
Hardware
37%
http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017
Ecosystem Challenges
• Building a working data processing environment has become
a challenging and highly complex task.
• Exponential growth of the frameworks, standard libraries and
transient dependencies
• Constant flow of new features, bug fixes, and other changes
are almost a disaster
• Struggle to convert early experiments into a scalable
environment for managing data (however big)
!
Ecosystem Challenges
• Extract business value from diverse data sources and new data
types
• Deeper analytics requires users to build complex pipelines
involving ML algorithms
• Apache Mahout on Hadoop
• 25 production quality algorithms
• only 8-9 can scale over large data sets
• New use-cases require integration beyond Hadoop
Apache Hadoop
• The de-facto standard for data processing is rarely, if ever,
used in isolation.
• input comes from other frameworks
• output get consumed by other frameworks
• Good for batch processing and data-parallel processing
• Beyond Hadoop Map-Reduce
• real-time computation and programming models
• multiple topologies, mixed workloads, multi-tenancy
• reduced latency between batch and end-use services
Hadoop Ecosystem - Technology Partnerships
Jan 2013 Data, Datameer
Hadoop software distribution ties into
Active Directory, Microsoft's System
Center, and Microsoft virtualization
technologies to simplify deployment
and management.
Platform Goals
An integrated infrastructure that allows emerging technologies to
take advantage of our existing ecosystem and keep pace with end
use cases
• Consistent, compact and flexible means of integrating,
deploying and managing containerised big data applications,
services and frameworks
• Unification of data computation models: batch, interactive, and
streaming.
• Efficient resource isolation and sharing models that allow
multiple services and frameworks to leverage resources across
shared pools on demand
• Simple, Modular and Extensible
Key Elements
Resource Manager
Unified Framework
Applications / Frameworks / Services
DistributedStorage
AbstractAPIs
Platform - Core
Applications / Services / Frameworks
Unified Framework
Distributed
Storage
SPARK
AbstractAPIs
RedHatStorage
Resource Manager
MESOS
SharkSQL
Streaming
Core Partner Community
Platform - Extend through Partnerships
Applications / Services / Frameworks
Unified Framework
Distributed Storage
SPARK
AbstractAPIs
RedHatStorage
HDFS
Tachyon
MapR
Resource Manager
MESOS YARN
SharkSQL
Streaming
GraphX
MLlib
BlinkDB
Hadoop
Hive
Storm
MPI
Marathon
Chronos
Core Partner Community
Perfection is not the immediate goal. Abstraction is
what we need
Backup Slides
Mesos - mesos.apache.org
An abstracted scheduler/executor layer, to receive/consume resource
offers and thus perform tasks or run services, atop a distributed file
system (RHS by default)
• Fault-tolerant replicated master using ZooKeeper
• Scalability to 10,000s of nodes
• Isolation between tasks with Linux Containers
• Multi-resource scheduling (memory and CPU aware)
• Java, Python and C++ APIs
• scalability to 10,000s of nodes
• Primarily written in C++
!
!
Resource Manager
Spark - spark.incubator.apache.org
Unified framework for large scale data processing.
• Fast and expressive framework interoperable with Apache Hadoop
• Key idea: RDDs “resilient distributed datasets” that can automatically be rebuilt on
failure	

• Keep large working sets in memory
• Fault tolerance mechanism based on “lineage”
• Unifies batch, streaming, interactive computational models
• In-memory cluster computing framework for applications that reuse working sets of data
• Iterative algorithms: machine learning, graph processing, optimization	

• Interactive data mining: order of magnitude faster than disk-based tools	

!
• Powerful APIs in Scala, Python, Java
• Interactive shell
!
Unified Framework
Streaming
Interactive
Batch
Unified
Framework
Berkeley Big Data Analytics Stack (BDAS)
7
Berkeley Big-data Analytics Stack (BDAS)
7
Berkeley Big-data Analytics Stack (BD
y Big-data Analytics Stack (BDAS)
7
Berkeley Big-data Analy
Ad

More Related Content

What's hot (20)

Pivotal OSS meetup - MADlib and PivotalR
Pivotal OSS meetup - MADlib and PivotalRPivotal OSS meetup - MADlib and PivotalR
Pivotal OSS meetup - MADlib and PivotalR
go-pivotal
 
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
Srivatsan Ramanujam
 
Spark 101
Spark 101Spark 101
Spark 101
Mohit Garg
 
NextGen Apache Hadoop MapReduce
NextGen Apache Hadoop MapReduceNextGen Apache Hadoop MapReduce
NextGen Apache Hadoop MapReduce
Hortonworks
 
Big learning 1.2
Big learning   1.2Big learning   1.2
Big learning 1.2
Mohit Garg
 
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, SparkDistributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
Hivemall: Scalable machine learning library for Apache Hive/Spark/Pig
Hivemall: Scalable machine learning library for Apache Hive/Spark/PigHivemall: Scalable machine learning library for Apache Hive/Spark/Pig
Hivemall: Scalable machine learning library for Apache Hive/Spark/Pig
DataWorks Summit/Hadoop Summit
 
Extending Hadoop for Fun & Profit
Extending Hadoop for Fun & ProfitExtending Hadoop for Fun & Profit
Extending Hadoop for Fun & Profit
Milind Bhandarkar
 
Hopsworks in the cloud Berlin Buzzwords 2019
Hopsworks in the cloud Berlin Buzzwords 2019 Hopsworks in the cloud Berlin Buzzwords 2019
Hopsworks in the cloud Berlin Buzzwords 2019
Jim Dowling
 
Spark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark GroupSpark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark Group
Phaneendra Chiruvella
 
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
Jim Dowling
 
Cloud Services for Big Data Analytics
Cloud Services for Big Data AnalyticsCloud Services for Big Data Analytics
Cloud Services for Big Data Analytics
Geoffrey Fox
 
Practical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on HadoopPractical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on Hadoop
DataWorks Summit
 
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep LearningApache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
DataWorks Summit
 
The Bitter Lesson of ML Pipelines
The Bitter Lesson of ML Pipelines The Bitter Lesson of ML Pipelines
The Bitter Lesson of ML Pipelines
Jim Dowling
 
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop EcosystemWhy Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Cloudera, Inc.
 
DASK and Apache Spark
DASK and Apache SparkDASK and Apache Spark
DASK and Apache Spark
Databricks
 
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNEGenerating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
DataWorks Summit/Hadoop Summit
 
Hadoop Internals (2.3.0 or later)
Hadoop Internals (2.3.0 or later)Hadoop Internals (2.3.0 or later)
Hadoop Internals (2.3.0 or later)
Emilio Coppa
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 
Pivotal OSS meetup - MADlib and PivotalR
Pivotal OSS meetup - MADlib and PivotalRPivotal OSS meetup - MADlib and PivotalR
Pivotal OSS meetup - MADlib and PivotalR
go-pivotal
 
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
A Pipeline for Distributed Topic and Sentiment Analysis of Tweets on Pivotal ...
Srivatsan Ramanujam
 
NextGen Apache Hadoop MapReduce
NextGen Apache Hadoop MapReduceNextGen Apache Hadoop MapReduce
NextGen Apache Hadoop MapReduce
Hortonworks
 
Big learning 1.2
Big learning   1.2Big learning   1.2
Big learning 1.2
Mohit Garg
 
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, SparkDistributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
Hivemall: Scalable machine learning library for Apache Hive/Spark/Pig
Hivemall: Scalable machine learning library for Apache Hive/Spark/PigHivemall: Scalable machine learning library for Apache Hive/Spark/Pig
Hivemall: Scalable machine learning library for Apache Hive/Spark/Pig
DataWorks Summit/Hadoop Summit
 
Extending Hadoop for Fun & Profit
Extending Hadoop for Fun & ProfitExtending Hadoop for Fun & Profit
Extending Hadoop for Fun & Profit
Milind Bhandarkar
 
Hopsworks in the cloud Berlin Buzzwords 2019
Hopsworks in the cloud Berlin Buzzwords 2019 Hopsworks in the cloud Berlin Buzzwords 2019
Hopsworks in the cloud Berlin Buzzwords 2019
Jim Dowling
 
Spark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark GroupSpark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark Group
Phaneendra Chiruvella
 
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
HopsML Meetup talk on Hopsworks + ROCm/AMD June 2019
Jim Dowling
 
Cloud Services for Big Data Analytics
Cloud Services for Big Data AnalyticsCloud Services for Big Data Analytics
Cloud Services for Big Data Analytics
Geoffrey Fox
 
Practical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on HadoopPractical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on Hadoop
DataWorks Summit
 
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep LearningApache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
DataWorks Summit
 
The Bitter Lesson of ML Pipelines
The Bitter Lesson of ML Pipelines The Bitter Lesson of ML Pipelines
The Bitter Lesson of ML Pipelines
Jim Dowling
 
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop EcosystemWhy Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Cloudera, Inc.
 
DASK and Apache Spark
DASK and Apache SparkDASK and Apache Spark
DASK and Apache Spark
Databricks
 
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNEGenerating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
DataWorks Summit/Hadoop Summit
 
Hadoop Internals (2.3.0 or later)
Hadoop Internals (2.3.0 or later)Hadoop Internals (2.3.0 or later)
Hadoop Internals (2.3.0 or later)
Emilio Coppa
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 

Similar to Simple, Modular and Extensible Big Data Platform Concept (20)

Foxvalley bigdata
Foxvalley bigdataFoxvalley bigdata
Foxvalley bigdata
Tom Rogers
 
Architecting Your First Big Data Implementation
Architecting Your First Big Data ImplementationArchitecting Your First Big Data Implementation
Architecting Your First Big Data Implementation
Adaryl "Bob" Wakefield, MBA
 
1.demystifying big data & hadoop
1.demystifying big data & hadoop1.demystifying big data & hadoop
1.demystifying big data & hadoop
databloginfo
 
Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which
DataWorks Summit
 
Big Data and Cloud Computing
Big Data and Cloud ComputingBig Data and Cloud Computing
Big Data and Cloud Computing
Farzad Nozarian
 
Fundamentals of big data analytics and Hadoop
Fundamentals of big data analytics and HadoopFundamentals of big data analytics and Hadoop
Fundamentals of big data analytics and Hadoop
Archana Gopinath
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
Big data and hadoop
Big data and hadoopBig data and hadoop
Big data and hadoop
Prashanth Yennampelli
 
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptxM. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
Dr.Florence Dayana
 
How to use Big Data and Data Lake concept in business using Hadoop and Spark...
 How to use Big Data and Data Lake concept in business using Hadoop and Spark... How to use Big Data and Data Lake concept in business using Hadoop and Spark...
How to use Big Data and Data Lake concept in business using Hadoop and Spark...
Institute of Contemporary Sciences
 
Big Data Practice_Planning_steps_RK
Big Data Practice_Planning_steps_RKBig Data Practice_Planning_steps_RK
Big Data Practice_Planning_steps_RK
Rajesh Jayarman
 
Big Data Open Source Technologies
Big Data Open Source TechnologiesBig Data Open Source Technologies
Big Data Open Source Technologies
neeraj rathore
 
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Perficient, Inc.
 
MODULE 1: Introduction to Big Data Analytics.pptx
MODULE 1: Introduction to Big Data Analytics.pptxMODULE 1: Introduction to Big Data Analytics.pptx
MODULE 1: Introduction to Big Data Analytics.pptx
NiramayKolalle
 
Apache Hadoop Hive
Apache Hadoop HiveApache Hadoop Hive
Apache Hadoop Hive
Some corner at the Laboratory
 
Azure Cafe Marketplace with Hortonworks March 31 2016
Azure Cafe Marketplace with Hortonworks March 31 2016Azure Cafe Marketplace with Hortonworks March 31 2016
Azure Cafe Marketplace with Hortonworks March 31 2016
Joan Novino
 
Hadoop in a Nutshell
Hadoop in a NutshellHadoop in a Nutshell
Hadoop in a Nutshell
Anthony Thomas
 
Big data and hadoop overvew
Big data and hadoop overvewBig data and hadoop overvew
Big data and hadoop overvew
Kunal Khanna
 
Hadoop - Architectural road map for Hadoop Ecosystem
Hadoop -  Architectural road map for Hadoop EcosystemHadoop -  Architectural road map for Hadoop Ecosystem
Hadoop - Architectural road map for Hadoop Ecosystem
nallagangus
 
Cloudera Impala - San Diego Big Data Meetup August 13th 2014
Cloudera Impala - San Diego Big Data Meetup August 13th 2014Cloudera Impala - San Diego Big Data Meetup August 13th 2014
Cloudera Impala - San Diego Big Data Meetup August 13th 2014
cdmaxime
 
Foxvalley bigdata
Foxvalley bigdataFoxvalley bigdata
Foxvalley bigdata
Tom Rogers
 
1.demystifying big data & hadoop
1.demystifying big data & hadoop1.demystifying big data & hadoop
1.demystifying big data & hadoop
databloginfo
 
Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which
DataWorks Summit
 
Big Data and Cloud Computing
Big Data and Cloud ComputingBig Data and Cloud Computing
Big Data and Cloud Computing
Farzad Nozarian
 
Fundamentals of big data analytics and Hadoop
Fundamentals of big data analytics and HadoopFundamentals of big data analytics and Hadoop
Fundamentals of big data analytics and Hadoop
Archana Gopinath
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptxM. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
Dr.Florence Dayana
 
How to use Big Data and Data Lake concept in business using Hadoop and Spark...
 How to use Big Data and Data Lake concept in business using Hadoop and Spark... How to use Big Data and Data Lake concept in business using Hadoop and Spark...
How to use Big Data and Data Lake concept in business using Hadoop and Spark...
Institute of Contemporary Sciences
 
Big Data Practice_Planning_steps_RK
Big Data Practice_Planning_steps_RKBig Data Practice_Planning_steps_RK
Big Data Practice_Planning_steps_RK
Rajesh Jayarman
 
Big Data Open Source Technologies
Big Data Open Source TechnologiesBig Data Open Source Technologies
Big Data Open Source Technologies
neeraj rathore
 
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Big Data Open Source Tools and Trends: Enable Real-Time Business Intelligence...
Perficient, Inc.
 
MODULE 1: Introduction to Big Data Analytics.pptx
MODULE 1: Introduction to Big Data Analytics.pptxMODULE 1: Introduction to Big Data Analytics.pptx
MODULE 1: Introduction to Big Data Analytics.pptx
NiramayKolalle
 
Azure Cafe Marketplace with Hortonworks March 31 2016
Azure Cafe Marketplace with Hortonworks March 31 2016Azure Cafe Marketplace with Hortonworks March 31 2016
Azure Cafe Marketplace with Hortonworks March 31 2016
Joan Novino
 
Big data and hadoop overvew
Big data and hadoop overvewBig data and hadoop overvew
Big data and hadoop overvew
Kunal Khanna
 
Hadoop - Architectural road map for Hadoop Ecosystem
Hadoop -  Architectural road map for Hadoop EcosystemHadoop -  Architectural road map for Hadoop Ecosystem
Hadoop - Architectural road map for Hadoop Ecosystem
nallagangus
 
Cloudera Impala - San Diego Big Data Meetup August 13th 2014
Cloudera Impala - San Diego Big Data Meetup August 13th 2014Cloudera Impala - San Diego Big Data Meetup August 13th 2014
Cloudera Impala - San Diego Big Data Meetup August 13th 2014
cdmaxime
 
Ad

Recently uploaded (20)

183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Ad

Simple, Modular and Extensible Big Data Platform Concept

  • 1. Beyond the Big Elephant Satish Mohan
  • 2. Data Big data ecosystem is evolving and changing rapidly. • Data grows faster than Moore’s law • massive, unstructured, and dirty • don’t always know what questions to answer • Driving architectural transition • scale up -> scale out • compute, network, storage 0 2 4 6 8 10 12 14 2010 2011 2012 2013 2014 2015 Moore's Law Overall Data
  • 3. Growing Landscape Databases / Data warehousing Dremel Hadoop Data Analysis & Platforms Operational Big Data search Business Intelligence Data Mining jHepWork Social Corona Graphs Document Store Raven DB KeyValue Multimodel Object databases Picolisp XML Databses Grid Solutions Multidimensional Multivalue database Data aggregation Created by: www.bigdata-startups.com
  • 4. Growing Landscape Databases / Data warehousing Dremel Hadoop Data Analysis & Platforms Operational Big Data search Business Intelligence Data Mining jHepWork Social Corona Graphs Document Store Raven DB KeyValue Multimodel Object databases Picolisp XML Databses Grid Solutions Multidimensional Multivalue database Data aggregation Created by: www.bigdata-startups.com A major driver of IT spending • $232 billion in spending through 2016 (Gartner) • $3.6 billion injected into startups focused on big data (2013) ! ! ! Wikibon big data market distribution ! ! ! ! Services 44% Software 19% Hardware 37% http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017
  • 5. Ecosystem Challenges • Building a working data processing environment has become a challenging and highly complex task. • Exponential growth of the frameworks, standard libraries and transient dependencies • Constant flow of new features, bug fixes, and other changes are almost a disaster • Struggle to convert early experiments into a scalable environment for managing data (however big) !
  • 6. Ecosystem Challenges • Extract business value from diverse data sources and new data types • Deeper analytics requires users to build complex pipelines involving ML algorithms • Apache Mahout on Hadoop • 25 production quality algorithms • only 8-9 can scale over large data sets • New use-cases require integration beyond Hadoop
  • 7. Apache Hadoop • The de-facto standard for data processing is rarely, if ever, used in isolation. • input comes from other frameworks • output get consumed by other frameworks • Good for batch processing and data-parallel processing • Beyond Hadoop Map-Reduce • real-time computation and programming models • multiple topologies, mixed workloads, multi-tenancy • reduced latency between batch and end-use services
  • 8. Hadoop Ecosystem - Technology Partnerships Jan 2013 Data, Datameer Hadoop software distribution ties into Active Directory, Microsoft's System Center, and Microsoft virtualization technologies to simplify deployment and management.
  • 9. Platform Goals An integrated infrastructure that allows emerging technologies to take advantage of our existing ecosystem and keep pace with end use cases • Consistent, compact and flexible means of integrating, deploying and managing containerised big data applications, services and frameworks • Unification of data computation models: batch, interactive, and streaming. • Efficient resource isolation and sharing models that allow multiple services and frameworks to leverage resources across shared pools on demand • Simple, Modular and Extensible
  • 10. Key Elements Resource Manager Unified Framework Applications / Frameworks / Services DistributedStorage AbstractAPIs
  • 11. Platform - Core Applications / Services / Frameworks Unified Framework Distributed Storage SPARK AbstractAPIs RedHatStorage Resource Manager MESOS SharkSQL Streaming Core Partner Community
  • 12. Platform - Extend through Partnerships Applications / Services / Frameworks Unified Framework Distributed Storage SPARK AbstractAPIs RedHatStorage HDFS Tachyon MapR Resource Manager MESOS YARN SharkSQL Streaming GraphX MLlib BlinkDB Hadoop Hive Storm MPI Marathon Chronos Core Partner Community
  • 13. Perfection is not the immediate goal. Abstraction is what we need
  • 15. Mesos - mesos.apache.org An abstracted scheduler/executor layer, to receive/consume resource offers and thus perform tasks or run services, atop a distributed file system (RHS by default) • Fault-tolerant replicated master using ZooKeeper • Scalability to 10,000s of nodes • Isolation between tasks with Linux Containers • Multi-resource scheduling (memory and CPU aware) • Java, Python and C++ APIs • scalability to 10,000s of nodes • Primarily written in C++ ! ! Resource Manager
  • 16. Spark - spark.incubator.apache.org Unified framework for large scale data processing. • Fast and expressive framework interoperable with Apache Hadoop • Key idea: RDDs “resilient distributed datasets” that can automatically be rebuilt on failure • Keep large working sets in memory • Fault tolerance mechanism based on “lineage” • Unifies batch, streaming, interactive computational models • In-memory cluster computing framework for applications that reuse working sets of data • Iterative algorithms: machine learning, graph processing, optimization • Interactive data mining: order of magnitude faster than disk-based tools ! • Powerful APIs in Scala, Python, Java • Interactive shell ! Unified Framework Streaming Interactive Batch Unified Framework
  • 17. Berkeley Big Data Analytics Stack (BDAS) 7 Berkeley Big-data Analytics Stack (BDAS) 7 Berkeley Big-data Analytics Stack (BD y Big-data Analytics Stack (BDAS) 7 Berkeley Big-data Analy