SlideShare a Scribd company logo
Big Data Simplified
"Is all about
abˈstrakSH(ə)n"
H E M A L G A N D H I
D I R E C TO R O F D ATA E N G I N E E R I N G
Introduction
Background
Analyze
Current State
• Challenges
• Facts
New Platform
Design
• Define Goals
• Feature List
• Implementation
Approach
Compare
• Feature List
• Trade Offs
• Cost
Structure
Decision
Fix
vs.
Build?
Analyze Current State
Platform is very complex
Struggling to keep up with business needs
Huge backlog
Code base is increasing rapidly
We are slow to respond to market needs
Outdated technology stack
Missing best practices
High cost of data
Storage
Finding
InsightsIntegration Maintenance
Strategic Value
Data Identity
Time Value
Dependencies
Lack of understanding
business impact of data
Agile – mini waterfall
Process and Organization
High Investments
Costs
Adoption Issues
Complex
Framework
Lot of Challenges
NOT scalable platform
Can impact revenue negatively!!!
New Platform Design
Keep it simple
Keep up with business needs
Move fast
Keep technology stack current over time
Low cost of data
Storage
Finding
InsightsIntegration Maintenance
Strategic Value
Data Identity
Time Value
Dependencies
Understand business
impact of data
Measure data
Be Agile – Do Less
Improve data ROI
Compare
Investment needs
Current Platform
High
New PlatformVs.
High
Scalability
Current Platform
Not Scalable
New PlatformVs.
Initially Scalable
Maintenance cost
Current Platform
High
New PlatformVs.
Initially low,
grows over time
Technology
Current Platform
Outdated
New PlatformVs.
Big Data tools
provide technology
not solutions to
design problems
Technology choices
Decision
Fix
vs.
Build?
Big Data Simplified - Is all about Ab'strakSHeN
Next Steps
Build a feature based
scalable big data
platform in 6 months
with limited resources
while supporting legacy
system.
Goal
Design Patterns
Take Platform Approach
Project
Requirements
Data
Platform
Features
Reusable
Components
Technology Abstraction
Business Logic
Declarative
Configuration
Pick
Technology
at Runtime
Execution
Engine
Data Access & Ingestion Abstraction
Data Storage
Data Access APIData Ingestion Framework
Data Producers Data Consumers
Data Integration Jobs
Stream Data to Storage Layer
Data Storage
Data Integration Jobs Stream
Hot Data
Hot/Cold Data Management
Cold Data
Configuration
Configuration
abˈstrakSH(ə)n
High Level Architecture
Data Quality Service (Data Lineage & Profiling)
Security
Scheduling & Cluster Monitoring
Applications & Visualization Tools
Dredge
Collection
• Apache Flume
• Sqoop
Flow
• Kafka
• Spark
Processing
• PIG
• Spark
• Map Reduce
Storage
• Hive
• HBase
• Vertica
Delivery
• Looker
• Tableau
• Visualization
(d3.js)
• Email/FTP
Data Platform
Data Access Abstraction
Architecture
A declarative, abstraction
layer for integrating big
data tools, enabling loosely
coupled big data platform.
WHAT IS DREDGE
Dredge Logical View
Events ManagementLog Streaming
Tasks
Hadoop Cluster
Source
Readers
Target
Writer
Streams
/Direct
Dredge Repository – HBase
Target
End
Points
Source
End
Points
Configuration Abstraction
Dredge Repository – HBase
LAMDA Architecture : HDFS, Hive, HBase, PIG, Flume, Kafka, Oozie
Dredge Runtime
Temp Store - HDFS
Event
Management
Temp Cache- HDFS Logger Stream
Dredge Data Services
Aggregator
UDF’s
Combiners, Routers..
Plugin (Java/Shell, PIG, SQL)
Rank, Sorter Set Operations
Filters/Patterns Analysis
Abstraction builder (Kafka, Flume, Pig,
Custom)
Source Readers (Logs, RDBMS, unstructured data,
Custom)
Direct/Stream
Target Writers (Hive, HBase, RDBMS, Custom)
Direct/Stream
Dredge UI
Declarative
configuration
Logical Flows
Data Lineage
Runtime
Logs
Admin
Dredge Architecture
• From 1000+ scripts to 50-100 scripts
• From 1000+ configuration files to <5 files
• Logical view of workflow, abstract physical implementation
• Quickly integrate new tools, declarative configuration
implementation for big data tools
• Improved SLA, time to market, better cluster utilization,
higher performance
• Simplified integration
• Minimal migration costs
• Low maintenance, configurable archiving of data
DREDGE BENEFITS
Summarizing
 Abstraction layer
 Technology
 Data access
 Data ingestion
 Dependencies… It is all about abˈstrakSH(ə)n
 Reusable data components
 Event driven dependencies
 Plug & Play integration, loosely coupled (Cluster resources, Data)
Big data requires a different mindset:
Innovate, iterate often and keep it
simple.
Thank you.
E N G I N E E R I N G . O N E K I N G S L A N E . C O M
Ad

More Related Content

What's hot (20)

YARN webinar series: Using Scalding to write applications to Hadoop and YARN
YARN webinar series: Using Scalding to write applications to Hadoop and YARNYARN webinar series: Using Scalding to write applications to Hadoop and YARN
YARN webinar series: Using Scalding to write applications to Hadoop and YARN
Hortonworks
 
Hortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks Technical Workshop: Real Time Monitoring with Apache HadoopHortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks
 
Insights into Real World Data Management Challenges
Insights into Real World Data Management ChallengesInsights into Real World Data Management Challenges
Insights into Real World Data Management Challenges
DataWorks Summit
 
Hadoop from Hive with Stinger to Tez
Hadoop from Hive with Stinger to TezHadoop from Hive with Stinger to Tez
Hadoop from Hive with Stinger to Tez
Jan Pieter Posthuma
 
Format Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and ParquetFormat Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and Parquet
DataWorks Summit
 
Luo june27 1150am_room230_a_v2
Luo june27 1150am_room230_a_v2Luo june27 1150am_room230_a_v2
Luo june27 1150am_room230_a_v2
DataWorks Summit
 
YARN Ready: Apache Spark
YARN Ready: Apache Spark YARN Ready: Apache Spark
YARN Ready: Apache Spark
Hortonworks
 
Evolving HDFS to a Generalized Storage Subsystem
Evolving HDFS to a Generalized Storage SubsystemEvolving HDFS to a Generalized Storage Subsystem
Evolving HDFS to a Generalized Storage Subsystem
DataWorks Summit/Hadoop Summit
 
The DAP - Where YARN, HBase, Kafka and Spark go to Production
The DAP - Where YARN, HBase, Kafka and Spark go to ProductionThe DAP - Where YARN, HBase, Kafka and Spark go to Production
The DAP - Where YARN, HBase, Kafka and Spark go to Production
DataWorks Summit/Hadoop Summit
 
YARN Ready: Integrating to YARN with Tez
YARN Ready: Integrating to YARN with Tez YARN Ready: Integrating to YARN with Tez
YARN Ready: Integrating to YARN with Tez
Hortonworks
 
Hadoop in the Cloud - The what, why and how from the experts
Hadoop in the Cloud - The what, why and how from the expertsHadoop in the Cloud - The what, why and how from the experts
Hadoop in the Cloud - The what, why and how from the experts
DataWorks Summit/Hadoop Summit
 
Analyzing the World's Largest Security Data Lake!
Analyzing the World's Largest Security Data Lake!Analyzing the World's Largest Security Data Lake!
Analyzing the World's Largest Security Data Lake!
DataWorks Summit
 
Dynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the flyDynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the fly
DataWorks Summit
 
Accelerating Big Data Insights
Accelerating Big Data InsightsAccelerating Big Data Insights
Accelerating Big Data Insights
DataWorks Summit
 
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
DataWorks Summit
 
Combine SAS High-Performance Capabilities with Hadoop YARN
Combine SAS High-Performance Capabilities with Hadoop YARNCombine SAS High-Performance Capabilities with Hadoop YARN
Combine SAS High-Performance Capabilities with Hadoop YARN
Hortonworks
 
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
DataWorks Summit
 
High-Scale Entity Resolution in Hadoop
High-Scale Entity Resolution in HadoopHigh-Scale Entity Resolution in Hadoop
High-Scale Entity Resolution in Hadoop
DataWorks Summit/Hadoop Summit
 
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the CloudBring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
DataWorks Summit
 
Hortonworks Yarn Code Walk Through January 2014
Hortonworks Yarn Code Walk Through January 2014Hortonworks Yarn Code Walk Through January 2014
Hortonworks Yarn Code Walk Through January 2014
Hortonworks
 
YARN webinar series: Using Scalding to write applications to Hadoop and YARN
YARN webinar series: Using Scalding to write applications to Hadoop and YARNYARN webinar series: Using Scalding to write applications to Hadoop and YARN
YARN webinar series: Using Scalding to write applications to Hadoop and YARN
Hortonworks
 
Hortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks Technical Workshop: Real Time Monitoring with Apache HadoopHortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks Technical Workshop: Real Time Monitoring with Apache Hadoop
Hortonworks
 
Insights into Real World Data Management Challenges
Insights into Real World Data Management ChallengesInsights into Real World Data Management Challenges
Insights into Real World Data Management Challenges
DataWorks Summit
 
Hadoop from Hive with Stinger to Tez
Hadoop from Hive with Stinger to TezHadoop from Hive with Stinger to Tez
Hadoop from Hive with Stinger to Tez
Jan Pieter Posthuma
 
Format Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and ParquetFormat Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and Parquet
DataWorks Summit
 
Luo june27 1150am_room230_a_v2
Luo june27 1150am_room230_a_v2Luo june27 1150am_room230_a_v2
Luo june27 1150am_room230_a_v2
DataWorks Summit
 
YARN Ready: Apache Spark
YARN Ready: Apache Spark YARN Ready: Apache Spark
YARN Ready: Apache Spark
Hortonworks
 
The DAP - Where YARN, HBase, Kafka and Spark go to Production
The DAP - Where YARN, HBase, Kafka and Spark go to ProductionThe DAP - Where YARN, HBase, Kafka and Spark go to Production
The DAP - Where YARN, HBase, Kafka and Spark go to Production
DataWorks Summit/Hadoop Summit
 
YARN Ready: Integrating to YARN with Tez
YARN Ready: Integrating to YARN with Tez YARN Ready: Integrating to YARN with Tez
YARN Ready: Integrating to YARN with Tez
Hortonworks
 
Hadoop in the Cloud - The what, why and how from the experts
Hadoop in the Cloud - The what, why and how from the expertsHadoop in the Cloud - The what, why and how from the experts
Hadoop in the Cloud - The what, why and how from the experts
DataWorks Summit/Hadoop Summit
 
Analyzing the World's Largest Security Data Lake!
Analyzing the World's Largest Security Data Lake!Analyzing the World's Largest Security Data Lake!
Analyzing the World's Largest Security Data Lake!
DataWorks Summit
 
Dynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the flyDynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the fly
DataWorks Summit
 
Accelerating Big Data Insights
Accelerating Big Data InsightsAccelerating Big Data Insights
Accelerating Big Data Insights
DataWorks Summit
 
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
Coexistence and Migration of Vendor HPC based infrastructure to Hadoop Ecosys...
DataWorks Summit
 
Combine SAS High-Performance Capabilities with Hadoop YARN
Combine SAS High-Performance Capabilities with Hadoop YARNCombine SAS High-Performance Capabilities with Hadoop YARN
Combine SAS High-Performance Capabilities with Hadoop YARN
Hortonworks
 
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
DataWorks Summit
 
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the CloudBring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
DataWorks Summit
 
Hortonworks Yarn Code Walk Through January 2014
Hortonworks Yarn Code Walk Through January 2014Hortonworks Yarn Code Walk Through January 2014
Hortonworks Yarn Code Walk Through January 2014
Hortonworks
 

Viewers also liked (20)

Running Spark and MapReduce together in Production
Running Spark and MapReduce together in ProductionRunning Spark and MapReduce together in Production
Running Spark and MapReduce together in Production
DataWorks Summit
 
Karta an ETL Framework to process high volume datasets
Karta an ETL Framework to process high volume datasets Karta an ETL Framework to process high volume datasets
Karta an ETL Framework to process high volume datasets
DataWorks Summit
 
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
DataWorks Summit
 
Hadoop for Genomics__HadoopSummit2010
Hadoop for Genomics__HadoopSummit2010Hadoop for Genomics__HadoopSummit2010
Hadoop for Genomics__HadoopSummit2010
Yahoo Developer Network
 
Practical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on HadoopPractical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on Hadoop
DataWorks Summit
 
Hadoop in Validated Environment - Data Governance Initiative
Hadoop in Validated Environment - Data Governance InitiativeHadoop in Validated Environment - Data Governance Initiative
Hadoop in Validated Environment - Data Governance Initiative
DataWorks Summit
 
50 Shades of SQL
50 Shades of SQL50 Shades of SQL
50 Shades of SQL
DataWorks Summit
 
Realistic Synthetic Generation Allows Secure Development
Realistic Synthetic Generation Allows Secure DevelopmentRealistic Synthetic Generation Allows Secure Development
Realistic Synthetic Generation Allows Secure Development
DataWorks Summit
 
One Click Hadoop Clusters - Anywhere (Using Docker)
One Click Hadoop Clusters - Anywhere (Using Docker)One Click Hadoop Clusters - Anywhere (Using Docker)
One Click Hadoop Clusters - Anywhere (Using Docker)
DataWorks Summit
 
Inspiring Travel at Airbnb [WIP]
Inspiring Travel at Airbnb [WIP]Inspiring Travel at Airbnb [WIP]
Inspiring Travel at Airbnb [WIP]
DataWorks Summit
 
Carpe Datum: Building Big Data Analytical Applications with HP Haven
Carpe Datum: Building Big Data Analytical Applications with HP HavenCarpe Datum: Building Big Data Analytical Applications with HP Haven
Carpe Datum: Building Big Data Analytical Applications with HP Haven
DataWorks Summit
 
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
DataWorks Summit
 
HBase and Drill: How loosley typed SQL is ideal for NoSQL
HBase and Drill: How loosley typed SQL is ideal for NoSQLHBase and Drill: How loosley typed SQL is ideal for NoSQL
HBase and Drill: How loosley typed SQL is ideal for NoSQL
DataWorks Summit
 
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARNDeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DataWorks Summit
 
Spark Application Development Made Easy
Spark Application Development Made EasySpark Application Development Made Easy
Spark Application Development Made Easy
DataWorks Summit
 
Open Source SQL for Hadoop: Where are we and Where are we Going?
Open Source SQL for Hadoop: Where are we and Where are we Going?Open Source SQL for Hadoop: Where are we and Where are we Going?
Open Source SQL for Hadoop: Where are we and Where are we Going?
DataWorks Summit
 
NoSQL Needs SomeSQL
NoSQL Needs SomeSQLNoSQL Needs SomeSQL
NoSQL Needs SomeSQL
DataWorks Summit
 
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
DataWorks Summit
 
Big Data Challenges in the Energy Sector
Big Data Challenges in the Energy SectorBig Data Challenges in the Energy Sector
Big Data Challenges in the Energy Sector
DataWorks Summit
 
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared ClustersMercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
DataWorks Summit
 
Running Spark and MapReduce together in Production
Running Spark and MapReduce together in ProductionRunning Spark and MapReduce together in Production
Running Spark and MapReduce together in Production
DataWorks Summit
 
Karta an ETL Framework to process high volume datasets
Karta an ETL Framework to process high volume datasets Karta an ETL Framework to process high volume datasets
Karta an ETL Framework to process high volume datasets
DataWorks Summit
 
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
The Most Valuable Customer on Earth-1298: Comic Book Analysis with Oracel's B...
DataWorks Summit
 
Practical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on HadoopPractical Distributed Machine Learning Pipelines on Hadoop
Practical Distributed Machine Learning Pipelines on Hadoop
DataWorks Summit
 
Hadoop in Validated Environment - Data Governance Initiative
Hadoop in Validated Environment - Data Governance InitiativeHadoop in Validated Environment - Data Governance Initiative
Hadoop in Validated Environment - Data Governance Initiative
DataWorks Summit
 
Realistic Synthetic Generation Allows Secure Development
Realistic Synthetic Generation Allows Secure DevelopmentRealistic Synthetic Generation Allows Secure Development
Realistic Synthetic Generation Allows Secure Development
DataWorks Summit
 
One Click Hadoop Clusters - Anywhere (Using Docker)
One Click Hadoop Clusters - Anywhere (Using Docker)One Click Hadoop Clusters - Anywhere (Using Docker)
One Click Hadoop Clusters - Anywhere (Using Docker)
DataWorks Summit
 
Inspiring Travel at Airbnb [WIP]
Inspiring Travel at Airbnb [WIP]Inspiring Travel at Airbnb [WIP]
Inspiring Travel at Airbnb [WIP]
DataWorks Summit
 
Carpe Datum: Building Big Data Analytical Applications with HP Haven
Carpe Datum: Building Big Data Analytical Applications with HP HavenCarpe Datum: Building Big Data Analytical Applications with HP Haven
Carpe Datum: Building Big Data Analytical Applications with HP Haven
DataWorks Summit
 
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
Can you Re-Platform your Teradata, Oracle, Netezza and SQL Server Analytic Wo...
DataWorks Summit
 
HBase and Drill: How loosley typed SQL is ideal for NoSQL
HBase and Drill: How loosley typed SQL is ideal for NoSQLHBase and Drill: How loosley typed SQL is ideal for NoSQL
HBase and Drill: How loosley typed SQL is ideal for NoSQL
DataWorks Summit
 
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARNDeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DeathStar: Easy, Dynamic, Multi-Tenant HBase via YARN
DataWorks Summit
 
Spark Application Development Made Easy
Spark Application Development Made EasySpark Application Development Made Easy
Spark Application Development Made Easy
DataWorks Summit
 
Open Source SQL for Hadoop: Where are we and Where are we Going?
Open Source SQL for Hadoop: Where are we and Where are we Going?Open Source SQL for Hadoop: Where are we and Where are we Going?
Open Source SQL for Hadoop: Where are we and Where are we Going?
DataWorks Summit
 
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
Modus operandi of Spark Streaming - Recipes for Running your Streaming Applic...
DataWorks Summit
 
Big Data Challenges in the Energy Sector
Big Data Challenges in the Energy SectorBig Data Challenges in the Energy Sector
Big Data Challenges in the Energy Sector
DataWorks Summit
 
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared ClustersMercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters
DataWorks Summit
 
Ad

Similar to Big Data Simplified - Is all about Ab'strakSHeN (20)

Pacemaker hadoop infrastructure and soft serve experience
Pacemaker   hadoop infrastructure and soft serve experiencePacemaker   hadoop infrastructure and soft serve experience
Pacemaker hadoop infrastructure and soft serve experience
Vitaliy Bashun
 
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data ArchitectHadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
SoftServe
 
Skilwise Big data
Skilwise Big dataSkilwise Big data
Skilwise Big data
Skillwise Group
 
Skillwise Big Data part 2
Skillwise Big Data part 2Skillwise Big Data part 2
Skillwise Big Data part 2
Skillwise Group
 
Trafodion overview
Trafodion overviewTrafodion overview
Trafodion overview
Rohit Jain
 
Bringing the Power of Big Data Computation to Salesforce
Bringing the Power of Big Data Computation to SalesforceBringing the Power of Big Data Computation to Salesforce
Bringing the Power of Big Data Computation to Salesforce
Salesforce Developers
 
Teradata - Presentation at Hortonworks Booth - Strata 2014
Teradata - Presentation at Hortonworks Booth - Strata 2014Teradata - Presentation at Hortonworks Booth - Strata 2014
Teradata - Presentation at Hortonworks Booth - Strata 2014
Hortonworks
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?
James Serra
 
Big data analytics with hadoop volume 2
Big data analytics with hadoop volume 2Big data analytics with hadoop volume 2
Big data analytics with hadoop volume 2
Imviplav
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data Architecture
Databricks
 
Developing Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data PlatformsDeveloping Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data Platforms
ScyllaDB
 
Modernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APSModernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
Hitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop SolutionHitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop Solution
Hitachi Vantara
 
Tableau and hadoop
Tableau and hadoopTableau and hadoop
Tableau and hadoop
Craig Jordan
 
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Amazon Web Services LATAM
 
Transform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big DataTransform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big Data
Ashnikbiz
 
Building Big Data Solutions with Azure Data Lake.10.11.17.pptx
Building Big Data Solutions with Azure Data Lake.10.11.17.pptxBuilding Big Data Solutions with Azure Data Lake.10.11.17.pptx
Building Big Data Solutions with Azure Data Lake.10.11.17.pptx
thando80
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
DataWorks Summit/Hadoop Summit
 
Prashanth Kumar_Hadoop_NEW
Prashanth Kumar_Hadoop_NEWPrashanth Kumar_Hadoop_NEW
Prashanth Kumar_Hadoop_NEW
Prashanth Shankar kumar
 
Pacemaker hadoop infrastructure and soft serve experience
Pacemaker   hadoop infrastructure and soft serve experiencePacemaker   hadoop infrastructure and soft serve experience
Pacemaker hadoop infrastructure and soft serve experience
Vitaliy Bashun
 
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data ArchitectHadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
Hadoop Infrastructure and SoftServe Experience by Vitaliy Bashun, Data Architect
SoftServe
 
Skillwise Big Data part 2
Skillwise Big Data part 2Skillwise Big Data part 2
Skillwise Big Data part 2
Skillwise Group
 
Trafodion overview
Trafodion overviewTrafodion overview
Trafodion overview
Rohit Jain
 
Bringing the Power of Big Data Computation to Salesforce
Bringing the Power of Big Data Computation to SalesforceBringing the Power of Big Data Computation to Salesforce
Bringing the Power of Big Data Computation to Salesforce
Salesforce Developers
 
Teradata - Presentation at Hortonworks Booth - Strata 2014
Teradata - Presentation at Hortonworks Booth - Strata 2014Teradata - Presentation at Hortonworks Booth - Strata 2014
Teradata - Presentation at Hortonworks Booth - Strata 2014
Hortonworks
 
Is the traditional data warehouse dead?
Is the traditional data warehouse dead?Is the traditional data warehouse dead?
Is the traditional data warehouse dead?
James Serra
 
Big data analytics with hadoop volume 2
Big data analytics with hadoop volume 2Big data analytics with hadoop volume 2
Big data analytics with hadoop volume 2
Imviplav
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data Architecture
Databricks
 
Developing Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data PlatformsDeveloping Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data Platforms
ScyllaDB
 
Modernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APSModernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
Hitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop SolutionHitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop Solution
Hitachi Vantara
 
Tableau and hadoop
Tableau and hadoopTableau and hadoop
Tableau and hadoop
Craig Jordan
 
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Amazon Web Services LATAM
 
Transform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big DataTransform your DBMS to drive engagement innovation with Big Data
Transform your DBMS to drive engagement innovation with Big Data
Ashnikbiz
 
Building Big Data Solutions with Azure Data Lake.10.11.17.pptx
Building Big Data Solutions with Azure Data Lake.10.11.17.pptxBuilding Big Data Solutions with Azure Data Lake.10.11.17.pptx
Building Big Data Solutions with Azure Data Lake.10.11.17.pptx
thando80
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
Modernizing Business Processes with Big Data: Real-World Use Cases for Produc...
DataWorks Summit/Hadoop Summit
 
Ad

More from DataWorks Summit (20)

Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 

Recently uploaded (20)

DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 

Big Data Simplified - Is all about Ab'strakSHeN

Editor's Notes

  • #13: ----- Meeting Notes (6/3/15 10:27) ----- Agile speed vs agile vigor Cleanup code retire code