ارائه در زمینه کلان داده،
کارگاه آموزشی "عصر کلان داده، چرا و چگونه؟" در بیست و دومین کنفرانس انجمن کامپیوتر ایران csicc2017.ir
وحید امیری
vahidamiry.ir
datastack.ir
This document provides an overview of big data processing tools and NoSQL databases. It discusses how Hadoop uses MapReduce and HDFS to distribute processing across large clusters. Spark is presented as an alternative to Hadoop. The CAP theorem is explained as relating to consistency, availability, and network partitions. Different types of NoSQL databases are described including key-value, column, document and graph databases. Examples are provided for each type.
Big data architecture on cloud computing infrastructuredatastack
This document provides an overview of using OpenStack and Sahara to implement a big data architecture on cloud infrastructure. It discusses:
- The characteristics and service models of cloud computing
- An introduction to OpenStack, why it is used, and some of its key statistics
- What Sahara is and its role in provisioning and managing Hadoop, Spark, and Storm clusters on OpenStack
- Sahara's architecture, how it integrates with OpenStack, and examples of how it can be used to quickly provision data processing clusters and execute analytic jobs on cloud infrastructure.
This document provides an overview of big data concepts, including NoSQL databases, batch and real-time data processing frameworks, and analytical querying tools. It discusses scalability challenges with traditional SQL databases and introduces horizontal scaling with NoSQL systems like key-value, document, column, and graph stores. MapReduce and Hadoop are described for batch processing, while Storm is presented for real-time processing. Hive and Pig are summarized as tools for running analytical queries over large datasets.
The document provides information about Hadoop, its core components, and MapReduce programming model. It defines Hadoop as an open source software framework used for distributed storage and processing of large datasets. It describes the main Hadoop components like HDFS, NameNode, DataNode, JobTracker and Secondary NameNode. It also explains MapReduce as a programming model used for distributed processing of big data across clusters.
The document discusses and compares MapReduce and relational database management systems (RDBMS) for large-scale data processing. It describes several hybrid approaches that attempt to combine the scalability of MapReduce with the query optimization and efficiency of parallel RDBMS. HadoopDB is highlighted as a system that uses Hadoop for communication and data distribution across nodes running PostgreSQL for query execution. Performance evaluations show hybrid systems can outperform pure MapReduce but may still lag specialized parallel databases.
Big Data raises challenges about how to process such vast pool of raw data and how to aggregate value to our lives. For addressing these demands an ecosystem of tools named Hadoop was conceived.
Apache hadoop introduction and architectureHarikrishnan K
Hadoop is an open-source framework for distributed storage and processing of large datasets across clusters of computers. It allows for the reliable, scalable and distributed processing of large data sets across clusters of commodity hardware. The core of Hadoop is a storage part known as Hadoop Distributed File System (HDFS) and a processing part known as MapReduce. HDFS provides distributed storage and MapReduce enables distributed processing of large datasets in a reliable, fault-tolerant and scalable manner. Hadoop has become popular for distributed computing as it is reliable, economical and scalable to handle large and varying amounts of data.
The document provides an overview of Big Data technology landscape, specifically focusing on NoSQL databases and Hadoop. It defines NoSQL as a non-relational database used for dealing with big data. It describes four main types of NoSQL databases - key-value stores, document databases, column-oriented databases, and graph databases - and provides examples of databases that fall under each type. It also discusses why NoSQL and Hadoop are useful technologies for storing and processing big data, how they work, and how companies are using them.
The presentation covers following topics: 1) Hadoop Introduction 2) Hadoop nodes and daemons 3) Architecture 4) Hadoop best features 5) Hadoop characteristics. For more further knowledge of Hadoop refer the link: http://data-flair.training/blogs/hadoop-tutorial-for-beginners/
The document discusses Hadoop, an open-source software framework that allows distributed processing of large datasets across clusters of computers. It describes Hadoop as having two main components - the Hadoop Distributed File System (HDFS) which stores data across infrastructure, and MapReduce which processes the data in a parallel, distributed manner. HDFS provides redundancy, scalability, and fault tolerance. Together these components provide a solution for businesses to efficiently analyze the large, unstructured "Big Data" they collect.
Introduction to Big Data & Hadoop Architecture - Module 1Rohit Agrawal
Learning Objectives - In this module, you will understand what is Big Data, What are the limitations of the existing solutions for Big Data problem; How Hadoop solves the Big Data problem, What are the common Hadoop ecosystem components, Hadoop Architecture, HDFS and Map Reduce Framework, and Anatomy of File Write and Read.
Introduction to Hadoop Ecosystem was presented to Lansing Java User Group on 2/17/2015 by Vijay Mandava and Lan Jiang. The demo was built on top of HDP 2.2 and AWS cloud.
This presentation Simplify the concepts of Big data and NoSQL databases & Hadoop components.
The Original Source:
http://zohararad.github.io/presentations/big-data-introduction/
The document provides an introduction to big data and Apache Hadoop. It discusses big data concepts like the 3Vs of volume, variety and velocity. It then describes Apache Hadoop including its core architecture, HDFS, MapReduce and running jobs. Examples of using Hadoop for a retail system and with SQL Server are presented. Real world applications at Microsoft and case studies are reviewed. References for further reading are included at the end.
This document provides an overview of big data and Hadoop. It discusses why Hadoop is useful for extremely large datasets that are difficult to manage in relational databases. It then summarizes what Hadoop is, including its core components like HDFS, MapReduce, HBase, Pig, Hive, Chukwa, and ZooKeeper. The document also outlines Hadoop's design principles and provides examples of how some of its components like MapReduce and Hive work.
Hadoop is an open-source framework for distributed storage and processing of large datasets across clusters of computers. It was developed based on Google papers describing Google File System (GFS) for reliable distributed data storage and MapReduce for distributed parallel processing. Hadoop uses HDFS for storage and MapReduce for processing in a scalable, fault-tolerant manner on commodity hardware. It has a growing ecosystem of projects like Pig, Hive, HBase, Zookeeper, Spark and others that provide additional capabilities for SQL queries, real-time processing, coordination services and more. Major vendors that provide Hadoop distributions include Hortonworks and Cloudera.
The document discusses big data and Hadoop. It describes the three V's of big data - variety, volume, and velocity. It also discusses Hadoop components like HDFS, MapReduce, Pig, Hive, and YARN. Hadoop is a framework for storing and processing large datasets in a distributed computing environment. It allows for the ability to store and use all types of data at scale using commodity hardware.
Overview of Big data, Hadoop and Microsoft BI - version1Thanh Nguyen
Big Data and advanced analytics are critical topics for executives today. But many still aren't sure how to turn that promise into value. This presentation provides an overview of 16 examples and use cases that lay out the different ways companies have approached the issue and found value: everything from pricing flexibility to customer preference management to credit risk analysis to fraud protection and discount targeting. For the latest on Big Data & Advanced Analytics: http://mckinseyonmarketingandsales.com/topics/big-data
This document summarizes Andrew Brust's presentation on using the Microsoft platform for big data. It discusses Hadoop and HDInsight, MapReduce, using Hive with ODBC and the BI stack. It also covers Hekaton, NoSQL, SQL Server Parallel Data Warehouse, and PolyBase. The presentation includes demos of HDInsight, MapReduce, and using Hive with the BI stack.
Fundamentals of Big Data, Hadoop project design and case study or Use case
General planning consideration and most necessaries in Hadoop ecosystem and Hadoop projects
This will provide the basis for choosing the right Hadoop implementation, Hadoop technologies integration, adoption and creating an infrastructure.
Building applications using Apache Hadoop with a use-case of WI-FI log analysis has real life example.
- Hadoop is a framework for managing and processing big data distributed across clusters of computers. It allows for parallel processing of large datasets.
- Big data comes from various sources like customer behavior, machine data from sensors, etc. It is used by companies to better understand customers and target ads.
- Hadoop uses a master-slave architecture with a NameNode master and DataNode slaves. Files are divided into blocks and replicated across DataNodes for reliability. The NameNode tracks where data blocks are stored.
Hadoop Tutorial For Beginners | Apache Hadoop Tutorial For Beginners | Hadoop...Simplilearn
This presentation about Hadoop for beginners will help you understand what is Hadoop, why Hadoop, what is Hadoop HDFS, Hadoop MapReduce, Hadoop YARN, a use case of Hadoop and finally a demo on HDFS (Hadoop Distributed File System), MapReduce and YARN. Big Data is a massive amount of data which cannot be stored, processed, and analyzed using traditional systems. To overcome this problem, we use Hadoop. Hadoop is a framework which stores and handles Big Data in a distributed and parallel fashion. Hadoop overcomes the challenges of Big Data. Hadoop has three components HDFS, MapReduce, and YARN. HDFS is the storage unit of Hadoop, MapReduce is its processing unit, and YARN is the resource management unit of Hadoop. In this video, we will look into these units individually and also see a demo on each of these units.
Below topics are explained in this Hadoop presentation:
1. What is Hadoop
2. Why Hadoop
3. Big Data generation
4. Hadoop HDFS
5. Hadoop MapReduce
6. Hadoop YARN
7. Use of Hadoop
8. Demo on HDFS, MapReduce and YARN
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
The document provides an introduction to big data and Hadoop. It defines big data as large datasets that cannot be processed using traditional computing techniques due to the volume, variety, velocity, and other characteristics of the data. It discusses traditional data processing versus big data and introduces Hadoop as an open-source framework for storing, processing, and analyzing large datasets in a distributed environment. The document outlines the key components of Hadoop including HDFS, MapReduce, YARN, and Hadoop distributions from vendors like Cloudera and Hortonworks.
This document provides an overview of 4 solutions for processing big data using Hadoop and compares them. Solution 1 involves using core Hadoop processing without data staging or movement. Solution 2 uses BI tools to analyze Hadoop data after a single CSV transformation. Solution 3 creates a data warehouse in Hadoop after a single transformation. Solution 4 implements a traditional data warehouse. The solutions are then compared based on benefits like cloud readiness, parallel processing, and investment required. The document also includes steps for installing a Hadoop cluster and running sample MapReduce jobs and Excel processing.
Presentation detailed about capabilities of In memory Analytic using Apache Spark. Apache Spark overview with programming mode, cluster mode with Mosos, supported operations and comparison with Hadoop Map Reduce. Elaborating Apache Spark Stack expansion like Shark, Streaming, MLib, GraphX
Azure Databricks is Easier Than You ThinkIke Ellis
Spark is a fast and general engine for large-scale data processing. It supports Scala, Python, Java, SQL, R and more. Spark applications can access data from many sources and perform tasks like ETL, machine learning, and SQL queries. Azure Databricks provides a managed Spark service on Azure that makes it easier to set up clusters and share notebooks across teams for data analysis. Databricks also integrates with many Azure services for storage and data integration.
Big Data raises challenges about how to process such vast pool of raw data and how to aggregate value to our lives. For addressing these demands an ecosystem of tools named Hadoop was conceived.
Apache hadoop introduction and architectureHarikrishnan K
Hadoop is an open-source framework for distributed storage and processing of large datasets across clusters of computers. It allows for the reliable, scalable and distributed processing of large data sets across clusters of commodity hardware. The core of Hadoop is a storage part known as Hadoop Distributed File System (HDFS) and a processing part known as MapReduce. HDFS provides distributed storage and MapReduce enables distributed processing of large datasets in a reliable, fault-tolerant and scalable manner. Hadoop has become popular for distributed computing as it is reliable, economical and scalable to handle large and varying amounts of data.
The document provides an overview of Big Data technology landscape, specifically focusing on NoSQL databases and Hadoop. It defines NoSQL as a non-relational database used for dealing with big data. It describes four main types of NoSQL databases - key-value stores, document databases, column-oriented databases, and graph databases - and provides examples of databases that fall under each type. It also discusses why NoSQL and Hadoop are useful technologies for storing and processing big data, how they work, and how companies are using them.
The presentation covers following topics: 1) Hadoop Introduction 2) Hadoop nodes and daemons 3) Architecture 4) Hadoop best features 5) Hadoop characteristics. For more further knowledge of Hadoop refer the link: http://data-flair.training/blogs/hadoop-tutorial-for-beginners/
The document discusses Hadoop, an open-source software framework that allows distributed processing of large datasets across clusters of computers. It describes Hadoop as having two main components - the Hadoop Distributed File System (HDFS) which stores data across infrastructure, and MapReduce which processes the data in a parallel, distributed manner. HDFS provides redundancy, scalability, and fault tolerance. Together these components provide a solution for businesses to efficiently analyze the large, unstructured "Big Data" they collect.
Introduction to Big Data & Hadoop Architecture - Module 1Rohit Agrawal
Learning Objectives - In this module, you will understand what is Big Data, What are the limitations of the existing solutions for Big Data problem; How Hadoop solves the Big Data problem, What are the common Hadoop ecosystem components, Hadoop Architecture, HDFS and Map Reduce Framework, and Anatomy of File Write and Read.
Introduction to Hadoop Ecosystem was presented to Lansing Java User Group on 2/17/2015 by Vijay Mandava and Lan Jiang. The demo was built on top of HDP 2.2 and AWS cloud.
This presentation Simplify the concepts of Big data and NoSQL databases & Hadoop components.
The Original Source:
http://zohararad.github.io/presentations/big-data-introduction/
The document provides an introduction to big data and Apache Hadoop. It discusses big data concepts like the 3Vs of volume, variety and velocity. It then describes Apache Hadoop including its core architecture, HDFS, MapReduce and running jobs. Examples of using Hadoop for a retail system and with SQL Server are presented. Real world applications at Microsoft and case studies are reviewed. References for further reading are included at the end.
This document provides an overview of big data and Hadoop. It discusses why Hadoop is useful for extremely large datasets that are difficult to manage in relational databases. It then summarizes what Hadoop is, including its core components like HDFS, MapReduce, HBase, Pig, Hive, Chukwa, and ZooKeeper. The document also outlines Hadoop's design principles and provides examples of how some of its components like MapReduce and Hive work.
Hadoop is an open-source framework for distributed storage and processing of large datasets across clusters of computers. It was developed based on Google papers describing Google File System (GFS) for reliable distributed data storage and MapReduce for distributed parallel processing. Hadoop uses HDFS for storage and MapReduce for processing in a scalable, fault-tolerant manner on commodity hardware. It has a growing ecosystem of projects like Pig, Hive, HBase, Zookeeper, Spark and others that provide additional capabilities for SQL queries, real-time processing, coordination services and more. Major vendors that provide Hadoop distributions include Hortonworks and Cloudera.
The document discusses big data and Hadoop. It describes the three V's of big data - variety, volume, and velocity. It also discusses Hadoop components like HDFS, MapReduce, Pig, Hive, and YARN. Hadoop is a framework for storing and processing large datasets in a distributed computing environment. It allows for the ability to store and use all types of data at scale using commodity hardware.
Overview of Big data, Hadoop and Microsoft BI - version1Thanh Nguyen
Big Data and advanced analytics are critical topics for executives today. But many still aren't sure how to turn that promise into value. This presentation provides an overview of 16 examples and use cases that lay out the different ways companies have approached the issue and found value: everything from pricing flexibility to customer preference management to credit risk analysis to fraud protection and discount targeting. For the latest on Big Data & Advanced Analytics: http://mckinseyonmarketingandsales.com/topics/big-data
This document summarizes Andrew Brust's presentation on using the Microsoft platform for big data. It discusses Hadoop and HDInsight, MapReduce, using Hive with ODBC and the BI stack. It also covers Hekaton, NoSQL, SQL Server Parallel Data Warehouse, and PolyBase. The presentation includes demos of HDInsight, MapReduce, and using Hive with the BI stack.
Fundamentals of Big Data, Hadoop project design and case study or Use case
General planning consideration and most necessaries in Hadoop ecosystem and Hadoop projects
This will provide the basis for choosing the right Hadoop implementation, Hadoop technologies integration, adoption and creating an infrastructure.
Building applications using Apache Hadoop with a use-case of WI-FI log analysis has real life example.
- Hadoop is a framework for managing and processing big data distributed across clusters of computers. It allows for parallel processing of large datasets.
- Big data comes from various sources like customer behavior, machine data from sensors, etc. It is used by companies to better understand customers and target ads.
- Hadoop uses a master-slave architecture with a NameNode master and DataNode slaves. Files are divided into blocks and replicated across DataNodes for reliability. The NameNode tracks where data blocks are stored.
Hadoop Tutorial For Beginners | Apache Hadoop Tutorial For Beginners | Hadoop...Simplilearn
This presentation about Hadoop for beginners will help you understand what is Hadoop, why Hadoop, what is Hadoop HDFS, Hadoop MapReduce, Hadoop YARN, a use case of Hadoop and finally a demo on HDFS (Hadoop Distributed File System), MapReduce and YARN. Big Data is a massive amount of data which cannot be stored, processed, and analyzed using traditional systems. To overcome this problem, we use Hadoop. Hadoop is a framework which stores and handles Big Data in a distributed and parallel fashion. Hadoop overcomes the challenges of Big Data. Hadoop has three components HDFS, MapReduce, and YARN. HDFS is the storage unit of Hadoop, MapReduce is its processing unit, and YARN is the resource management unit of Hadoop. In this video, we will look into these units individually and also see a demo on each of these units.
Below topics are explained in this Hadoop presentation:
1. What is Hadoop
2. Why Hadoop
3. Big Data generation
4. Hadoop HDFS
5. Hadoop MapReduce
6. Hadoop YARN
7. Use of Hadoop
8. Demo on HDFS, MapReduce and YARN
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
The document provides an introduction to big data and Hadoop. It defines big data as large datasets that cannot be processed using traditional computing techniques due to the volume, variety, velocity, and other characteristics of the data. It discusses traditional data processing versus big data and introduces Hadoop as an open-source framework for storing, processing, and analyzing large datasets in a distributed environment. The document outlines the key components of Hadoop including HDFS, MapReduce, YARN, and Hadoop distributions from vendors like Cloudera and Hortonworks.
This document provides an overview of 4 solutions for processing big data using Hadoop and compares them. Solution 1 involves using core Hadoop processing without data staging or movement. Solution 2 uses BI tools to analyze Hadoop data after a single CSV transformation. Solution 3 creates a data warehouse in Hadoop after a single transformation. Solution 4 implements a traditional data warehouse. The solutions are then compared based on benefits like cloud readiness, parallel processing, and investment required. The document also includes steps for installing a Hadoop cluster and running sample MapReduce jobs and Excel processing.
Presentation detailed about capabilities of In memory Analytic using Apache Spark. Apache Spark overview with programming mode, cluster mode with Mosos, supported operations and comparison with Hadoop Map Reduce. Elaborating Apache Spark Stack expansion like Shark, Streaming, MLib, GraphX
Azure Databricks is Easier Than You ThinkIke Ellis
Spark is a fast and general engine for large-scale data processing. It supports Scala, Python, Java, SQL, R and more. Spark applications can access data from many sources and perform tasks like ETL, machine learning, and SQL queries. Azure Databricks provides a managed Spark service on Azure that makes it easier to set up clusters and share notebooks across teams for data analysis. Databricks also integrates with many Azure services for storage and data integration.
The document provides an introduction to NOSQL databases. It begins with basic concepts of databases and DBMS. It then discusses SQL and relational databases. The main part of the document defines NOSQL and explains why NOSQL databases were developed as an alternative to relational databases for handling large datasets. It provides examples of popular NOSQL databases like MongoDB, Cassandra, HBase, and CouchDB and describes their key features and use cases.
Spark is a big data processing framework built in Scala that runs on the JVM. It provides speed, generality, ease of use, and accessibility for processing large datasets. Spark features include working directly on memory for speed, supporting MapReduce, lazy evaluation of queries for optimization, and APIs for Scala, R and Python. It includes Spark Streaming for real-time data, Spark SQL for SQL queries, and MLlib for machine learning. Resilient Distributed Datasets (RDDs) are Spark's fundamental data structure, and MapReduce is a programming model used for processing large amounts of data in parallel.
This document discusses Apache Spark, an open-source cluster computing framework. It provides an overview of Spark, including its main concepts like RDDs (Resilient Distributed Datasets) and transformations. Spark is presented as a faster alternative to Hadoop for iterative jobs and machine learning through its ability to keep data in-memory. Example code is shown for Spark's programming model in Scala and Python. The document concludes that Spark offers a rich API to make data analytics fast, achieving speedups of up to 100x over Hadoop in real applications.
Big Data Analytics with Hadoop, MongoDB and SQL ServerMark Kromer
This document discusses SQL Server and big data analytics projects in the real world. It covers the big data technology landscape, big data analytics, and three big data analytics scenarios using different technologies like Hadoop, MongoDB, and SQL Server. It also discusses SQL Server's role in the big data world and how to get data into Hadoop for analysis.
This document discusses Spark Streaming and its use for near real-time ETL. It provides an overview of Spark Streaming, how it works internally using receivers and workers to process streaming data, and an example use case of building a recommender system to find matches using both batch and streaming data. Key points covered include the streaming execution model, handling data receipt and job scheduling, and potential issues around data loss and (de)serialization.
Geek Night - Functional Data Processing using Spark and ScalaAtif Akhtar
Apache Spark is an open-source framework for large-scale data processing. It provides APIs in Java, Scala, Python and R and runs on Hadoop, Mesos, standalone or in the cloud. Spark addresses limitations of Hadoop like lack of iterative algorithms and real-time processing. It provides a more functional API using RDDs that support lazy evaluation, fault tolerance and in-memory computing for faster performance. Spark also supports SQL, streaming, machine learning and graph processing through libraries built on its core engine.
Big Data Analytics and Ubiquitous Computing is a document that discusses big data analytics using Apache Spark and ubiquitous computing concepts. It provides an overview of Spark, including Resilient Distributed Datasets (RDDs), and libraries for SQL, machine learning, graph processing, and streaming. It also discusses parallel FP-Growth (PFP) for recommendation and ubiquitous computing approaches like edge computing, cloudlets, fog computing, and virtualization. Virtual conferencing using tools like Google Meet, Skype and Microsoft Teams is also summarized.
A look under the hood at Apache Spark's API and engine evolutionsDatabricks
Spark has evolved its APIs and engine over the last 6 years to combine the best aspects of previous systems like databases, MapReduce, and data frames. Its latest structured APIs like DataFrames provide a declarative interface inspired by data frames in R/Python for ease of use, along with optimizations from databases for performance and future-proofing. This unified approach allows Spark to scale massively like MapReduce while retaining flexibility.
In this one day workshop, we will introduce Spark at a high level context. Spark is fundamentally different than writing MapReduce jobs so no prior Hadoop experience is needed. You will learn how to interact with Spark on the command line and conduct rapid in-memory data analyses. We will then work on writing Spark applications to perform large cluster-based analyses including SQL-like aggregations, machine learning applications, and graph algorithms. The course will be conducted in Python using PySpark.
Big Data is an evolution of Business Intelligence (BI).
Whereas traditional BI relies on data warehouses limited in size
(some terabytes) and it hardly manages unstructured data and
real-time analysis, the era of Big Data opens up a new technological
period offering advanced architectures and infrastructures
allowing sophisticated analyzes taking into account these new
data integrated into the ecosystem of the business . In this article,
we will present the results of an experimental study on the performance
of the best framework of Big Analytics (Spark) with the
most popular databases of NoSQL MongoDB and Hadoop. The
objective of this study is to determine the software combination
that allows sophisticated analysis in real time.
In this era of ever growing data, the need for analyzing it for meaningful business insights becomes more and more significant. There are different Big Data processing alternatives like Hadoop, Spark, Storm etc. Spark, however is unique in providing batch as well as streaming capabilities, thus making it a preferred choice for lightening fast Big Data Analysis platforms.
Apache Spark presentation at HasGeek FifthElelephant
https://fifthelephant.talkfunnel.com/2015/15-processing-large-data-with-apache-spark
Covering Big Data Overview, Spark Overview, Spark Internals and its supported libraries
Unified Big Data Processing with Apache Spark (QCON 2014)Databricks
This document discusses Apache Spark, a fast and general engine for big data processing. It describes how Spark generalizes the MapReduce model through its Resilient Distributed Datasets (RDDs) abstraction, which allows efficient sharing of data across parallel operations. This unified approach allows Spark to support multiple types of processing, like SQL queries, streaming, and machine learning, within a single framework. The document also outlines ongoing developments like Spark SQL and improved machine learning capabilities.
5 Ways to Use Spark to Enrich your Cassandra EnvironmentJim Hatcher
Apache Cassandra is a powerful system for supporting large-scale, low-latency data systems, but it has some tradeoffs. Apache Spark can help fill those gaps, and this presentation will show you how.
Spark is an open source cluster computing framework for large-scale data processing. It provides high-level APIs and runs on Hadoop clusters. Spark components include Spark Core for execution, Spark SQL for SQL queries, Spark Streaming for real-time data, and MLlib for machine learning. The core abstraction in Spark is the resilient distributed dataset (RDD), which allows data to be partitioned across nodes for parallel processing. A word count example demonstrates how to use transformations like flatMap and reduceByKey to count word frequencies from an input file in Spark.
Apache Spark is written in Scala programming language that compiles the program code into byte code for the JVM for spark big data processing.
The open source community has developed a wonderful utility for spark python big data processing known as PySpark.
Apache Spark is an open-source distributed processing engine that is up to 100 times faster than Hadoop for processing data stored in memory and 10 times faster for data stored on disk. It provides high-level APIs in Java, Scala, Python and SQL and supports batch processing, streaming, and machine learning. Spark runs on Hadoop, Mesos, Kubernetes or standalone and can access diverse data sources using its core abstraction called resilient distributed datasets (RDDs).
GenAI for Quant Analytics: survey-analytics.aiInspirient
Pitched at the Greenbook Insight Innovation Competition as apart of IIEX North America 2025 on 30 April 2025 in Washington, D.C.
Join us at survey-analytics.ai!
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
4. Big Data Definition
No single standard definition…
“Big Data” is data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and
analytics to manage it and extract value and hidden
knowledge from it…
9. Hadoop is a software framework for distributed processing of large datasets
across large clusters of computers
Hadoop implements Google’s MapReduce, using HDFS
MapReduce divides applications into many small blocks of work.
HDFS creates multiple replicas of data blocks for reliability, placing them on compute
nodes around the cluster
Hadoop
12. More than just the Elephant in the room
Over 120+ types of NoSQL databases
So many NoSQL options
13. Extend the Scope of RDBMS
Caching
Master/Slave
Table Partitioning
Federated Tables
Sharding
NoSql
Relational database (RDBMS) technology
Has not fundamentally changed in over 40 years
Default choice for holding data behind many web apps
Handling more users means adding a bigger server
14. RDBMS with Extended Functionality
Vs.
Systems Built from Scratch
with Scalability in Mind
NoSQL Movement
15. CAP Theorem
“Of three properties of shared-data systems – data Consistency, system
Availability and tolerance to network Partition – only two can be achieved at
any given moment in time.”
16. “Of three properties of shared-data systems – data
Consistency, system Availability and tolerance to
network Partition – only two can be achieved at any
given moment in time.”
CA
Highly-available consistency
CP
Enforced consistency
AP
Eventual consistency
CAP Theorem
20. Use for data that is
document-oriented (collection of JSON documents) w/semi structured
data
Encodings include XML, YAML, JSON & BSON
binary forms
PDF, Microsoft Office documents -- Word, Excel…)
Examples: MongoDB, CouchDB
Document Database
21. Graph Database
Use for data with
a lot of many-to-many relationships
when your primary objective is quickly
finding connections, patterns and
relationships between the objects within
lots of data
Examples: Neo4J, FreeBase (Google)
22. So which type of NoSQL? Back to CAP…
CP = noSQL/column
Hadoop
Big Table
HBase
MemCacheDB
AP = noSQL/document or key/value
DynamoDB
CouchDB
Cassandra
Voldemort
CA = SQL/RDBMS
SQL Sever / SQL
Azure
Oracle
MySQL
25. About Apache Spark
Fast and general purpose cluster computing system
10x (on disk) - 100x (In-Memory) faster
Most popular for running Iterative Machine Learning Algorithms.
Provides high level APIs in
Java
Scala
Python
R
http://spark.apache.org/
26. Why Spark ?
Most of Machine Learning Algorithms are iterative because each iteration
can improve the results
With Disk based approach each iteration’s output is written to disk making it
slow
Hadoop execution flow
Spark execution flow
28. A Brief History: MapReduce
MapReduce use cases showed two major limitations:
difficultly of programming directly in MR
performance bottlenecks, or batch not fitting the use cases
30. A Brief History: Spark
Some key points about Spark:
handles batch, interactive, and real-time within a single framework
native integration with Java, Python, Scala
programming at a higher level of abstraction
more general: map/reduce is just one set of supported constructs
31. Spark Stack
Spark SQL
For SQL and unstructured data processing
MLib
Machine Learning Algorithms
GraphX
Graph Processing
Spark Streaming
stream processing of live data streams
32. Cluster Deployment
Standalone Deploy Mode
simplest way to deploy Spark on a private cluster
Amazon EC2
EC2 scripts are available
Very quick launching a new cluster
Apache Mesos
Hadoop YARN
33. Which Language Should I Use?
Standalone programs can be written in any, but console is only Python & Scala
Python developers: can stay with Python for both
Java developers: consider using Scala for console (to learn the API)
Performance: Java / Scala will be faster (statically typed), but Python can do well
for numerical work with NumPy
34. RDD
Resilient Distributed Datasets (RDD) are the primary abstraction in Spark – a
fault-tolerant collection of elements that can be operated on in parallel
35. RDD
two types of operations on RDDs:
transformations and actions
transformations are lazy
(not computed immediately)
the transformed RDD gets recomputed
when an action is run on it (default)
however, an RDD can be persisted into
storage in memory or disk
36. Transformations
Transformations create a new dataset from an existing one
All transformations in Spark are lazy: they do not compute their results right away
– instead they remember the transformations applied to some base dataset
optimize the required calculations
recover from lost data partitions
42. Standalone (Scala)
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your
system
val conf = new SparkConf().setAppName("Simple Application")
.setMaster(“local")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
43. Standalone (Java)
public class SimpleApp {
public static void main(String[] args) {
String logFile = “LOGFILES_ADDRESS";
SparkConf conf = new SparkConf().setAppName("Simple Application").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> logData = sc.textFile(logFile);
long numAs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("a"); }
}).count();
long numBs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("b"); }
}).count();
System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);
}
}