SlideShare a Scribd company logo
Building realtime BI
Systems with Kafka,
Spark and Kudu
Ruhollah Farchtchi
Zoomdata
Drivers for Streaming Data
Data Freshness Time to Analytic Business Context
2
Streaming Data @ Zoomdata
Visualizations react to
new data delivered
Users start,
stop, pause
the stream
Users select a rolling
window or pin a start
time to capture
cumulative metrics
3
Typical Streaming Architectures
Event
Kafka, JMS,
RabbitMQ,
etc...
Spark
Streaming,
Flink, etc..
Now What?
Cassandra (no
aggregation)
HDFS (what
about query)
Lambda (let’s
take a look at
that for a sec)
4
Lambda
● Stream data to hdfs
● Keep some in avro
● Do your own compactions to
parquet / orc
● Expose via impala,
sparksql, or other
● Impala avro partition
(speed)
● With history in parquet
● Union compatible schema
● Project as single table via
view
● Works ok… still doing a lot
of manual data
management
Oh.. and what happens to noncommutative operations like
Distinct Count?
OR
5
Restatements … yeah we went there
Txn ID Item Price Quantity Partition
1 Jeans 25.00 2 2016-05-30
2 Shirt 10.00 1 2016-05-31
3 Skirt 20.00 1 2016-06-01
1 Jeans 25.00 3
Restatement
6
Restatements … how you do it
Txn ID Item Price Quantity Partition
1 Jeans 25.00 2 2016-05-30
2 Shirt 10.00 1 2016-05-31
3 Skirt 20.00 1 2016-06-01
1 Jeans 25.00 3
Restatement
General Algorithm
● Figure out which partition(s) are affected
● Recompute affected partition(s) with restated data
● Drop/replace existing partition(s) with new data
7
Enter Kudu
What is Kudu?
● Kudu is an open source storage engine for structured data which supports low-latency
random access together with efficient analytical access patterns. (Source: http://getkudu.io/kudu.pdf)
Why do you care?
● It makes management of streaming data for ad-hoc analysis MUCH easier
● Bridges the mental gap from random access to append only
Why does Zoomdata care?
8
Impala + Kudu: Performance
Nearly the same performance as Parquet for many similar workloads
Simplified data management model
Can handle a new class of streaming use cases and workloads
9
Impala + Kudu: Performance
Nearly the same performance as Parquet for many similar workloads
Simplified data management model
Can handle a new class of streaming use cases and workloads
Great… let’s just use Kudu from now on:
● We can ingest data with great write throughput
● Support analytic queries
● Support random access writes
What’s not to love?
Ship It!
10
There’s a catch...
… it’s your data model
Good news! If you have figured this out with HDFS and Parquet, you’re not too far off.
Things to consider:
● Access pattern and partition scheme (similar to partitioning data parquet)
○ Has a big role to play in parallelism of your queries
● Cardinality of your attributes
○ Affects what type of column encoding you decide to use
● Key structure
○ You get only one, use it wisely
More on this can be found at : http://getkudu.io/docs/schema_design.html
11
Let’s put it all together
I have a fruit stand
I sell my fruits via phone order to remote
buyers
My transactions look something like:
Orders(orderID,orderTS,fruit,price,customerID,
customerPhone,customerAddress)
12
Impala DDL for Kudu
CREATE EXTERNAL TABLE `strata_fruits_expanded` (
`_ts` BIGINT,
`_id` STRING,
`fruit` STRING,
`country_code` STRING,
`country_area_code` STRING,
`phone_num` STRING,
`message_date` BIGINT,
`price` FLOAT,
`keyword` STRING
)
DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS
TBLPROPERTIES(
'storage_handler' =
'com.cloudera.kudu.hive.KuduStorageHandler',
'kudu.table_name' = 'strata_fruits_expanded',
'kudu.master_addresses' = '10.xxx.xxx.xxx:7051',
'kudu.key_columns' = '_ts, _id'
);
Key
Key
13
Impala DDL for Kudu
CREATE EXTERNAL TABLE `strata_fruits_expanded` (
`_ts` BIGINT,
`_id` STRING,
`fruit` STRING,
`country_code` STRING,
`country_area_code` STRING,
`phone_num` STRING,
`message_date` BIGINT,
`price` FLOAT,
`keyword` STRING
)
DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS
TBLPROPERTIES(
'storage_handler' =
'com.cloudera.kudu.hive.KuduStorageHandler',
'kudu.table_name' = 'strata_fruits_expanded',
'kudu.master_addresses' = '10.xxx.xxx.xxx:7051',
'kudu.key_columns' = '_ts, _id'
);
attributes
attributes
Low cardinality attributes -- things I
want to group by -- are great
candidates for dictionary encoding
14
Impala DDL for Kudu
CREATE EXTERNAL TABLE `strata_fruits_expanded` (
`_ts` BIGINT,
`_id` STRING,
`fruit` STRING,
`country_code` STRING,
`country_area_code` STRING,
`phone_num` STRING,
`message_date` BIGINT,
`price` FLOAT,
`keyword` STRING
)
DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS
TBLPROPERTIES(
'storage_handler' =
'com.cloudera.kudu.hive.KuduStorageHandler',
'kudu.table_name' = 'strata_fruits_expanded',
'kudu.master_addresses' = '10.xxx.xxx.xxx:7051',
'kudu.key_columns' = '_ts, _id'
);
Partition Scheme
How you distribute your data directly
impacts your ability to process in
parallel as well as any predicate
push-down type of operations Kudu
can perform
For large tables, such as fact tables,
aim for as many tablets as you have
cores in the cluster -- but figure out
what else you are running as well.
15
Let’s see it in action….
16
Kafka Source Topic
Spark Streaming
App
Data Writer Kudu
ZoomdataKafka Sink Topic
write read
Streaming Source
Let’s see it in action… not actually that simple
17
Kafka Source Topic
Spark Streaming
App
Data Writer API
Writer Client
Data Writer
Writer Server
Register
Read request
Kudu, Solr,
Elastic, etc...
ZoomdataKafka Sink Topic
write read
Streaming Source
Special Thanks
Anton Gorshkov: For his original streaming with kafka fruit stand demo
The Cloudera Kudu Team: Specifically Todd Lipcon for all the insight
into Kudu optimization
Nexmo: For use of their SaaS SMS service in this demo
18
Thank You.
www.zoomdata.com
Ad

More Related Content

What's hot (20)

Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
Using ClickHouse for Experimentation
Using ClickHouse for ExperimentationUsing ClickHouse for Experimentation
Using ClickHouse for Experimentation
Gleb Kanterov
 
Apache phoenix: Past, Present and Future of SQL over HBAse
Apache phoenix: Past, Present and Future of SQL over HBAseApache phoenix: Past, Present and Future of SQL over HBAse
Apache phoenix: Past, Present and Future of SQL over HBAse
enissoz
 
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
StreamNative
 
Hudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilitiesHudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilities
Nishith Agarwal
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
Jeff Holoman
 
Apache Hudi: The Path Forward
Apache Hudi: The Path ForwardApache Hudi: The Path Forward
Apache Hudi: The Path Forward
Alluxio, Inc.
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache IcebergData Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Anant Corporation
 
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, ClouderaHadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Cloudera, Inc.
 
Kafka 101
Kafka 101Kafka 101
Kafka 101
Clement Demonchy
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Nifi workshop
Nifi workshopNifi workshop
Nifi workshop
Yifeng Jiang
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
Saurav Haloi
 
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Databricks
 
Building large scale transactional data lake using apache hudi
Building large scale transactional data lake using apache hudiBuilding large scale transactional data lake using apache hudi
Building large scale transactional data lake using apache hudi
Bill Liu
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
P. Taylor Goetz
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
DataWorks Summit/Hadoop Summit
 
MyRocks Deep Dive
MyRocks Deep DiveMyRocks Deep Dive
MyRocks Deep Dive
Yoshinori Matsunobu
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
Using ClickHouse for Experimentation
Using ClickHouse for ExperimentationUsing ClickHouse for Experimentation
Using ClickHouse for Experimentation
Gleb Kanterov
 
Apache phoenix: Past, Present and Future of SQL over HBAse
Apache phoenix: Past, Present and Future of SQL over HBAseApache phoenix: Past, Present and Future of SQL over HBAse
Apache phoenix: Past, Present and Future of SQL over HBAse
enissoz
 
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
Unlocking the Power of Lakehouse Architectures with Apache Pulsar and Apache ...
StreamNative
 
Hudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilitiesHudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilities
Nishith Agarwal
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
Jeff Holoman
 
Apache Hudi: The Path Forward
Apache Hudi: The Path ForwardApache Hudi: The Path Forward
Apache Hudi: The Path Forward
Alluxio, Inc.
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache IcebergData Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Anant Corporation
 
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, ClouderaHadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Hadoop World 2011: Advanced HBase Schema Design - Lars George, Cloudera
Cloudera, Inc.
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
Saurav Haloi
 
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Databricks
 
Building large scale transactional data lake using apache hudi
Building large scale transactional data lake using apache hudiBuilding large scale transactional data lake using apache hudi
Building large scale transactional data lake using apache hudi
Bill Liu
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
P. Taylor Goetz
 

Viewers also liked (20)

Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Spark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark and Online Analytics: Spark Summit East talky by Shubham ChopraSpark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark Summit
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark Summit
 
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Spark Summit
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence SpracklenSpark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Summit
 
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Spark Summit
 
FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
 FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by... FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
Spark Summit
 
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix CheungScalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Spark Summit
 
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Spark Summit
 
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Spark Summit
 
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Spark Summit
 
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
Spark Summit
 
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Spark Summit
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Spark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark and Online Analytics: Spark Summit East talky by Shubham ChopraSpark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark and Online Analytics: Spark Summit East talky by Shubham Chopra
Spark Summit
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark-Streaming-as-a-Service with Kafka and YARN: Spark Summit East talk by J...
Spark Summit
 
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Real-time Platform for Second Look Business Use Case Using Spark and Kafka: S...
Spark Summit
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence SpracklenSpark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Summit
 
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Effective Spark with Alluxio: Spark Summit East talk by Gene Pang and Haoyuan...
Spark Summit
 
FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
 FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by... FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
FIS: Accelerating Digital Intelligence in FinTech: Spark Summit East talk by...
Spark Summit
 
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix CheungScalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Spark Summit
 
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Spark Summit
 
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Improving Python and Spark Performance and Interoperability: Spark Summit Eas...
Spark Summit
 
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Spark Summit
 
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
Spark Summit
 
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Spark Summit
 
Ad

Similar to Building Real-Time BI Systems with Kafka, Spark, and Kudu: Spark Summit East talk by Ruhollah Farchtchi (20)

Fast and Scalable Python
Fast and Scalable PythonFast and Scalable Python
Fast and Scalable Python
Travis Oliphant
 
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloudHive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Jaipaul Agonus
 
Google Cloud Spanner Preview
Google Cloud Spanner PreviewGoogle Cloud Spanner Preview
Google Cloud Spanner Preview
DoiT International
 
Dataiku - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku  - hadoop ecosystem - @Epitech Paris - janvier 2014Dataiku  - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku
 
Intro to hadoop ecosystem
Intro to hadoop ecosystemIntro to hadoop ecosystem
Intro to hadoop ecosystem
Grzegorz Kolpuc
 
Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016
Dan Lynn
 
A fast introduction to PySpark with a quick look at Arrow based UDFs
A fast introduction to PySpark with a quick look at Arrow based UDFsA fast introduction to PySpark with a quick look at Arrow based UDFs
A fast introduction to PySpark with a quick look at Arrow based UDFs
Holden Karau
 
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dan Lynn
 
Sql on hadoop the secret presentation.3pptx
Sql on hadoop  the secret presentation.3pptxSql on hadoop  the secret presentation.3pptx
Sql on hadoop the secret presentation.3pptx
Paulo Alonso
 
Big Data - JAX2011 (Pavlo Baron)
Big Data - JAX2011 (Pavlo Baron)Big Data - JAX2011 (Pavlo Baron)
Big Data - JAX2011 (Pavlo Baron)
Pavlo Baron
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Anant Corporation
 
Web-scale data processing: practical approaches for low-latency and batch
Web-scale data processing: practical approaches for low-latency and batchWeb-scale data processing: practical approaches for low-latency and batch
Web-scale data processing: practical approaches for low-latency and batch
Edward Capriolo
 
Adios hadoop, Hola Spark! T3chfest 2015
Adios hadoop, Hola Spark! T3chfest 2015Adios hadoop, Hola Spark! T3chfest 2015
Adios hadoop, Hola Spark! T3chfest 2015
dhiguero
 
Getting Started with Splunk Breakout Session
Getting Started with Splunk Breakout SessionGetting Started with Splunk Breakout Session
Getting Started with Splunk Breakout Session
Splunk
 
Elephant in the room: A DBA's Guide to Hadoop
Elephant in the room: A DBA's Guide to HadoopElephant in the room: A DBA's Guide to Hadoop
Elephant in the room: A DBA's Guide to Hadoop
Stuart Ainsworth
 
Scaling opensimulator inventory using nosql
Scaling opensimulator inventory using nosqlScaling opensimulator inventory using nosql
Scaling opensimulator inventory using nosql
David Daeschler
 
Big data for the rest of us with hadoop
Big data for the rest of us with hadoopBig data for the rest of us with hadoop
Big data for the rest of us with hadoop
Dhaval Anjaria
 
[SSA] 04.sql on hadoop(2014.02.05)
[SSA] 04.sql on hadoop(2014.02.05)[SSA] 04.sql on hadoop(2014.02.05)
[SSA] 04.sql on hadoop(2014.02.05)
Steve Min
 
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Lviv Startup Club
 
20150704 benchmark and user experience in sahara weiting
20150704 benchmark and user experience in sahara weiting20150704 benchmark and user experience in sahara weiting
20150704 benchmark and user experience in sahara weiting
Wei Ting Chen
 
Fast and Scalable Python
Fast and Scalable PythonFast and Scalable Python
Fast and Scalable Python
Travis Oliphant
 
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloudHive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Hive + Amazon EMR + S3 = Elastic big data SQL analytics processing in the cloud
Jaipaul Agonus
 
Dataiku - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku  - hadoop ecosystem - @Epitech Paris - janvier 2014Dataiku  - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku - hadoop ecosystem - @Epitech Paris - janvier 2014
Dataiku
 
Intro to hadoop ecosystem
Intro to hadoop ecosystemIntro to hadoop ecosystem
Intro to hadoop ecosystem
Grzegorz Kolpuc
 
Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016
Dan Lynn
 
A fast introduction to PySpark with a quick look at Arrow based UDFs
A fast introduction to PySpark with a quick look at Arrow based UDFsA fast introduction to PySpark with a quick look at Arrow based UDFs
A fast introduction to PySpark with a quick look at Arrow based UDFs
Holden Karau
 
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
Dan Lynn
 
Sql on hadoop the secret presentation.3pptx
Sql on hadoop  the secret presentation.3pptxSql on hadoop  the secret presentation.3pptx
Sql on hadoop the secret presentation.3pptx
Paulo Alonso
 
Big Data - JAX2011 (Pavlo Baron)
Big Data - JAX2011 (Pavlo Baron)Big Data - JAX2011 (Pavlo Baron)
Big Data - JAX2011 (Pavlo Baron)
Pavlo Baron
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Anant Corporation
 
Web-scale data processing: practical approaches for low-latency and batch
Web-scale data processing: practical approaches for low-latency and batchWeb-scale data processing: practical approaches for low-latency and batch
Web-scale data processing: practical approaches for low-latency and batch
Edward Capriolo
 
Adios hadoop, Hola Spark! T3chfest 2015
Adios hadoop, Hola Spark! T3chfest 2015Adios hadoop, Hola Spark! T3chfest 2015
Adios hadoop, Hola Spark! T3chfest 2015
dhiguero
 
Getting Started with Splunk Breakout Session
Getting Started with Splunk Breakout SessionGetting Started with Splunk Breakout Session
Getting Started with Splunk Breakout Session
Splunk
 
Elephant in the room: A DBA's Guide to Hadoop
Elephant in the room: A DBA's Guide to HadoopElephant in the room: A DBA's Guide to Hadoop
Elephant in the room: A DBA's Guide to Hadoop
Stuart Ainsworth
 
Scaling opensimulator inventory using nosql
Scaling opensimulator inventory using nosqlScaling opensimulator inventory using nosql
Scaling opensimulator inventory using nosql
David Daeschler
 
Big data for the rest of us with hadoop
Big data for the rest of us with hadoopBig data for the rest of us with hadoop
Big data for the rest of us with hadoop
Dhaval Anjaria
 
[SSA] 04.sql on hadoop(2014.02.05)
[SSA] 04.sql on hadoop(2014.02.05)[SSA] 04.sql on hadoop(2014.02.05)
[SSA] 04.sql on hadoop(2014.02.05)
Steve Min
 
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Lviv Startup Club
 
20150704 benchmark and user experience in sahara weiting
20150704 benchmark and user experience in sahara weiting20150704 benchmark and user experience in sahara weiting
20150704 benchmark and user experience in sahara weiting
Wei Ting Chen
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 

Recently uploaded (20)

Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 

Building Real-Time BI Systems with Kafka, Spark, and Kudu: Spark Summit East talk by Ruhollah Farchtchi

  • 1. Building realtime BI Systems with Kafka, Spark and Kudu Ruhollah Farchtchi Zoomdata
  • 2. Drivers for Streaming Data Data Freshness Time to Analytic Business Context 2
  • 3. Streaming Data @ Zoomdata Visualizations react to new data delivered Users start, stop, pause the stream Users select a rolling window or pin a start time to capture cumulative metrics 3
  • 4. Typical Streaming Architectures Event Kafka, JMS, RabbitMQ, etc... Spark Streaming, Flink, etc.. Now What? Cassandra (no aggregation) HDFS (what about query) Lambda (let’s take a look at that for a sec) 4
  • 5. Lambda ● Stream data to hdfs ● Keep some in avro ● Do your own compactions to parquet / orc ● Expose via impala, sparksql, or other ● Impala avro partition (speed) ● With history in parquet ● Union compatible schema ● Project as single table via view ● Works ok… still doing a lot of manual data management Oh.. and what happens to noncommutative operations like Distinct Count? OR 5
  • 6. Restatements … yeah we went there Txn ID Item Price Quantity Partition 1 Jeans 25.00 2 2016-05-30 2 Shirt 10.00 1 2016-05-31 3 Skirt 20.00 1 2016-06-01 1 Jeans 25.00 3 Restatement 6
  • 7. Restatements … how you do it Txn ID Item Price Quantity Partition 1 Jeans 25.00 2 2016-05-30 2 Shirt 10.00 1 2016-05-31 3 Skirt 20.00 1 2016-06-01 1 Jeans 25.00 3 Restatement General Algorithm ● Figure out which partition(s) are affected ● Recompute affected partition(s) with restated data ● Drop/replace existing partition(s) with new data 7
  • 8. Enter Kudu What is Kudu? ● Kudu is an open source storage engine for structured data which supports low-latency random access together with efficient analytical access patterns. (Source: http://getkudu.io/kudu.pdf) Why do you care? ● It makes management of streaming data for ad-hoc analysis MUCH easier ● Bridges the mental gap from random access to append only Why does Zoomdata care? 8
  • 9. Impala + Kudu: Performance Nearly the same performance as Parquet for many similar workloads Simplified data management model Can handle a new class of streaming use cases and workloads 9
  • 10. Impala + Kudu: Performance Nearly the same performance as Parquet for many similar workloads Simplified data management model Can handle a new class of streaming use cases and workloads Great… let’s just use Kudu from now on: ● We can ingest data with great write throughput ● Support analytic queries ● Support random access writes What’s not to love? Ship It! 10
  • 11. There’s a catch... … it’s your data model Good news! If you have figured this out with HDFS and Parquet, you’re not too far off. Things to consider: ● Access pattern and partition scheme (similar to partitioning data parquet) ○ Has a big role to play in parallelism of your queries ● Cardinality of your attributes ○ Affects what type of column encoding you decide to use ● Key structure ○ You get only one, use it wisely More on this can be found at : http://getkudu.io/docs/schema_design.html 11
  • 12. Let’s put it all together I have a fruit stand I sell my fruits via phone order to remote buyers My transactions look something like: Orders(orderID,orderTS,fruit,price,customerID, customerPhone,customerAddress) 12
  • 13. Impala DDL for Kudu CREATE EXTERNAL TABLE `strata_fruits_expanded` ( `_ts` BIGINT, `_id` STRING, `fruit` STRING, `country_code` STRING, `country_area_code` STRING, `phone_num` STRING, `message_date` BIGINT, `price` FLOAT, `keyword` STRING ) DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS TBLPROPERTIES( 'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 'kudu.table_name' = 'strata_fruits_expanded', 'kudu.master_addresses' = '10.xxx.xxx.xxx:7051', 'kudu.key_columns' = '_ts, _id' ); Key Key 13
  • 14. Impala DDL for Kudu CREATE EXTERNAL TABLE `strata_fruits_expanded` ( `_ts` BIGINT, `_id` STRING, `fruit` STRING, `country_code` STRING, `country_area_code` STRING, `phone_num` STRING, `message_date` BIGINT, `price` FLOAT, `keyword` STRING ) DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS TBLPROPERTIES( 'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 'kudu.table_name' = 'strata_fruits_expanded', 'kudu.master_addresses' = '10.xxx.xxx.xxx:7051', 'kudu.key_columns' = '_ts, _id' ); attributes attributes Low cardinality attributes -- things I want to group by -- are great candidates for dictionary encoding 14
  • 15. Impala DDL for Kudu CREATE EXTERNAL TABLE `strata_fruits_expanded` ( `_ts` BIGINT, `_id` STRING, `fruit` STRING, `country_code` STRING, `country_area_code` STRING, `phone_num` STRING, `message_date` BIGINT, `price` FLOAT, `keyword` STRING ) DISTRIBUTE BY HASH (_ts) INTO 60 BUCKETS TBLPROPERTIES( 'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 'kudu.table_name' = 'strata_fruits_expanded', 'kudu.master_addresses' = '10.xxx.xxx.xxx:7051', 'kudu.key_columns' = '_ts, _id' ); Partition Scheme How you distribute your data directly impacts your ability to process in parallel as well as any predicate push-down type of operations Kudu can perform For large tables, such as fact tables, aim for as many tablets as you have cores in the cluster -- but figure out what else you are running as well. 15
  • 16. Let’s see it in action…. 16 Kafka Source Topic Spark Streaming App Data Writer Kudu ZoomdataKafka Sink Topic write read Streaming Source
  • 17. Let’s see it in action… not actually that simple 17 Kafka Source Topic Spark Streaming App Data Writer API Writer Client Data Writer Writer Server Register Read request Kudu, Solr, Elastic, etc... ZoomdataKafka Sink Topic write read Streaming Source
  • 18. Special Thanks Anton Gorshkov: For his original streaming with kafka fruit stand demo The Cloudera Kudu Team: Specifically Todd Lipcon for all the insight into Kudu optimization Nexmo: For use of their SaaS SMS service in this demo 18