SlideShare a Scribd company logo
Nosh Petigara [email_address] @noshinosh http://mongodb.org http://10gen.com Building applications with MongoDB – An introduction MongoAustin – Febraury 15, 2011
Today’s Talk MongoDB: Data modeling, queries, geospatial, updates, map reduce Using a location-based app as an example Example Works in MongoDB JS shell
Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about  checkins
Documents doc1 = { _id:  4b97e62bf1d8c7152c9ccb74 , key1: value1, key2: value2, key3: {..., ..., ...}, key4: [..., ..., ] }
Collections doc1, doc2, doc3 Places Users Checkins doc3, doc4, doc5 doc6, doc7, doc8
Places v1 place1 = { name: "10gen HQ”, address: ”134 5 th  Avenue 3 rd  Floor”, city: "New York”, zip: "10011” } db.places.find({zip:”10011”}).limit(10)
Places v2 place1 = { name: "10gen HQ”, address: "17 West 18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “recommended”] } db.places.find({zip:”10011”, tags:”business”})
Places v3 place1 = { name: "10gen HQ”, address: "17 West 18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “cool place”], latlong: [40.0,72.0] } db.places.ensureIndex({latlong:”2d”}) db.places.find({latlong:{$near:[40,70]}})
Places v4 place1 = { name: "10gen HQ”, address: "17 West 18th Street 8th Floor”, city: "New York”, zip: "10011”, latlong: [40.0,72.0], tags: [“business”, “cool place”], tips: [ {user:"nosh", time:6/26/2010, tip:"stop by  for office hours on Wednesdays from 4-6pm"},  {.....}, {.....} ] }
Querying your Places Creating your indexes db.places.ensureIndex({tags:1}) db.places.ensureIndex({name:1}) db.places.ensureIndex({latlong:”2d”}) Finding places: db.places.find({latlong:{$near:[40,70]}}) With regular expressions: db.places.find({name: /^ typeaheadstring /) By tag: db.places.find({tags: “business”})
Inserting and updating places Initial data load: db.places.insert(place1) Updating tips: db.places.update({name:"10gen HQ"},  {$push :{tips:  {user:"nosh", time:6/26/2010,  tip:"stop by for office hours on  Wednesdays from 4-6"}}}}
Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about  checkins
Users user1 = { name: “nosh” email: “nosh@10gen.com”, . . . checkins: [ 4b97e62bf1d8c7152c9ccb74,  5a20e62bf1d8c736ab ] } checkins [] = ObjectId reference to checkin collection
Checkins checkin1 = { place: “10gen HQ”, ts: 9/20/2010 10:12:00, userId: <objectid of user> } Check-in = 2 ops Insert check in object [checkin collection] Update ($push) user object [user collection] Indexes: db.checkins.ensureIndex({place:1, ts:1}) db.checkins.ensureIndex({ts:1})
Atomic Updates $set, $unset, $rename $push, $pop, $pull, $addToSet $inc
Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about  checkins
Simple Stats db.checkins.find({place: “10gen HQ”) db.checkins.find({place: “10gen HQ”}) .sort({ts:-1}).limit(10) db.checkins.find({place: “10gen HQ”,  ts: {$gt: midnight}}).count()
Stats with MapReduce mapFunc = function() { emit(this.place, 1);} reduceFunc = function(key, values) { return Array.sum(values); } res = db.checkins.mapReduce(mapFunc,reduceFunc,  {query: {timestamp: {$gt:nowminus3hrs}}}) res = [{_id:”10gen HQ”, value: 17}, ….., ….] res.find({ value: {$gt: 15}, _id: {$in: [….., ….., …..]} })
Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about  checkins
Single Master Deployments Configure as a replica set for automated failover Add more secondaries to scale reads Primary/Master Secondary/Slave
Auto Sharded Deployment Autosharding distributes data among two or more replica sets Mongo Config Server(s) handles distribution & balancing Transparent to applications Primary/Master Secondary/Slave MongoS Mongo Config
Use Cases RDBMS replacement for high-traffic web applications Content Management-type applications Social, mobile Real-time analytics High-speed data logging Web 2.0, Media, SaaS, Gaming, Finance, Telecom, Healthcare
MongoDB in Production
Nosh Petigara [email_address] Director of Product Strategy, 10gen http://mongodb.org http://10gen.com We are hiring! @mongodb [email_address] @noshinosh
Ad

More Related Content

What's hot (20)

Geospatial and MongoDB
Geospatial and MongoDBGeospatial and MongoDB
Geospatial and MongoDB
Norberto Leite
 
1403 app dev series - session 5 - analytics
1403   app dev series - session 5 - analytics1403   app dev series - session 5 - analytics
1403 app dev series - session 5 - analytics
MongoDB
 
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
MongoDB
 
Building Your First MongoDB Application
Building Your First MongoDB ApplicationBuilding Your First MongoDB Application
Building Your First MongoDB Application
Rick Copeland
 
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB
 
2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky
Data Con LA
 
Mongodb Aggregation Pipeline
Mongodb Aggregation PipelineMongodb Aggregation Pipeline
Mongodb Aggregation Pipeline
zahid-mian
 
MongoDB GeoSpatial Feature
MongoDB GeoSpatial FeatureMongoDB GeoSpatial Feature
MongoDB GeoSpatial Feature
Hüseyin BABAL
 
Getting Started with Geospatial Data in MongoDB
Getting Started with Geospatial Data in MongoDBGetting Started with Geospatial Data in MongoDB
Getting Started with Geospatial Data in MongoDB
MongoDB
 
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial IndexesBack to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
MongoDB
 
The Ring programming language version 1.2 book - Part 29 of 84
The Ring programming language version 1.2 book - Part 29 of 84The Ring programming language version 1.2 book - Part 29 of 84
The Ring programming language version 1.2 book - Part 29 of 84
Mahmoud Samir Fayed
 
Angular Refactoring in Real World
Angular Refactoring in Real WorldAngular Refactoring in Real World
Angular Refactoring in Real World
bitbank, Inc. Tokyo, Japan
 
Vtk point cloud important
Vtk point cloud importantVtk point cloud important
Vtk point cloud important
Rohit Bapat
 
The Ring programming language version 1.5.2 book - Part 40 of 181
The Ring programming language version 1.5.2 book - Part 40 of 181The Ring programming language version 1.5.2 book - Part 40 of 181
The Ring programming language version 1.5.2 book - Part 40 of 181
Mahmoud Samir Fayed
 
Query for json databases
Query for json databasesQuery for json databases
Query for json databases
Binh Le
 
Tricks
TricksTricks
Tricks
MongoDB
 
Mongo indexes
Mongo indexesMongo indexes
Mongo indexes
Mehmet Çetin
 
Leichtgewichtige Webwenwendungen mit dem MEAN-Stack
Leichtgewichtige Webwenwendungen mit dem MEAN-StackLeichtgewichtige Webwenwendungen mit dem MEAN-Stack
Leichtgewichtige Webwenwendungen mit dem MEAN-Stack
Marco Rico Gomez
 
Peggy elasticsearch應用
Peggy elasticsearch應用Peggy elasticsearch應用
Peggy elasticsearch應用
LearningTech
 
R statistics with mongo db
R statistics with mongo dbR statistics with mongo db
R statistics with mongo db
MongoDB
 
Geospatial and MongoDB
Geospatial and MongoDBGeospatial and MongoDB
Geospatial and MongoDB
Norberto Leite
 
1403 app dev series - session 5 - analytics
1403   app dev series - session 5 - analytics1403   app dev series - session 5 - analytics
1403 app dev series - session 5 - analytics
MongoDB
 
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
MongoDB
 
Building Your First MongoDB Application
Building Your First MongoDB ApplicationBuilding Your First MongoDB Application
Building Your First MongoDB Application
Rick Copeland
 
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB
 
2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky
Data Con LA
 
Mongodb Aggregation Pipeline
Mongodb Aggregation PipelineMongodb Aggregation Pipeline
Mongodb Aggregation Pipeline
zahid-mian
 
MongoDB GeoSpatial Feature
MongoDB GeoSpatial FeatureMongoDB GeoSpatial Feature
MongoDB GeoSpatial Feature
Hüseyin BABAL
 
Getting Started with Geospatial Data in MongoDB
Getting Started with Geospatial Data in MongoDBGetting Started with Geospatial Data in MongoDB
Getting Started with Geospatial Data in MongoDB
MongoDB
 
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial IndexesBack to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
MongoDB
 
The Ring programming language version 1.2 book - Part 29 of 84
The Ring programming language version 1.2 book - Part 29 of 84The Ring programming language version 1.2 book - Part 29 of 84
The Ring programming language version 1.2 book - Part 29 of 84
Mahmoud Samir Fayed
 
Vtk point cloud important
Vtk point cloud importantVtk point cloud important
Vtk point cloud important
Rohit Bapat
 
The Ring programming language version 1.5.2 book - Part 40 of 181
The Ring programming language version 1.5.2 book - Part 40 of 181The Ring programming language version 1.5.2 book - Part 40 of 181
The Ring programming language version 1.5.2 book - Part 40 of 181
Mahmoud Samir Fayed
 
Query for json databases
Query for json databasesQuery for json databases
Query for json databases
Binh Le
 
Leichtgewichtige Webwenwendungen mit dem MEAN-Stack
Leichtgewichtige Webwenwendungen mit dem MEAN-StackLeichtgewichtige Webwenwendungen mit dem MEAN-Stack
Leichtgewichtige Webwenwendungen mit dem MEAN-Stack
Marco Rico Gomez
 
Peggy elasticsearch應用
Peggy elasticsearch應用Peggy elasticsearch應用
Peggy elasticsearch應用
LearningTech
 
R statistics with mongo db
R statistics with mongo dbR statistics with mongo db
R statistics with mongo db
MongoDB
 

Viewers also liked (6)

Breaking the oracle tie
Breaking the oracle tieBreaking the oracle tie
Breaking the oracle tie
agiamas
 
Going Reactive
Going ReactiveGoing Reactive
Going Reactive
Rob Harrop
 
5 Pitfalls to Avoid with MongoDB
5 Pitfalls to Avoid with MongoDB5 Pitfalls to Avoid with MongoDB
5 Pitfalls to Avoid with MongoDB
Tim Callaghan
 
Silicon Valley Code Camp 2016 - MongoDB in production
Silicon Valley Code Camp 2016 - MongoDB in productionSilicon Valley Code Camp 2016 - MongoDB in production
Silicon Valley Code Camp 2016 - MongoDB in production
Daniel Coupal
 
When to Use MongoDB...and When You Should Not...
When to Use MongoDB...and When You Should Not...When to Use MongoDB...and When You Should Not...
When to Use MongoDB...and When You Should Not...
MongoDB
 
MongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World ExamplesMongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World Examples
Mike Friedman
 
Breaking the oracle tie
Breaking the oracle tieBreaking the oracle tie
Breaking the oracle tie
agiamas
 
Going Reactive
Going ReactiveGoing Reactive
Going Reactive
Rob Harrop
 
5 Pitfalls to Avoid with MongoDB
5 Pitfalls to Avoid with MongoDB5 Pitfalls to Avoid with MongoDB
5 Pitfalls to Avoid with MongoDB
Tim Callaghan
 
Silicon Valley Code Camp 2016 - MongoDB in production
Silicon Valley Code Camp 2016 - MongoDB in productionSilicon Valley Code Camp 2016 - MongoDB in production
Silicon Valley Code Camp 2016 - MongoDB in production
Daniel Coupal
 
When to Use MongoDB...and When You Should Not...
When to Use MongoDB...and When You Should Not...When to Use MongoDB...and When You Should Not...
When to Use MongoDB...and When You Should Not...
MongoDB
 
MongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World ExamplesMongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World Examples
Mike Friedman
 
Ad

Similar to Building Your First MongoDB Application (Mongo Austin) (20)

Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Nosh Petigara
 
Building your first application w/mongoDB MongoSV2011
Building your first application w/mongoDB MongoSV2011Building your first application w/mongoDB MongoSV2011
Building your first application w/mongoDB MongoSV2011
Steven Francia
 
Building web applications with mongo db presentation
Building web applications with mongo db presentationBuilding web applications with mongo db presentation
Building web applications with mongo db presentation
Murat Çakal
 
Mongo Web Apps: OSCON 2011
Mongo Web Apps: OSCON 2011Mongo Web Apps: OSCON 2011
Mongo Web Apps: OSCON 2011
rogerbodamer
 
First app online conf
First app   online confFirst app   online conf
First app online conf
MongoDB
 
9b. Document-Oriented Databases lab
9b. Document-Oriented Databases lab9b. Document-Oriented Databases lab
9b. Document-Oriented Databases lab
Fabio Fumarola
 
Latinoware
LatinowareLatinoware
Latinoware
kchodorow
 
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & AggregationWebinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
MongoDB
 
How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6
Maxime Beugnet
 
Mongoskin - Guilin
Mongoskin - GuilinMongoskin - Guilin
Mongoskin - Guilin
Jackson Tian
 
MongoDB Aggregations Indexing and Profiling
MongoDB Aggregations Indexing and ProfilingMongoDB Aggregations Indexing and Profiling
MongoDB Aggregations Indexing and Profiling
Manish Kapoor
 
Nosql hands on handout 04
Nosql hands on handout 04Nosql hands on handout 04
Nosql hands on handout 04
Krishna Sankar
 
OSDC 2012 | Building a first application on MongoDB by Ross Lawley
OSDC 2012 | Building a first application on MongoDB by Ross LawleyOSDC 2012 | Building a first application on MongoDB by Ross Lawley
OSDC 2012 | Building a first application on MongoDB by Ross Lawley
NETWAYS
 
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
MongoSF
 
Marc s01 e02-crud-database
Marc s01 e02-crud-databaseMarc s01 e02-crud-database
Marc s01 e02-crud-database
MongoDB
 
OrientDB - The 2nd generation of (multi-model) NoSQL
OrientDB - The 2nd generation of  (multi-model) NoSQLOrientDB - The 2nd generation of  (multi-model) NoSQL
OrientDB - The 2nd generation of (multi-model) NoSQL
Roberto Franchini
 
Webinar: General Technical Overview of MongoDB for Dev Teams
Webinar: General Technical Overview of MongoDB for Dev TeamsWebinar: General Technical Overview of MongoDB for Dev Teams
Webinar: General Technical Overview of MongoDB for Dev Teams
MongoDB
 
Transitioning from SQL to MongoDB
Transitioning from SQL to MongoDBTransitioning from SQL to MongoDB
Transitioning from SQL to MongoDB
MongoDB
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Algiers Tech Meetup
 
Building a Location-based platform with MongoDB from Zero.
Building a Location-based platform with MongoDB from Zero.Building a Location-based platform with MongoDB from Zero.
Building a Location-based platform with MongoDB from Zero.
Ravi Teja
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Nosh Petigara
 
Building your first application w/mongoDB MongoSV2011
Building your first application w/mongoDB MongoSV2011Building your first application w/mongoDB MongoSV2011
Building your first application w/mongoDB MongoSV2011
Steven Francia
 
Building web applications with mongo db presentation
Building web applications with mongo db presentationBuilding web applications with mongo db presentation
Building web applications with mongo db presentation
Murat Çakal
 
Mongo Web Apps: OSCON 2011
Mongo Web Apps: OSCON 2011Mongo Web Apps: OSCON 2011
Mongo Web Apps: OSCON 2011
rogerbodamer
 
First app online conf
First app   online confFirst app   online conf
First app online conf
MongoDB
 
9b. Document-Oriented Databases lab
9b. Document-Oriented Databases lab9b. Document-Oriented Databases lab
9b. Document-Oriented Databases lab
Fabio Fumarola
 
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & AggregationWebinar: Applikationsentwicklung mit MongoDB: Teil 5: Reporting & Aggregation
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
MongoDB
 
How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6How to leverage what's new in MongoDB 3.6
How to leverage what's new in MongoDB 3.6
Maxime Beugnet
 
Mongoskin - Guilin
Mongoskin - GuilinMongoskin - Guilin
Mongoskin - Guilin
Jackson Tian
 
MongoDB Aggregations Indexing and Profiling
MongoDB Aggregations Indexing and ProfilingMongoDB Aggregations Indexing and Profiling
MongoDB Aggregations Indexing and Profiling
Manish Kapoor
 
Nosql hands on handout 04
Nosql hands on handout 04Nosql hands on handout 04
Nosql hands on handout 04
Krishna Sankar
 
OSDC 2012 | Building a first application on MongoDB by Ross Lawley
OSDC 2012 | Building a first application on MongoDB by Ross LawleyOSDC 2012 | Building a first application on MongoDB by Ross Lawley
OSDC 2012 | Building a first application on MongoDB by Ross Lawley
NETWAYS
 
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
Map/reduce, geospatial indexing, and other cool features (Kristina Chodorow)
MongoSF
 
Marc s01 e02-crud-database
Marc s01 e02-crud-databaseMarc s01 e02-crud-database
Marc s01 e02-crud-database
MongoDB
 
OrientDB - The 2nd generation of (multi-model) NoSQL
OrientDB - The 2nd generation of  (multi-model) NoSQLOrientDB - The 2nd generation of  (multi-model) NoSQL
OrientDB - The 2nd generation of (multi-model) NoSQL
Roberto Franchini
 
Webinar: General Technical Overview of MongoDB for Dev Teams
Webinar: General Technical Overview of MongoDB for Dev TeamsWebinar: General Technical Overview of MongoDB for Dev Teams
Webinar: General Technical Overview of MongoDB for Dev Teams
MongoDB
 
Transitioning from SQL to MongoDB
Transitioning from SQL to MongoDBTransitioning from SQL to MongoDB
Transitioning from SQL to MongoDB
MongoDB
 
Building a Location-based platform with MongoDB from Zero.
Building a Location-based platform with MongoDB from Zero.Building a Location-based platform with MongoDB from Zero.
Building a Location-based platform with MongoDB from Zero.
Ravi Teja
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 

Recently uploaded (20)

Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 

Building Your First MongoDB Application (Mongo Austin)

  • 1. Nosh Petigara [email_address] @noshinosh http://mongodb.org http://10gen.com Building applications with MongoDB – An introduction MongoAustin – Febraury 15, 2011
  • 2. Today’s Talk MongoDB: Data modeling, queries, geospatial, updates, map reduce Using a location-based app as an example Example Works in MongoDB JS shell
  • 3. Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
  • 4. Documents doc1 = { _id: 4b97e62bf1d8c7152c9ccb74 , key1: value1, key2: value2, key3: {..., ..., ...}, key4: [..., ..., ] }
  • 5. Collections doc1, doc2, doc3 Places Users Checkins doc3, doc4, doc5 doc6, doc7, doc8
  • 6. Places v1 place1 = { name: &quot;10gen HQ”, address: ”134 5 th Avenue 3 rd Floor”, city: &quot;New York”, zip: &quot;10011” } db.places.find({zip:”10011”}).limit(10)
  • 7. Places v2 place1 = { name: &quot;10gen HQ”, address: &quot;17 West 18th Street 8th Floor”, city: &quot;New York”, zip: &quot;10011”, tags: [“business”, “recommended”] } db.places.find({zip:”10011”, tags:”business”})
  • 8. Places v3 place1 = { name: &quot;10gen HQ”, address: &quot;17 West 18th Street 8th Floor”, city: &quot;New York”, zip: &quot;10011”, tags: [“business”, “cool place”], latlong: [40.0,72.0] } db.places.ensureIndex({latlong:”2d”}) db.places.find({latlong:{$near:[40,70]}})
  • 9. Places v4 place1 = { name: &quot;10gen HQ”, address: &quot;17 West 18th Street 8th Floor”, city: &quot;New York”, zip: &quot;10011”, latlong: [40.0,72.0], tags: [“business”, “cool place”], tips: [ {user:&quot;nosh&quot;, time:6/26/2010, tip:&quot;stop by for office hours on Wednesdays from 4-6pm&quot;}, {.....}, {.....} ] }
  • 10. Querying your Places Creating your indexes db.places.ensureIndex({tags:1}) db.places.ensureIndex({name:1}) db.places.ensureIndex({latlong:”2d”}) Finding places: db.places.find({latlong:{$near:[40,70]}}) With regular expressions: db.places.find({name: /^ typeaheadstring /) By tag: db.places.find({tags: “business”})
  • 11. Inserting and updating places Initial data load: db.places.insert(place1) Updating tips: db.places.update({name:&quot;10gen HQ&quot;}, {$push :{tips: {user:&quot;nosh&quot;, time:6/26/2010, tip:&quot;stop by for office hours on Wednesdays from 4-6&quot;}}}}
  • 12. Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
  • 13. Users user1 = { name: “nosh” email: “[email protected]”, . . . checkins: [ 4b97e62bf1d8c7152c9ccb74, 5a20e62bf1d8c736ab ] } checkins [] = ObjectId reference to checkin collection
  • 14. Checkins checkin1 = { place: “10gen HQ”, ts: 9/20/2010 10:12:00, userId: <objectid of user> } Check-in = 2 ops Insert check in object [checkin collection] Update ($push) user object [user collection] Indexes: db.checkins.ensureIndex({place:1, ts:1}) db.checkins.ensureIndex({ts:1})
  • 15. Atomic Updates $set, $unset, $rename $push, $pop, $pull, $addToSet $inc
  • 16. Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
  • 17. Simple Stats db.checkins.find({place: “10gen HQ”) db.checkins.find({place: “10gen HQ”}) .sort({ts:-1}).limit(10) db.checkins.find({place: “10gen HQ”, ts: {$gt: midnight}}).count()
  • 18. Stats with MapReduce mapFunc = function() { emit(this.place, 1);} reduceFunc = function(key, values) { return Array.sum(values); } res = db.checkins.mapReduce(mapFunc,reduceFunc, {query: {timestamp: {$gt:nowminus3hrs}}}) res = [{_id:”10gen HQ”, value: 17}, ….., ….] res.find({ value: {$gt: 15}, _id: {$in: [….., ….., …..]} })
  • 19. Application Goals Places Check ins (1) Q: Current location A: Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
  • 20. Single Master Deployments Configure as a replica set for automated failover Add more secondaries to scale reads Primary/Master Secondary/Slave
  • 21. Auto Sharded Deployment Autosharding distributes data among two or more replica sets Mongo Config Server(s) handles distribution & balancing Transparent to applications Primary/Master Secondary/Slave MongoS Mongo Config
  • 22. Use Cases RDBMS replacement for high-traffic web applications Content Management-type applications Social, mobile Real-time analytics High-speed data logging Web 2.0, Media, SaaS, Gaming, Finance, Telecom, Healthcare
  • 24. Nosh Petigara [email_address] Director of Product Strategy, 10gen http://mongodb.org http://10gen.com We are hiring! @mongodb [email_address] @noshinosh

Editor's Notes

  • #4: Memory mapped files, BSON, indexes, multiple data types, binary files, etc
  • #13: Memory mapped files, BSON, indexes, multiple data types, binary files, etc
  • #17: Memory mapped files, BSON, indexes, multiple data types, binary files, etc
  • #20: Memory mapped files, BSON, indexes, multiple data types, binary files, etc