SlideShare a Scribd company logo
Bulletproof Jobs:
Patterns for Large Scale Processing
Sim Simeonov
Founder & CTO, Swoop
@simeons
Spark Magic @ Swoop
5-10x faster exploration & ML
8x more reliable job execution
10-100x faster root cause analysis
Bulletproof Jobs: Patterns For Large-Scale Spark Processing
S3
Redshift
Data Aggregation Example
ad_id views clicks
1234567890 1000000 10000
account_name campaign_name views clicks ctr_pct
ABC Inc. Widgets 10,000,000 100,000 1.00
Get Magic
Email spark@swoop.com
Connect @simeons
sqlContext.table("ads")
.join(sqlContext.table("accounts"),
expr("get_account_id(ad_id)") === 'account_id)
.join(sqlContext.table("accounts"),
expr("get_campaign_id(ad_id)") === 'campaign_id)
.groupBy("account_name", "campaign_name")
.agg(sum('views).as("views"), sum('clicks).as("clicks"))
.withColumn("ctr_pct",
format_number(expr("100*clicks/views"), 2))
.orderBy('account_name, 'campaign_name)
Breaking Down the Code
• Red what?
• Green for whom?
• Blue how?
sqlContext.table("ads")
.join(sqlContext.table("accounts"),
expr("get_account_id(ad_id)") === 'account_id)
.join(sqlContext.table("accounts"),
expr("get_campaign_id(ad_id)") === 'campaign_id)
.groupBy("account_name", "campaign_name")
.agg(sum('views).as("views"), sum('clicks).as("clicks"))
.withColumn("ctr_pct",
format_number(expr("100*clicks/views"), 2))
.orderBy('account_name, 'campaign_name)
Mixing Explicit Dependencies
.withColumn("ctr_pct",
format_number(expr("100*clicks/views"), 2))
Machine Learning:
The High-Interest Credit Card of Technical Debt
http://research.google.com/pubs/pub43146.html
Code Tied to Input Data
sqlContext.table("keywords")
.join(sqlContext.table("accounts"),
expr("get_account_id(keyword_id)") === 'account_id)
.join(sqlContext.table("accounts"),
expr("get_campaign_id(keyword_id)") === 'campaign_id)
Magical APIs take care of the
devil in the details
so that you don’t have to
Bulletproof Data Processing
Reliable operations
over long periods of time
and fast recovery from failures
Simple Real-World Example
Process the next batch of data,
append to existing data on S3 and
append to analytics aggregates in Redshift
90+% of job failures relate to I/O
Can’t we just retry failed operations?
Problem
Appending is not idempotent
Idempotency in Spark
Spark has one idempotent way to save data
dataframe.write.mode(SaveMode.Overwrite).save(…
)
Overwrite is All or Nothing
Spark has no idempotent operation
to write just the next batch of data but
we can add it ourselves
Idempotent “append” in SQL
-- a.k.a., SQL merge operation
begin transaction;
delete from tbl where timestamp =
batchPeriod;
insert into tbl select * from staging_tbl;
end transaction;
drop table staging_tbl;
Devil in the Details
• Column order dependencies
• Schema evolution
• Index management
Idempotent “append” with Spark
Problem:can’t delete entries in Spark tables
Solution: Resilient Partitioned Tables
Partitioned Tables
• Put data in different directories
• Put some of the data on the file path
– Use it to filter which files are processed
/my_tbl/year=2016/month=06/day=01/hour=00/...
/my_tbl/year=2016/month=06/day=01/hour=01/...
Idempotent “append” with Spark
// Overwrite relevant partition
df.write
.mode(SaveMode.Overwrite)
.save("…/year=yyyy/month=mm/…")
Devil in the Details
• Non-atomic file operations
• Eventual consistency file systems
• Other jobs/clusters using the data
• Dynamic partition discovery issues
Resilient Partitioned Tables
• Partitioning convention
– par_ts time dimension, UTC @ minute granularity
– par_job identifies the operation that wrote the data
– par_cat identifies the category of data
• Enable magical framework code
/my_tbl/par_ts=201606010000/par_job=load/par_cat=catA/…
Root Cause Analysis
While ingesting 100M pieces of data, your code
throws 1,000 exceptions of 5 different types.
How will you find & fix all the problems?
Spark Records
• An envelope around your data
– Data chain of custody
– Row-level logging
– Fine-grained issue handling (errors, data quality, …)
• Enable magical framework code
Transparent Data Pattern
// Get the data, skip all error records
sql("
select data.*
from my_records
where (features & 1) = 0
").registerTempTable("my_data")
Create Magic with Spark!
Magic requires intent.
If you don’t aim to create magic
you never will.
Spark Magic Checklist
• Simple
• Outcomes, not actions
• Implicit context management
• Thoughtful conventions
• Resilient, idempotent I/O
• Fast root cause analysis
Swoop’s Spark Magic Toolkit
• Smart Data Warehouse
• Idempotent “next batch” operations
• Fast root cause analysis
• Spark metrics, feature engineering tools & more…
Get Magic
Email spark@swoop.com
Connect @simeons
THANK YOU.
Email spark@swoop.com to get access to our Spark extensions.
Sim Simeonov,CTO, Swoop
sim@swoop.com | @simeons
Ad

More Related Content

What's hot (20)

Streaming Analytics for Financial Enterprises
Streaming Analytics for Financial EnterprisesStreaming Analytics for Financial Enterprises
Streaming Analytics for Financial Enterprises
Databricks
 
Spark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark MeetupSpark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
Multi dimension aggregations using spark and dataframes
Multi dimension aggregations using spark and dataframesMulti dimension aggregations using spark and dataframes
Multi dimension aggregations using spark and dataframes
Romi Kuntsman
 
Analyzing Time Series Data with Apache Spark and Cassandra
Analyzing Time Series Data with Apache Spark and CassandraAnalyzing Time Series Data with Apache Spark and Cassandra
Analyzing Time Series Data with Apache Spark and Cassandra
Patrick McFadin
 
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Brian O'Neill
 
SMACK Stack 1.1
SMACK Stack 1.1SMACK Stack 1.1
SMACK Stack 1.1
Joe Stein
 
Introduce to Spark sql 1.3.0
Introduce to Spark sql 1.3.0 Introduce to Spark sql 1.3.0
Introduce to Spark sql 1.3.0
Bryan Yang
 
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Spark ETL Techniques - Creating An Optimal Fantasy Baseball RosterSpark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Don Drake
 
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Chris Fregly
 
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Databricks
 
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb
 
Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015
Databricks
 
ML on Big Data: Real-Time Analysis on Time Series
ML on Big Data: Real-Time Analysis on Time SeriesML on Big Data: Real-Time Analysis on Time Series
ML on Big Data: Real-Time Analysis on Time Series
Sigmoid
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
Databricks
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Fast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Fast Data with Apache Ignite and Apache Spark with Christos ErotocritouFast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Fast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Spark Summit
 
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Jason L Brugger
 
Google Cloud Spanner Preview
Google Cloud Spanner PreviewGoogle Cloud Spanner Preview
Google Cloud Spanner Preview
DoiT International
 
The How and Why of Fast Data Analytics with Apache Spark
The How and Why of Fast Data Analytics with Apache SparkThe How and Why of Fast Data Analytics with Apache Spark
The How and Why of Fast Data Analytics with Apache Spark
Legacy Typesafe (now Lightbend)
 
Streaming Analytics for Financial Enterprises
Streaming Analytics for Financial EnterprisesStreaming Analytics for Financial Enterprises
Streaming Analytics for Financial Enterprises
Databricks
 
Spark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark MeetupSpark SQL Deep Dive @ Melbourne Spark Meetup
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
Multi dimension aggregations using spark and dataframes
Multi dimension aggregations using spark and dataframesMulti dimension aggregations using spark and dataframes
Multi dimension aggregations using spark and dataframes
Romi Kuntsman
 
Analyzing Time Series Data with Apache Spark and Cassandra
Analyzing Time Series Data with Apache Spark and CassandraAnalyzing Time Series Data with Apache Spark and Cassandra
Analyzing Time Series Data with Apache Spark and Cassandra
Patrick McFadin
 
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Re-envisioning the Lambda Architecture : Web Services & Real-time Analytics ...
Brian O'Neill
 
SMACK Stack 1.1
SMACK Stack 1.1SMACK Stack 1.1
SMACK Stack 1.1
Joe Stein
 
Introduce to Spark sql 1.3.0
Introduce to Spark sql 1.3.0 Introduce to Spark sql 1.3.0
Introduce to Spark sql 1.3.0
Bryan Yang
 
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Spark ETL Techniques - Creating An Optimal Fantasy Baseball RosterSpark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Don Drake
 
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Chris Fregly
 
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Databricks
 
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb
 
Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015
Databricks
 
ML on Big Data: Real-Time Analysis on Time Series
ML on Big Data: Real-Time Analysis on Time SeriesML on Big Data: Real-Time Analysis on Time Series
ML on Big Data: Real-Time Analysis on Time Series
Sigmoid
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
Databricks
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Fast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Fast Data with Apache Ignite and Apache Spark with Christos ErotocritouFast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Fast Data with Apache Ignite and Apache Spark with Christos Erotocritou
Spark Summit
 
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Hands-On with U-SQL and Azure Data Lake Analytics (ADLA)
Jason L Brugger
 
The How and Why of Fast Data Analytics with Apache Spark
The How and Why of Fast Data Analytics with Apache SparkThe How and Why of Fast Data Analytics with Apache Spark
The How and Why of Fast Data Analytics with Apache Spark
Legacy Typesafe (now Lightbend)
 

Viewers also liked (6)

Open Metadata and Governance with Apache Atlas
Open Metadata and Governance with Apache AtlasOpen Metadata and Governance with Apache Atlas
Open Metadata and Governance with Apache Atlas
DataWorks Summit
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Introducing Exactly Once Semantics To Apache Kafka
Introducing Exactly Once Semantics To Apache KafkaIntroducing Exactly Once Semantics To Apache Kafka
Introducing Exactly Once Semantics To Apache Kafka
Apurva Mehta
 
Avro Tutorial - Records with Schema for Kafka and Hadoop
Avro Tutorial - Records with Schema for Kafka and HadoopAvro Tutorial - Records with Schema for Kafka and Hadoop
Avro Tutorial - Records with Schema for Kafka and Hadoop
Jean-Paul Azar
 
Intro to Pinot (2016-01-04)
Intro to Pinot (2016-01-04)Intro to Pinot (2016-01-04)
Intro to Pinot (2016-01-04)
Jean-François Im
 
Pinot: Realtime Distributed OLAP datastore
Pinot: Realtime Distributed OLAP datastorePinot: Realtime Distributed OLAP datastore
Pinot: Realtime Distributed OLAP datastore
Kishore Gopalakrishna
 
Open Metadata and Governance with Apache Atlas
Open Metadata and Governance with Apache AtlasOpen Metadata and Governance with Apache Atlas
Open Metadata and Governance with Apache Atlas
DataWorks Summit
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Introducing Exactly Once Semantics To Apache Kafka
Introducing Exactly Once Semantics To Apache KafkaIntroducing Exactly Once Semantics To Apache Kafka
Introducing Exactly Once Semantics To Apache Kafka
Apurva Mehta
 
Avro Tutorial - Records with Schema for Kafka and Hadoop
Avro Tutorial - Records with Schema for Kafka and HadoopAvro Tutorial - Records with Schema for Kafka and Hadoop
Avro Tutorial - Records with Schema for Kafka and Hadoop
Jean-Paul Azar
 
Pinot: Realtime Distributed OLAP datastore
Pinot: Realtime Distributed OLAP datastorePinot: Realtime Distributed OLAP datastore
Pinot: Realtime Distributed OLAP datastore
Kishore Gopalakrishna
 
Ad

Similar to Bulletproof Jobs: Patterns For Large-Scale Spark Processing (20)

Kåre Rude Andersen - Be a hero – optimize scom and present your services
Kåre Rude Andersen - Be a hero – optimize scom and present your servicesKåre Rude Andersen - Be a hero – optimize scom and present your services
Kåre Rude Andersen - Be a hero – optimize scom and present your services
Nordic Infrastructure Conference
 
Analysis Services en SQL Server 2008
Analysis Services en SQL Server 2008Analysis Services en SQL Server 2008
Analysis Services en SQL Server 2008
Eduardo Castro
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
Reading Cassandra Meetup Feb 2015: Apache Spark
Reading Cassandra Meetup Feb 2015: Apache SparkReading Cassandra Meetup Feb 2015: Apache Spark
Reading Cassandra Meetup Feb 2015: Apache Spark
Christopher Batey
 
Manchester Hadoop Meetup: Spark Cassandra Integration
Manchester Hadoop Meetup: Spark Cassandra IntegrationManchester Hadoop Meetup: Spark Cassandra Integration
Manchester Hadoop Meetup: Spark Cassandra Integration
Christopher Batey
 
Azure machine learning service
Azure machine learning serviceAzure machine learning service
Azure machine learning service
Ruth Yakubu
 
[DSC Europe 22] Smart approach in development and deployment process for vari...
[DSC Europe 22] Smart approach in development and deployment process for vari...[DSC Europe 22] Smart approach in development and deployment process for vari...
[DSC Europe 22] Smart approach in development and deployment process for vari...
DataScienceConferenc1
 
Datastax / Cassandra Modeling Strategies
Datastax / Cassandra Modeling Strategies Datastax / Cassandra Modeling Strategies
Datastax / Cassandra Modeling Strategies
Anant Corporation
 
Agile Data Science 2.0: Using Spark with MongoDB
Agile Data Science 2.0: Using Spark with MongoDBAgile Data Science 2.0: Using Spark with MongoDB
Agile Data Science 2.0: Using Spark with MongoDB
Russell Jurney
 
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling ElasticsearchBlack friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Sylvain Wallez
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at Scale
Aaron (Ari) Bornstein
 
At the core you will have KUSTO
At the core you will have KUSTOAt the core you will have KUSTO
At the core you will have KUSTO
Riccardo Zamana
 
Machine Learning with Microsoft Azure
Machine Learning with Microsoft AzureMachine Learning with Microsoft Azure
Machine Learning with Microsoft Azure
Dmitry Petukhov
 
Advanced data modeling with apache cassandra
Advanced data modeling with apache cassandraAdvanced data modeling with apache cassandra
Advanced data modeling with apache cassandra
Patrick McFadin
 
Cloudera Movies Data Science Project On Big Data
Cloudera Movies Data Science Project On Big DataCloudera Movies Data Science Project On Big Data
Cloudera Movies Data Science Project On Big Data
Abhishek M Shivalingaiah
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
I want my model to be deployed ! (another story of MLOps)
I want my model to be deployed ! (another story of MLOps)I want my model to be deployed ! (another story of MLOps)
I want my model to be deployed ! (another story of MLOps)
AZUG FR
 
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
DataStax
 
Querying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS AthenaQuerying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
Russell Jurney
 
Kåre Rude Andersen - Be a hero – optimize scom and present your services
Kåre Rude Andersen - Be a hero – optimize scom and present your servicesKåre Rude Andersen - Be a hero – optimize scom and present your services
Kåre Rude Andersen - Be a hero – optimize scom and present your services
Nordic Infrastructure Conference
 
Analysis Services en SQL Server 2008
Analysis Services en SQL Server 2008Analysis Services en SQL Server 2008
Analysis Services en SQL Server 2008
Eduardo Castro
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
Reading Cassandra Meetup Feb 2015: Apache Spark
Reading Cassandra Meetup Feb 2015: Apache SparkReading Cassandra Meetup Feb 2015: Apache Spark
Reading Cassandra Meetup Feb 2015: Apache Spark
Christopher Batey
 
Manchester Hadoop Meetup: Spark Cassandra Integration
Manchester Hadoop Meetup: Spark Cassandra IntegrationManchester Hadoop Meetup: Spark Cassandra Integration
Manchester Hadoop Meetup: Spark Cassandra Integration
Christopher Batey
 
Azure machine learning service
Azure machine learning serviceAzure machine learning service
Azure machine learning service
Ruth Yakubu
 
[DSC Europe 22] Smart approach in development and deployment process for vari...
[DSC Europe 22] Smart approach in development and deployment process for vari...[DSC Europe 22] Smart approach in development and deployment process for vari...
[DSC Europe 22] Smart approach in development and deployment process for vari...
DataScienceConferenc1
 
Datastax / Cassandra Modeling Strategies
Datastax / Cassandra Modeling Strategies Datastax / Cassandra Modeling Strategies
Datastax / Cassandra Modeling Strategies
Anant Corporation
 
Agile Data Science 2.0: Using Spark with MongoDB
Agile Data Science 2.0: Using Spark with MongoDBAgile Data Science 2.0: Using Spark with MongoDB
Agile Data Science 2.0: Using Spark with MongoDB
Russell Jurney
 
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling ElasticsearchBlack friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Sylvain Wallez
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at Scale
Aaron (Ari) Bornstein
 
At the core you will have KUSTO
At the core you will have KUSTOAt the core you will have KUSTO
At the core you will have KUSTO
Riccardo Zamana
 
Machine Learning with Microsoft Azure
Machine Learning with Microsoft AzureMachine Learning with Microsoft Azure
Machine Learning with Microsoft Azure
Dmitry Petukhov
 
Advanced data modeling with apache cassandra
Advanced data modeling with apache cassandraAdvanced data modeling with apache cassandra
Advanced data modeling with apache cassandra
Patrick McFadin
 
Cloudera Movies Data Science Project On Big Data
Cloudera Movies Data Science Project On Big DataCloudera Movies Data Science Project On Big Data
Cloudera Movies Data Science Project On Big Data
Abhishek M Shivalingaiah
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
I want my model to be deployed ! (another story of MLOps)
I want my model to be deployed ! (another story of MLOps)I want my model to be deployed ! (another story of MLOps)
I want my model to be deployed ! (another story of MLOps)
AZUG FR
 
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
DataStax
 
Querying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS AthenaQuerying Data Pipeline with AWS Athena
Querying Data Pipeline with AWS Athena
Yaroslav Tkachenko
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
Russell Jurney
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 

Recently uploaded (20)

Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 

Bulletproof Jobs: Patterns For Large-Scale Spark Processing