SlideShare a Scribd company logo
Embedded C – Part III
Pointers
Team Emertxe
Pointers : Sharp Knives
Handle with Care!
Pointers : Why
● To have C as a low level language being a high level language.
● To have the dynamic allocation mechanism.
● To achieve the similar results as of ”pass by variable”
parameter passing mechanism in function, by passing the reference.
● Returning more than one value in a function.
Pointers & Seven rules
Rule #1
Pointer as a integer variable
Example
Syntax
dataType *pointer_name;
Pictorial Representation
10
a
100
100
200
p
DIY:
Declare the float pointer & assign the address of float variable
Rule #2
Referencing & Dereferencing
Example
DIY:
Print the value of double using the pointer.
Variable Address
Referencing
De-Referencing
&
*
Rule #3
Type of a pointer
All pointers are of same size.
l
Pointer of type t t Pointer (t *) A variable which contains an≡ ≡ ≡
address,which when dereferenced becomes a variable of type t
Rule #4
Value of a pointer
Example
Pictorial Representation
10
a
100
100
200
p
Pointing means Containing
l
Pointer pointing to a variable ≡
l
Pointer contains the address of the
variable
Rule #5
NULL pointer
Example
Pictorial Representation
NULL
200
p
Not pointing to anywhere
l
Pointer Value of zero Null Addr NULL≡ ≡
pointer Pointing to nothing≡
Segmentation fault
A segmentation fault occurs when a program attempts to access a memory location
that it is not allowed to access, or attempts to access a memory location in a way
that is not allowed.
Example
Fault occurs, while attempting to write to a read-only
location, or to overwrite part of the operating system
Bus error
A bus error is a fault raised by hardware, notifying an operating system (OS) that a
process is trying to access memory that the CPU cannot physically address: an
invalid address for the address bus, hence the name.
Example
DIY: Write a similar code which creates bus error
Rule #6:
Arithmetic Operations with Pointers & Arrays
l
value(p + i) value(p) + value(i) * sizeof(*p)≡
l
Array Collection of variables vs Constant pointer variable→
l
short sa[10];
l
&sa Address of the array variable→
l
sa[0] First element→
l
&sa[0] Address of the first array element→
l
sa Constant pointer variable→
l
Arrays vs Pointers
l
Commutative use
l
(a + i) i + a &a[i] &i[a]≡ ≡ ≡
l
*(a + i) *(i + a) a[i] i[a]≡ ≡ ≡
l
constant vs variable
Rule #7:
Static & Dynamic Allocation
l
Static Allocation Named Allocation -≡
l
Compiler’s responsibility to manage it – Done internally by compiler,
l
when variables are defined
l
Dynamic Allocation Unnamed Allocation -≡
l
User’s responsibility to manage it – Done using malloc & free
l
Differences at program segment level
l
Defining variables (data & stack segmant) vs Getting & giving it from
l
the heap segment using malloc & free
l
int x, int *xp, *ip;
l
xp = &x;
l
ip = (int*)(malloc(sizeof(int)));
Pointers: Big Picture
Pointers: Big Picture
Pointers :
Simple data Types
l
'A'
100 101 102 104 105 . . .
100
chcptr
200
'A'
100 101 102 104 105 . . .
100
chcptr
200
100 101 102 104 105 . . .
100
iiptr
200
Pointers :
Compound data Types
Example: Arrays & Strings (1D arrays)
int age[ 5 ] = {10, 20, 30, 40, 50};
int *p = age;
Memory Allocation
10 20 30 40 50
age[0]
age[4]
age[3]
age[2]
age[1]
100 104 108 112 116

DIY : Write a program to add all the elements of the array.
100
p
age[i] ≡ *(age + i)
i[age] ≡ *(i + age)
≡
≡
age[2] = *(age + 2) = *(age + 2 * sizeof(int))
= *(age + 2 * 4)
= *(100 + 2 * 4)
= *(108)
= 30 = *(p + 2) = p[2]
Pointers :
Compound data Types
Example: Arrays & Strings (2D arrays)
int a[ 3 ][ 2 ] = {10, 20, 30, 40, 50, 60};
int ( * p) [ 2 ] = a;
Memory Allocation
p
10 20
30 40
50 60
Pointers :
Compound data Types
Example: Arrays & Strings (2D arrays)
int a[ 3 ][ 2 ] = {10, 20, 30, 40, 50, 60};
int ( * p) [ 2 ] = a;

DIY : Write a program to print all the elements of the

2D array.
a[2][1] = *(*(age + 2) + 1) = *(*(a + 2 * sizeof(1D array)) + 1 * sizeof(int))
= *(*(a + 2 * 8) + 1 * 4)
= *(*(100 + 2 * 8) + 4)
= *(*(108) + 4)
= *(108 + 4)
= *(112)
= 40 = p[2][1]
In general :
a[i][j] ≡ *(a[i] + j) ≡ *(*(a + i) + j) ≡ (*(a + i))[j] ≡ j[a[i]] ≡ j[i[a]] ≡ j[*(a + i)]
Dynamic Memory Allocation
l
In C functions for dynamic memory allocation functions are
l
declared in the header file <stdlib.h>.
l
In some implementations, it might also be provided
l
in <alloc.h> or <malloc.h>.
● malloc
● calloc
● realloc
● free
Malloc
l
The malloc function allocates a memory block of size size from dynamic
l
memory and returns pointer to that block if free space is available, other
l
wise it returns a null pointer.
l
Prototype
l
void *malloc(size_t size);
calloc
l
The calloc function returns the memory (all initialized to zero)
l
so may be handy to you if you want to make sure that the memory
l
is properly initialized.
l
calloc can be considered as to be internally implemented using
l
malloc (for allocating the memory dynamically) and later initialize
l
the memory block (with the function, say, memset()) to initialize it to zero.
l
Prototype
l
void *calloc(size_t n, size_t size);
Realloc
l
The function realloc has the following capabilities
l
1. To allocate some memory (if p is null, and size is non-zero,
l
then it is same as malloc(size)),
l
2. To extend the size of an existing dynamically allocated block
l
(if size is bigger than the existing size of the block pointed by p),
l
3. To shrink the size of an existing dynamically allocated block
l
(if size is smaller than the existing size of the block pointed by p),
l
4. To release memory (if size is 0 and p is not NULL
l
then it acts like free(p)).
l
Prototype
l
void *realloc(void *ptr, size_t size);
free
l
The free function assumes that the argument given is a pointer to the memory
l
that is to be freed and performs no heck to verify that memory has already
l
been allocated.
l
1. if free() is called on a null pointer, nothing happens.
l
2. if free() is called on pointer pointing to block other
l
than the one allocated by dynamic allocation, it will lead to
l
undefined behavior.
l
3. if free() is called with invalid argument that may collapse
l
the memory management mechanism.
l
4. if free() is not called on the dynamically allocated memory block
l
after its use, it will lead to memory leaks.
l
Prototype
l
void free(void *ptr);
2D Arrays
Each Dimension could be static or Dynamic
Various combinations for 2-D Arrays (2x2 = 4)
• C1: Both Static (Rectangular)
• C2: First Static, Second Dynamic
• C3: First Dynamic, Second Static
• C4: Both Dynamic
2-D Arrays using a Single Level Pointer
C1: Both static
Rectangular array
int rec [5][6];
Takes totally 5 * 6 * sizeof(int) bytes
Static
Static
C2: First static,
Second dynamic
 One dimension static, one dynamic (Mix of Rectangular & Ragged)
int *ra[5];
for( i = 0; i < 5; i++)
ra[i] = (int*) malloc( 6 * sizeof(int));
Total memory used : 5 * sizeof(int *) + 6 * 5 * sizeof(int) bytes
Static
Dynamic
C2: First static,
Second dynamic
 One dimension static, one dynamic (Mix of Rectangular & Ragged)
int *ra[5];
for( i = 0; i < 5; i++)
ra[i] = (int*) malloc( 6 * sizeof(int));
Total memory used : 5 * sizeof(int *) + 6 * 5 * sizeof(int) bytes
Static
Dynamic
C3: Second static,
First dynamic
One static, One dynamic
int (*ra)[6]; (Pointer to array of 6 integer)
ra = (int(*)[6]) malloc( 5 * sizeof(int[6]));
Total memory used : sizeof(int *) + 6 * 5 * sizeof(int) bytes
Static
ra
C4: Both dynamic
Ragged array
int **ra;
ra = (int **) malloc (5 * sizeof(int*));
for(i = 0; i < 5; i++)
ra[i] = (int*) malloc( 6 * sizeof(int));
Takes 5 * sizeof(int*) for first level of indirection
Total memory used : 1 * sizeof(int **) + 5 * sizeof(int *) + 5 * 6 *
sizeof(int) bytes
ra[0]
ra[1]
ra[2]
ra[3]
ra[4]
ra
Function Pointers
Function pointers : Why
l
● Chunk of code that can be called independently and is standalone
● Independent code that can be used to iterate over a collection of
objects
● Event management which is essentially asynchronous where there
may be several objects that may be interested in ”Listening” such
an event
● ”Registering” a piece of code and calling it later when required.
Function Pointers:
Declaration
Syntax
return_type (*ptr_name)(type1, type2, type3, ...)
Example
float (*fp)( int );
Description:
fp is a pointer that can point to any function that returns a float value and accepts an int as
an argument.
Function Pointers:
Example
Function Pointers:
As an argument
Function Pointers:
More examples
● The bsearch function in the standard header file <stdlib.h>
void *bsearch(void *key, void *base, size_t num, size_t width,
int (*compare)(void *elem1, void *elem2));
● The last parameter is a function pointer.
● It points to a function that can compare two elements (of the sorted array, pointed by
base) and return an int as a result.
● This serves as general method for the usage of function pointers. The bsearch function
does not know anything about the elements in the array and so it cannot decide how to
compare the elements in the array.
● To make a decision on this, we should have a separately function for it and pass it to
bsearch.
● Whenever bsearch needs to compare, it will call this function to do it. This is a simple
usage of function pointers as callback methods.
Function Pointers:
More examples
● Function pointers can be registered & can be called when the program exits
Output ?
Stay connected
About us: Emertxe is India’s one of the top IT finishing schools & self learning
kits provider. Our primary focus is on Embedded with diversification focus on
Java, Oracle and Android areas
Branch Office: Corporate Headquarters:
Emertxe Information Technologies, Emertxe Information Technologies,
No-1, 9th Cross, 5th Main, 83, Farah Towers, 1st
Floor,
Jayamahal Extension, MG Road,
Bangalore, Karnataka 560046 Bangalore, Karnataka - 560001
T: +91 809 555 7333 (M), +91 80 41289576 (L)
E: training@emertxe.com
https://www.facebook.com/Emertxe https://twitter.com/EmertxeTweet https://www.slideshare.net/EmertxeSlides
THANK YOU
Ad

More Related Content

What's hot (20)

Advanced C
Advanced C Advanced C
Advanced C
Emertxe Information Technologies Pvt Ltd
 
Linux-Internals-and-Networking
Linux-Internals-and-NetworkingLinux-Internals-and-Networking
Linux-Internals-and-Networking
Emertxe Information Technologies Pvt Ltd
 
Embedded Linux Kernel - Build your custom kernel
Embedded Linux Kernel - Build your custom kernelEmbedded Linux Kernel - Build your custom kernel
Embedded Linux Kernel - Build your custom kernel
Emertxe Information Technologies Pvt Ltd
 
U boot porting guide for SoC
U boot porting guide for SoCU boot porting guide for SoC
U boot porting guide for SoC
Macpaul Lin
 
Jagan Teki - U-boot from scratch
Jagan Teki - U-boot from scratchJagan Teki - U-boot from scratch
Jagan Teki - U-boot from scratch
linuxlab_conf
 
Linux Internals - Part II
Linux Internals - Part IILinux Internals - Part II
Linux Internals - Part II
Emertxe Information Technologies Pvt Ltd
 
Android crash debugging
Android crash debuggingAndroid crash debugging
Android crash debugging
Ashish Agrawal
 
Embedded linux network device driver development
Embedded linux network device driver developmentEmbedded linux network device driver development
Embedded linux network device driver development
Amr Ali (ISTQB CTAL Full, CSM, ITIL Foundation)
 
Intro to Embedded OS, RTOS and Communication Protocols
Intro to Embedded OS, RTOS and Communication ProtocolsIntro to Embedded OS, RTOS and Communication Protocols
Intro to Embedded OS, RTOS and Communication Protocols
Emertxe Information Technologies Pvt Ltd
 
Advanced C - Part 2
Advanced C - Part 2Advanced C - Part 2
Advanced C - Part 2
Emertxe Information Technologies Pvt Ltd
 
Introduction to Debuggers
Introduction to DebuggersIntroduction to Debuggers
Introduction to Debuggers
Saumil Shah
 
Getting started with BeagleBone Black - Embedded Linux
Getting started with BeagleBone Black - Embedded LinuxGetting started with BeagleBone Black - Embedded Linux
Getting started with BeagleBone Black - Embedded Linux
Emertxe Information Technologies Pvt Ltd
 
Embedded C programming session10
Embedded C programming  session10Embedded C programming  session10
Embedded C programming session10
Keroles karam khalil
 
Linux Internals - Part III
Linux Internals - Part IIILinux Internals - Part III
Linux Internals - Part III
Emertxe Information Technologies Pvt Ltd
 
linux device driver
linux device driverlinux device driver
linux device driver
Rahul Batra
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot)
Omkar Rane
 
Arm device tree and linux device drivers
Arm device tree and linux device driversArm device tree and linux device drivers
Arm device tree and linux device drivers
Houcheng Lin
 
Linux Usb overview
Linux Usb  overviewLinux Usb  overview
Linux Usb overview
Satyam Sharma
 
Uboot startup sequence
Uboot startup sequenceUboot startup sequence
Uboot startup sequence
Houcheng Lin
 
Linux programming - Getting self started
Linux programming - Getting self started Linux programming - Getting self started
Linux programming - Getting self started
Emertxe Information Technologies Pvt Ltd
 
U boot porting guide for SoC
U boot porting guide for SoCU boot porting guide for SoC
U boot porting guide for SoC
Macpaul Lin
 
Jagan Teki - U-boot from scratch
Jagan Teki - U-boot from scratchJagan Teki - U-boot from scratch
Jagan Teki - U-boot from scratch
linuxlab_conf
 
Android crash debugging
Android crash debuggingAndroid crash debugging
Android crash debugging
Ashish Agrawal
 
Introduction to Debuggers
Introduction to DebuggersIntroduction to Debuggers
Introduction to Debuggers
Saumil Shah
 
linux device driver
linux device driverlinux device driver
linux device driver
Rahul Batra
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot)
Omkar Rane
 
Arm device tree and linux device drivers
Arm device tree and linux device driversArm device tree and linux device drivers
Arm device tree and linux device drivers
Houcheng Lin
 
Uboot startup sequence
Uboot startup sequenceUboot startup sequence
Uboot startup sequence
Houcheng Lin
 

Viewers also liked (17)

C Programming - Refresher - Part II
C Programming - Refresher - Part II C Programming - Refresher - Part II
C Programming - Refresher - Part II
Emertxe Information Technologies Pvt Ltd
 
C Programming - Refresher - Part IV
C Programming - Refresher - Part IVC Programming - Refresher - Part IV
C Programming - Refresher - Part IV
Emertxe Information Technologies Pvt Ltd
 
Embedded C - Optimization techniques
Embedded C - Optimization techniquesEmbedded C - Optimization techniques
Embedded C - Optimization techniques
Emertxe Information Technologies Pvt Ltd
 
best notes in c language
best notes in c languagebest notes in c language
best notes in c language
India
 
Cmp104 lec 7 algorithm and flowcharts
Cmp104 lec 7 algorithm and flowchartsCmp104 lec 7 algorithm and flowcharts
Cmp104 lec 7 algorithm and flowcharts
kapil078
 
Introduction to Basic C programming 02
Introduction to Basic C programming 02Introduction to Basic C programming 02
Introduction to Basic C programming 02
Wingston
 
Data Structures & Algorithm design using C
Data Structures & Algorithm design using C Data Structures & Algorithm design using C
Data Structures & Algorithm design using C
Emertxe Information Technologies Pvt Ltd
 
Embedded Android : System Development - Part II (Linux device drivers)
Embedded Android : System Development - Part II (Linux device drivers)Embedded Android : System Development - Part II (Linux device drivers)
Embedded Android : System Development - Part II (Linux device drivers)
Emertxe Information Technologies Pvt Ltd
 
C notes.pdf
C notes.pdfC notes.pdf
C notes.pdf
Durga Padma
 
Linux device drivers
Linux device drivers Linux device drivers
Linux device drivers
Emertxe Information Technologies Pvt Ltd
 
pseudo code basics
pseudo code basicspseudo code basics
pseudo code basics
Sabik T S
 
Protein Structure & Function
Protein Structure & FunctionProtein Structure & Function
Protein Structure & Function
iptharis
 
Basics of C programming
Basics of C programmingBasics of C programming
Basics of C programming
avikdhupar
 
Flowchart pseudocode-examples
Flowchart pseudocode-examplesFlowchart pseudocode-examples
Flowchart pseudocode-examples
Gautam Roy
 
Pseudocode flowcharts
Pseudocode flowchartsPseudocode flowcharts
Pseudocode flowcharts
nicky_walters
 
AVR_Course_Day3 c programming
AVR_Course_Day3 c programmingAVR_Course_Day3 c programming
AVR_Course_Day3 c programming
Mohamed Ali
 
C Basics
C BasicsC Basics
C Basics
Sunil OS
 
Ad

Similar to C Programming - Refresher - Part III (20)

Pointers
PointersPointers
Pointers
Frijo Francis
 
0-Slot11-12-Pointers.pdf
0-Slot11-12-Pointers.pdf0-Slot11-12-Pointers.pdf
0-Slot11-12-Pointers.pdf
ssusere19c741
 
Python
PythonPython
Python
Sangita Panchal
 
funadamentals of python programming language (right from scratch)
funadamentals of python programming language (right from scratch)funadamentals of python programming language (right from scratch)
funadamentals of python programming language (right from scratch)
MdFurquan7
 
l7-pointers.ppt
l7-pointers.pptl7-pointers.ppt
l7-pointers.ppt
ShivamChaturvedi67
 
Programming in C sesion 2
Programming in C sesion 2Programming in C sesion 2
Programming in C sesion 2
Prerna Sharma
 
Pointers and Dynamic Memory Allocation
Pointers and Dynamic Memory AllocationPointers and Dynamic Memory Allocation
Pointers and Dynamic Memory Allocation
Rabin BK
 
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejejeUnit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
KathanPatel49
 
Dynamic Memory Allocation.pptx for c language and basic knowledge.
Dynamic Memory Allocation.pptx for c language and basic knowledge.Dynamic Memory Allocation.pptx for c language and basic knowledge.
Dynamic Memory Allocation.pptx for c language and basic knowledge.
2024163103shubham
 
ch08.ppt
ch08.pptch08.ppt
ch08.ppt
NewsMogul
 
Memory Management for C and C++ _ language
Memory Management for C and C++ _ languageMemory Management for C and C++ _ language
Memory Management for C and C++ _ language
23ecuos117
 
dynamic_v1-memory-management-in-c-cpp.ppt
dynamic_v1-memory-management-in-c-cpp.pptdynamic_v1-memory-management-in-c-cpp.ppt
dynamic_v1-memory-management-in-c-cpp.ppt
SuwoebBeisvs
 
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Dynamic Objects,Pointer to function,Array & Pointer,Character String ProcessingDynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Meghaj Mallick
 
Lecture 18 - Pointers
Lecture 18 - PointersLecture 18 - Pointers
Lecture 18 - Pointers
Md. Imran Hossain Showrov
 
Algoritmos e Estruturas de Dados - Pointers
Algoritmos e Estruturas de Dados - PointersAlgoritmos e Estruturas de Dados - Pointers
Algoritmos e Estruturas de Dados - Pointers
martijnkuipersandebo
 
Ds12 140715025807-phpapp02
Ds12 140715025807-phpapp02Ds12 140715025807-phpapp02
Ds12 140715025807-phpapp02
Salman Qamar
 
Data structures using C
Data structures using CData structures using C
Data structures using C
Pdr Patnaik
 
The best every notes on c language is here check it out
The best every notes on c language is here check it outThe best every notes on c language is here check it out
The best every notes on c language is here check it out
rajatryadav22
 
COM1407: Working with Pointers
COM1407: Working with PointersCOM1407: Working with Pointers
COM1407: Working with Pointers
Hemantha Kulathilake
 
C Programming Unit-4
C Programming Unit-4C Programming Unit-4
C Programming Unit-4
Vikram Nandini
 
0-Slot11-12-Pointers.pdf
0-Slot11-12-Pointers.pdf0-Slot11-12-Pointers.pdf
0-Slot11-12-Pointers.pdf
ssusere19c741
 
funadamentals of python programming language (right from scratch)
funadamentals of python programming language (right from scratch)funadamentals of python programming language (right from scratch)
funadamentals of python programming language (right from scratch)
MdFurquan7
 
Programming in C sesion 2
Programming in C sesion 2Programming in C sesion 2
Programming in C sesion 2
Prerna Sharma
 
Pointers and Dynamic Memory Allocation
Pointers and Dynamic Memory AllocationPointers and Dynamic Memory Allocation
Pointers and Dynamic Memory Allocation
Rabin BK
 
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejejeUnit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
Unit-4-1.pptxjtjrjfjfjfjfjfjfjfjrjrjrjrjejejeje
KathanPatel49
 
Dynamic Memory Allocation.pptx for c language and basic knowledge.
Dynamic Memory Allocation.pptx for c language and basic knowledge.Dynamic Memory Allocation.pptx for c language and basic knowledge.
Dynamic Memory Allocation.pptx for c language and basic knowledge.
2024163103shubham
 
Memory Management for C and C++ _ language
Memory Management for C and C++ _ languageMemory Management for C and C++ _ language
Memory Management for C and C++ _ language
23ecuos117
 
dynamic_v1-memory-management-in-c-cpp.ppt
dynamic_v1-memory-management-in-c-cpp.pptdynamic_v1-memory-management-in-c-cpp.ppt
dynamic_v1-memory-management-in-c-cpp.ppt
SuwoebBeisvs
 
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Dynamic Objects,Pointer to function,Array & Pointer,Character String ProcessingDynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Dynamic Objects,Pointer to function,Array & Pointer,Character String Processing
Meghaj Mallick
 
Algoritmos e Estruturas de Dados - Pointers
Algoritmos e Estruturas de Dados - PointersAlgoritmos e Estruturas de Dados - Pointers
Algoritmos e Estruturas de Dados - Pointers
martijnkuipersandebo
 
Ds12 140715025807-phpapp02
Ds12 140715025807-phpapp02Ds12 140715025807-phpapp02
Ds12 140715025807-phpapp02
Salman Qamar
 
Data structures using C
Data structures using CData structures using C
Data structures using C
Pdr Patnaik
 
The best every notes on c language is here check it out
The best every notes on c language is here check it outThe best every notes on c language is here check it out
The best every notes on c language is here check it out
rajatryadav22
 
Ad

More from Emertxe Information Technologies Pvt Ltd (20)

Career Transition (1).pdf
Career Transition (1).pdfCareer Transition (1).pdf
Career Transition (1).pdf
Emertxe Information Technologies Pvt Ltd
 
10_isxdigit.pdf
10_isxdigit.pdf10_isxdigit.pdf
10_isxdigit.pdf
Emertxe Information Technologies Pvt Ltd
 
01_student_record.pdf
01_student_record.pdf01_student_record.pdf
01_student_record.pdf
Emertxe Information Technologies Pvt Ltd
 
02_swap.pdf
02_swap.pdf02_swap.pdf
02_swap.pdf
Emertxe Information Technologies Pvt Ltd
 
01_sizeof.pdf
01_sizeof.pdf01_sizeof.pdf
01_sizeof.pdf
Emertxe Information Technologies Pvt Ltd
 
07_product_matrix.pdf
07_product_matrix.pdf07_product_matrix.pdf
07_product_matrix.pdf
Emertxe Information Technologies Pvt Ltd
 
06_sort_names.pdf
06_sort_names.pdf06_sort_names.pdf
06_sort_names.pdf
Emertxe Information Technologies Pvt Ltd
 
05_fragments.pdf
05_fragments.pdf05_fragments.pdf
05_fragments.pdf
Emertxe Information Technologies Pvt Ltd
 
04_magic_square.pdf
04_magic_square.pdf04_magic_square.pdf
04_magic_square.pdf
Emertxe Information Technologies Pvt Ltd
 
03_endianess.pdf
03_endianess.pdf03_endianess.pdf
03_endianess.pdf
Emertxe Information Technologies Pvt Ltd
 
02_variance.pdf
02_variance.pdf02_variance.pdf
02_variance.pdf
Emertxe Information Technologies Pvt Ltd
 
01_memory_manager.pdf
01_memory_manager.pdf01_memory_manager.pdf
01_memory_manager.pdf
Emertxe Information Technologies Pvt Ltd
 
09_nrps.pdf
09_nrps.pdf09_nrps.pdf
09_nrps.pdf
Emertxe Information Technologies Pvt Ltd
 
11_pangram.pdf
11_pangram.pdf11_pangram.pdf
11_pangram.pdf
Emertxe Information Technologies Pvt Ltd
 
10_combinations.pdf
10_combinations.pdf10_combinations.pdf
10_combinations.pdf
Emertxe Information Technologies Pvt Ltd
 
08_squeeze.pdf
08_squeeze.pdf08_squeeze.pdf
08_squeeze.pdf
Emertxe Information Technologies Pvt Ltd
 
07_strtok.pdf
07_strtok.pdf07_strtok.pdf
07_strtok.pdf
Emertxe Information Technologies Pvt Ltd
 
06_reverserec.pdf
06_reverserec.pdf06_reverserec.pdf
06_reverserec.pdf
Emertxe Information Technologies Pvt Ltd
 
05_reverseiter.pdf
05_reverseiter.pdf05_reverseiter.pdf
05_reverseiter.pdf
Emertxe Information Technologies Pvt Ltd
 

Recently uploaded (20)

GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Microsoft Excel Parts Presentation.pdf
The Microsoft Excel Parts Presentation.pdfThe Microsoft Excel Parts Presentation.pdf
The Microsoft Excel Parts Presentation.pdf
YvonneRoseEranista
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Microsoft Excel Parts Presentation.pdf
The Microsoft Excel Parts Presentation.pdfThe Microsoft Excel Parts Presentation.pdf
The Microsoft Excel Parts Presentation.pdf
YvonneRoseEranista
 

C Programming - Refresher - Part III

  • 1. Embedded C – Part III Pointers Team Emertxe
  • 2. Pointers : Sharp Knives Handle with Care!
  • 3. Pointers : Why ● To have C as a low level language being a high level language. ● To have the dynamic allocation mechanism. ● To achieve the similar results as of ”pass by variable” parameter passing mechanism in function, by passing the reference. ● Returning more than one value in a function.
  • 5. Rule #1 Pointer as a integer variable Example Syntax dataType *pointer_name; Pictorial Representation 10 a 100 100 200 p DIY: Declare the float pointer & assign the address of float variable
  • 6. Rule #2 Referencing & Dereferencing Example DIY: Print the value of double using the pointer. Variable Address Referencing De-Referencing & *
  • 7. Rule #3 Type of a pointer All pointers are of same size. l Pointer of type t t Pointer (t *) A variable which contains an≡ ≡ ≡ address,which when dereferenced becomes a variable of type t
  • 8. Rule #4 Value of a pointer Example Pictorial Representation 10 a 100 100 200 p Pointing means Containing l Pointer pointing to a variable ≡ l Pointer contains the address of the variable
  • 9. Rule #5 NULL pointer Example Pictorial Representation NULL 200 p Not pointing to anywhere l Pointer Value of zero Null Addr NULL≡ ≡ pointer Pointing to nothing≡
  • 10. Segmentation fault A segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed. Example Fault occurs, while attempting to write to a read-only location, or to overwrite part of the operating system
  • 11. Bus error A bus error is a fault raised by hardware, notifying an operating system (OS) that a process is trying to access memory that the CPU cannot physically address: an invalid address for the address bus, hence the name. Example DIY: Write a similar code which creates bus error
  • 12. Rule #6: Arithmetic Operations with Pointers & Arrays l value(p + i) value(p) + value(i) * sizeof(*p)≡ l Array Collection of variables vs Constant pointer variable→ l short sa[10]; l &sa Address of the array variable→ l sa[0] First element→ l &sa[0] Address of the first array element→ l sa Constant pointer variable→ l Arrays vs Pointers l Commutative use l (a + i) i + a &a[i] &i[a]≡ ≡ ≡ l *(a + i) *(i + a) a[i] i[a]≡ ≡ ≡ l constant vs variable
  • 13. Rule #7: Static & Dynamic Allocation l Static Allocation Named Allocation -≡ l Compiler’s responsibility to manage it – Done internally by compiler, l when variables are defined l Dynamic Allocation Unnamed Allocation -≡ l User’s responsibility to manage it – Done using malloc & free l Differences at program segment level l Defining variables (data & stack segmant) vs Getting & giving it from l the heap segment using malloc & free l int x, int *xp, *ip; l xp = &x; l ip = (int*)(malloc(sizeof(int)));
  • 16. Pointers : Simple data Types l 'A' 100 101 102 104 105 . . . 100 chcptr 200 'A' 100 101 102 104 105 . . . 100 chcptr 200 100 101 102 104 105 . . . 100 iiptr 200
  • 17. Pointers : Compound data Types Example: Arrays & Strings (1D arrays) int age[ 5 ] = {10, 20, 30, 40, 50}; int *p = age; Memory Allocation 10 20 30 40 50 age[0] age[4] age[3] age[2] age[1] 100 104 108 112 116  DIY : Write a program to add all the elements of the array. 100 p age[i] ≡ *(age + i) i[age] ≡ *(i + age) ≡ ≡ age[2] = *(age + 2) = *(age + 2 * sizeof(int)) = *(age + 2 * 4) = *(100 + 2 * 4) = *(108) = 30 = *(p + 2) = p[2]
  • 18. Pointers : Compound data Types Example: Arrays & Strings (2D arrays) int a[ 3 ][ 2 ] = {10, 20, 30, 40, 50, 60}; int ( * p) [ 2 ] = a; Memory Allocation p 10 20 30 40 50 60
  • 19. Pointers : Compound data Types Example: Arrays & Strings (2D arrays) int a[ 3 ][ 2 ] = {10, 20, 30, 40, 50, 60}; int ( * p) [ 2 ] = a;  DIY : Write a program to print all the elements of the  2D array. a[2][1] = *(*(age + 2) + 1) = *(*(a + 2 * sizeof(1D array)) + 1 * sizeof(int)) = *(*(a + 2 * 8) + 1 * 4) = *(*(100 + 2 * 8) + 4) = *(*(108) + 4) = *(108 + 4) = *(112) = 40 = p[2][1] In general : a[i][j] ≡ *(a[i] + j) ≡ *(*(a + i) + j) ≡ (*(a + i))[j] ≡ j[a[i]] ≡ j[i[a]] ≡ j[*(a + i)]
  • 20. Dynamic Memory Allocation l In C functions for dynamic memory allocation functions are l declared in the header file <stdlib.h>. l In some implementations, it might also be provided l in <alloc.h> or <malloc.h>. ● malloc ● calloc ● realloc ● free
  • 21. Malloc l The malloc function allocates a memory block of size size from dynamic l memory and returns pointer to that block if free space is available, other l wise it returns a null pointer. l Prototype l void *malloc(size_t size);
  • 22. calloc l The calloc function returns the memory (all initialized to zero) l so may be handy to you if you want to make sure that the memory l is properly initialized. l calloc can be considered as to be internally implemented using l malloc (for allocating the memory dynamically) and later initialize l the memory block (with the function, say, memset()) to initialize it to zero. l Prototype l void *calloc(size_t n, size_t size);
  • 23. Realloc l The function realloc has the following capabilities l 1. To allocate some memory (if p is null, and size is non-zero, l then it is same as malloc(size)), l 2. To extend the size of an existing dynamically allocated block l (if size is bigger than the existing size of the block pointed by p), l 3. To shrink the size of an existing dynamically allocated block l (if size is smaller than the existing size of the block pointed by p), l 4. To release memory (if size is 0 and p is not NULL l then it acts like free(p)). l Prototype l void *realloc(void *ptr, size_t size);
  • 24. free l The free function assumes that the argument given is a pointer to the memory l that is to be freed and performs no heck to verify that memory has already l been allocated. l 1. if free() is called on a null pointer, nothing happens. l 2. if free() is called on pointer pointing to block other l than the one allocated by dynamic allocation, it will lead to l undefined behavior. l 3. if free() is called with invalid argument that may collapse l the memory management mechanism. l 4. if free() is not called on the dynamically allocated memory block l after its use, it will lead to memory leaks. l Prototype l void free(void *ptr);
  • 25. 2D Arrays Each Dimension could be static or Dynamic Various combinations for 2-D Arrays (2x2 = 4) • C1: Both Static (Rectangular) • C2: First Static, Second Dynamic • C3: First Dynamic, Second Static • C4: Both Dynamic 2-D Arrays using a Single Level Pointer
  • 26. C1: Both static Rectangular array int rec [5][6]; Takes totally 5 * 6 * sizeof(int) bytes Static Static
  • 27. C2: First static, Second dynamic  One dimension static, one dynamic (Mix of Rectangular & Ragged) int *ra[5]; for( i = 0; i < 5; i++) ra[i] = (int*) malloc( 6 * sizeof(int)); Total memory used : 5 * sizeof(int *) + 6 * 5 * sizeof(int) bytes Static Dynamic
  • 28. C2: First static, Second dynamic  One dimension static, one dynamic (Mix of Rectangular & Ragged) int *ra[5]; for( i = 0; i < 5; i++) ra[i] = (int*) malloc( 6 * sizeof(int)); Total memory used : 5 * sizeof(int *) + 6 * 5 * sizeof(int) bytes Static Dynamic
  • 29. C3: Second static, First dynamic One static, One dynamic int (*ra)[6]; (Pointer to array of 6 integer) ra = (int(*)[6]) malloc( 5 * sizeof(int[6])); Total memory used : sizeof(int *) + 6 * 5 * sizeof(int) bytes Static ra
  • 30. C4: Both dynamic Ragged array int **ra; ra = (int **) malloc (5 * sizeof(int*)); for(i = 0; i < 5; i++) ra[i] = (int*) malloc( 6 * sizeof(int)); Takes 5 * sizeof(int*) for first level of indirection Total memory used : 1 * sizeof(int **) + 5 * sizeof(int *) + 5 * 6 * sizeof(int) bytes ra[0] ra[1] ra[2] ra[3] ra[4] ra
  • 32. Function pointers : Why l ● Chunk of code that can be called independently and is standalone ● Independent code that can be used to iterate over a collection of objects ● Event management which is essentially asynchronous where there may be several objects that may be interested in ”Listening” such an event ● ”Registering” a piece of code and calling it later when required.
  • 33. Function Pointers: Declaration Syntax return_type (*ptr_name)(type1, type2, type3, ...) Example float (*fp)( int ); Description: fp is a pointer that can point to any function that returns a float value and accepts an int as an argument.
  • 36. Function Pointers: More examples ● The bsearch function in the standard header file <stdlib.h> void *bsearch(void *key, void *base, size_t num, size_t width, int (*compare)(void *elem1, void *elem2)); ● The last parameter is a function pointer. ● It points to a function that can compare two elements (of the sorted array, pointed by base) and return an int as a result. ● This serves as general method for the usage of function pointers. The bsearch function does not know anything about the elements in the array and so it cannot decide how to compare the elements in the array. ● To make a decision on this, we should have a separately function for it and pass it to bsearch. ● Whenever bsearch needs to compare, it will call this function to do it. This is a simple usage of function pointers as callback methods.
  • 37. Function Pointers: More examples ● Function pointers can be registered & can be called when the program exits Output ?
  • 38. Stay connected About us: Emertxe is India’s one of the top IT finishing schools & self learning kits provider. Our primary focus is on Embedded with diversification focus on Java, Oracle and Android areas Branch Office: Corporate Headquarters: Emertxe Information Technologies, Emertxe Information Technologies, No-1, 9th Cross, 5th Main, 83, Farah Towers, 1st Floor, Jayamahal Extension, MG Road, Bangalore, Karnataka 560046 Bangalore, Karnataka - 560001 T: +91 809 555 7333 (M), +91 80 41289576 (L) E: [email protected] https://www.facebook.com/Emertxe https://twitter.com/EmertxeTweet https://www.slideshare.net/EmertxeSlides