SlideShare a Scribd company logo
Cassandra
Introduction & Key Features
Meetup Vienna Cassandra Users
13th of January 2014
philipp.potisk@geroba.com
Definition
Apache Cassandra is an open source, distributed,
decentralized, elastically scalable, highly available,
fault-tolerant, tuneably consistent, column-oriented
database that bases its distribution design on Amazon’s
Dynamo and its data model on Google’s Bigtable.
Created at Facebook, it is now used at some of the most
popular sites on the Web [The Definitive Guide, Eben
Hewitt, 2010]
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

2
History
Dynamo, 2007

Bigtable, 2006

OpenSource, 2008

13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

3
Key Features

Distributed
and
Decentralized
High Performance

CQL – A SQL
like query
interface

Elastic
Scalability

Cassandra

Columnoriented
Key-Value
store
13/01/2014

High
Availability
and Fault
Tolerance

Tuneable
Consistency

Cassandra Introduction & Key Features by Philipp Potisk

4
Distributed and Decentralized
Datacenter 1

• Distributed: Capable of running
on multiple machines
• Decentralized: No single point of
failure
No master-slave issues due to
peer-to-peer architecture
(protocol "gossip")
Single Cassandra cluster may run
across geographically dispersed
data centers
13/01/2014

Datacenter 2

1

7

6

2

5

3

4

12

8

11

9
10

Read- and writerequests to any node

Cassandra Introduction & Key Features by Philipp Potisk

5
Elastic Scalability

1
8

1

• Cassandra scales horizontally,
adding more machines that have
all or some of the data on
• Adding of nodes increase
performance throughput linearly
• De-/ and increasing the
nodecount happen seamlessly

4 Performance
2
throughput = N
3

2

Performance
throughput = N x 2

7

4

6
5

Linearly scales to
terabytes and
petabytes of data
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

3

6
Scaling Benchmark By Netflix*
48, 96, 144 and 288
instances, with 10, 20,
30 and 60 clients
respectively. Each client
generated ~20.000w/s
having 400byte in size

Cassandra scales linearly far
beyond our current capacity
requirements, and very
rapid deployment
automation makes it easy to
manage. In particular,
benchmarking in the cloud
is fast, cheap and scalable,

*http://techblog.netflix.com/201
1/11/benchmarking-cassandrascalability-on.html
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

7
High Availability and Fault Tolerance
• High Availability?
Multiple networked computers
operating in a cluster
Facility for recognizing node
failures
Forward failing over requests to
another part of the system

1
6

2

5

3
4

• Cassandra has High Availability

No single point of failure
due to the peer-to-peer
architecture
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

8
Tunable Consistency
• Choose between strong and eventual
consistency
• Adjustable for read- and writeoperations separately
• Conflicts are solved during reads, as
focus lies on write-performance

TUNABLE

Available

Consistency

Use case dependent
level of consistency
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

9
When do we have strong consistency?
• Simple Formula:

jsmith

(nodes_written + nodes_read) >
replication_factor
jsmith

t1
t2

NW: 2
NR: 2
RF: 3

t1
t2

jsmith

t1

• Ensures that a read always
reflects the most recent write
• If not: Weak consistency
 Eventually consistent
jsmith

13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

t2
10
Column-oriented Key-Value Store
Row Key1

Column
Key1
Column
Value1

Column
Key2
Column
Value2

Column
Key3
Column
Value3

…
…

…

• Data is stored in sparse
multidimensional hash tables
• A row can have multiple columns –
not necessarily the same amount of
columns for each row
• Each row has a unique key, which
also determines partitioning
• No relations!

Stored sorted by row key *

Stored sorted by column key/value

Map<RowKey, SortedMap<ColumnKey, ColumnValue>>
* Row keys (partition keys) should be hashed, in order to distribute data across the cluster evenly
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

11
CQL – An SQL-like query interface
• “CQL 3 is the default and primary interface into the Cassandra DBMS” *
• Familiar SQL-like syntax that maps to Cassandras storage engine and
simplifies data modelling
CRETE TABLE songs (
id uuid PRIMARY KEY,
title text,
album text,
artist text,
data blob,
tags set<text>
);

INSERT INTO songs
(id, title, artist,
album, tags)
VALUES(
'a3e64f8f...',
'La Grange',
'ZZ Top',
'Tres Hombres'‚
{'cool', 'hot'});

SELECT *
FROM songs
WHERE id = 'a3e64f8f...';

“SQL-like” but NOT
relational SQL

* http://www.datastax.com/documentation/cql/3.0/pdf/cql30.pdf
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

12
High Performance
• Optimized from the ground up
for high throughput
• All disk writes are sequential,
append only operations
• No reading before writing
• Cassandra`s threading-concept is
optimized for running on
multiprocessor/ multicore
machines
13/01/2014

Optimized for writing,
but fast reads are
possible as well

Cassandra Introduction & Key Features by Philipp Potisk

13
Benchmark from 2011 (Cassandra 0.7.4)*
ops
Cassandra showed
outstanding throughput in
“INSERT-only” with 20,000
ops

Insert: Enter 50 million 1K-sized records
Read: Search key for a one hour period + optional update
Hardware: Nehalem 6 Core x 2 CPU, 16GB Memory
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

*NoSql Benchmarking by Curbit
http://www.cubrid.org/blog/de
v-platform/nosqlbenchmarking/
14
Benchmark from 2013 (Cassandra 1.1.6)*

* Benchmarking Top NoSQL Databases by End Point Corporation,
http://www.datastax.com/wp-content/uploads/2013/02/WP-Benchmarking-Top-NoSQL-Databases.pdf
Yahoo! Cloud Serving Benchmark: https://github.com/brianfrankcooper/YCSB
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

15
When do we need these features?
Lots of
Writes,
Statistics, and
Analysis

Geographical
Distribution

Large
Deployments

13/01/2014

Evolving
Applications

Cassandra Introduction & Key Features by Philipp Potisk

16
Who is using Cassandra?

13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

17
ebay Data Infrastructure*
•
•
•
•
•
•

Thousands of nodes
> 2K sharded logical host
> 16K tables
> 27K indexes
> 140 billion SQLs/day
> 5 PB provisioned

• 10+ clusters
• 100+ nodes
• > 250 TB provisioned
(local HDD + shared SSD)
• > 9 billion writes/day
• > 5 billion reads/day

• Hundreds of nodes
• Persistent & in-memory
• > 40 billion SQLs/day

Not replacing RDMBS but
complementing!

Hundreds of nodes
> 50 TB
> 2 billion ops/day

• Thousands of nodes
• The world largest cluster
with 2K+ nodes

*by Jay Patel, Cassandra Summit June 2013 San Francisco
13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

18
Cassandra Use Case at Ebay
Application/Use Case
• Time-series data and real-time insights
• Fraud detection & prevention
• Quality Click Pricing for affiliates
• Order & Shipment Tracking
•…
• Server metrics collection
• Taste graph-based next-gen recommendation
system
• Social Signals on eBay Product & Item pages
13/01/2014

Why Cassandra?
• Multi-Datacenter (active-active)
• No SPOF
• Easy to scale
• Write performance
• Distributed Counters

Cassandra Introduction & Key Features by Philipp Potisk

19
Cassandra/Hadoop Deployment

13/01/2014

Cassandra Introduction & Key Features by Philipp Potisk

20
Summary
• History
• Key features of Cassandra
•
•
•
•
•
•
•

Distributed and Decentralized
Elastic Scalability
High Availability and Fault Tolerance
Tunable Consistency
Column-oriented key-value store
CQL interface
High Performance

• Ebay Use Case
13/01/2014

Apache project: http://cassandra.apache.org

Community portal: http://planetcassandra.org

Documentation: http://www.datastax.com/docs

Cassandra Introduction & Key Features by Philipp Potisk

21
Ad

More Related Content

What's hot (20)

Introduction to Storm
Introduction to Storm Introduction to Storm
Introduction to Storm
Chandler Huang
 
MyRocks Deep Dive
MyRocks Deep DiveMyRocks Deep Dive
MyRocks Deep Dive
Yoshinori Matsunobu
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
Yoshinori Matsunobu
 
Big Data in Real-Time at Twitter
Big Data in Real-Time at TwitterBig Data in Real-Time at Twitter
Big Data in Real-Time at Twitter
nkallen
 
Apache ZooKeeper
Apache ZooKeeperApache ZooKeeper
Apache ZooKeeper
Scott Leberknight
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
enissoz
 
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of FacebookTech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
Kafka 101
Kafka 101Kafka 101
Kafka 101
Clement Demonchy
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSA
Srikrupa Srivatsan
 
Stability Patterns for Microservices
Stability Patterns for MicroservicesStability Patterns for Microservices
Stability Patterns for Microservices
pflueras
 
MySQL Administrator 2021 - 네오클로바
MySQL Administrator 2021 - 네오클로바MySQL Administrator 2021 - 네오클로바
MySQL Administrator 2021 - 네오클로바
NeoClova
 
Maria db 이중화구성_고민하기
Maria db 이중화구성_고민하기Maria db 이중화구성_고민하기
Maria db 이중화구성_고민하기
NeoClova
 
MySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docxMySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docx
NeoClova
 
MongoDB Fundamentals
MongoDB FundamentalsMongoDB Fundamentals
MongoDB Fundamentals
MongoDB
 
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadinC* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
DataStax Academy
 
Maxscale 소개 1.1.1
Maxscale 소개 1.1.1Maxscale 소개 1.1.1
Maxscale 소개 1.1.1
NeoClova
 
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Severalnines
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
Introduction to Storm
Introduction to Storm Introduction to Storm
Introduction to Storm
Chandler Huang
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
Yoshinori Matsunobu
 
Big Data in Real-Time at Twitter
Big Data in Real-Time at TwitterBig Data in Real-Time at Twitter
Big Data in Real-Time at Twitter
nkallen
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
enissoz
 
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of FacebookTech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSA
Srikrupa Srivatsan
 
Stability Patterns for Microservices
Stability Patterns for MicroservicesStability Patterns for Microservices
Stability Patterns for Microservices
pflueras
 
MySQL Administrator 2021 - 네오클로바
MySQL Administrator 2021 - 네오클로바MySQL Administrator 2021 - 네오클로바
MySQL Administrator 2021 - 네오클로바
NeoClova
 
Maria db 이중화구성_고민하기
Maria db 이중화구성_고민하기Maria db 이중화구성_고민하기
Maria db 이중화구성_고민하기
NeoClova
 
MySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docxMySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docx
NeoClova
 
MongoDB Fundamentals
MongoDB FundamentalsMongoDB Fundamentals
MongoDB Fundamentals
MongoDB
 
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadinC* Summit 2013: The World's Next Top Data Model by Patrick McFadin
C* Summit 2013: The World's Next Top Data Model by Patrick McFadin
DataStax Academy
 
Maxscale 소개 1.1.1
Maxscale 소개 1.1.1Maxscale 소개 1.1.1
Maxscale 소개 1.1.1
NeoClova
 
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Galera Cluster for MySQL vs MySQL (NDB) Cluster: A High Level Comparison
Severalnines
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 

Viewers also liked (8)

Apache Cassandra Developer Training Slide Deck
Apache Cassandra Developer Training Slide DeckApache Cassandra Developer Training Slide Deck
Apache Cassandra Developer Training Slide Deck
DataStax Academy
 
Cassandra Tutorial
Cassandra TutorialCassandra Tutorial
Cassandra Tutorial
mubarakss
 
Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3
Eric Evans
 
Cassandra NoSQL Tutorial
Cassandra NoSQL TutorialCassandra NoSQL Tutorial
Cassandra NoSQL Tutorial
Michelle Darling
 
facebook architecture for 600M users
facebook architecture for 600M usersfacebook architecture for 600M users
facebook architecture for 600M users
Jongyoon Choi
 
NoSQL Essentials: Cassandra
NoSQL Essentials: CassandraNoSQL Essentials: Cassandra
NoSQL Essentials: Cassandra
Fernando Rodriguez
 
An Overview of Apache Cassandra
An Overview of Apache CassandraAn Overview of Apache Cassandra
An Overview of Apache Cassandra
DataStax
 
Cassandra Explained
Cassandra ExplainedCassandra Explained
Cassandra Explained
Eric Evans
 
Apache Cassandra Developer Training Slide Deck
Apache Cassandra Developer Training Slide DeckApache Cassandra Developer Training Slide Deck
Apache Cassandra Developer Training Slide Deck
DataStax Academy
 
Cassandra Tutorial
Cassandra TutorialCassandra Tutorial
Cassandra Tutorial
mubarakss
 
Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3Cassandra By Example: Data Modelling with CQL3
Cassandra By Example: Data Modelling with CQL3
Eric Evans
 
facebook architecture for 600M users
facebook architecture for 600M usersfacebook architecture for 600M users
facebook architecture for 600M users
Jongyoon Choi
 
An Overview of Apache Cassandra
An Overview of Apache CassandraAn Overview of Apache Cassandra
An Overview of Apache Cassandra
DataStax
 
Cassandra Explained
Cassandra ExplainedCassandra Explained
Cassandra Explained
Eric Evans
 
Ad

Similar to Cassandra Introduction & Features (20)

NoSQL_Night
NoSQL_NightNoSQL_Night
NoSQL_Night
Clarence J M Tauro
 
BigData Developers MeetUp
BigData Developers MeetUpBigData Developers MeetUp
BigData Developers MeetUp
Christian Johannsen
 
5 Factors When Selecting a High Performance, Low Latency Database
5 Factors When Selecting a High Performance, Low Latency Database5 Factors When Selecting a High Performance, Low Latency Database
5 Factors When Selecting a High Performance, Low Latency Database
ScyllaDB
 
Sa introduction to big data pipelining with cassandra &amp; spark west mins...
Sa introduction to big data pipelining with cassandra &amp; spark   west mins...Sa introduction to big data pipelining with cassandra &amp; spark   west mins...
Sa introduction to big data pipelining with cassandra &amp; spark west mins...
Simon Ambridge
 
Database as a Service on the Oracle Database Appliance Platform
Database as a Service on the Oracle Database Appliance PlatformDatabase as a Service on the Oracle Database Appliance Platform
Database as a Service on the Oracle Database Appliance Platform
Maris Elsins
 
Appache Cassandra
Appache Cassandra  Appache Cassandra
Appache Cassandra
nehabsairam
 
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Fwdays
 
Cassandra for mission critical data
Cassandra for mission critical dataCassandra for mission critical data
Cassandra for mission critical data
Oleksandr Semenov
 
DBaaS - The Next generation of database infrastructure
DBaaS - The Next generation of database infrastructureDBaaS - The Next generation of database infrastructure
DBaaS - The Next generation of database infrastructure
Emiliano Fusaglia
 
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ? Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Swiss Data Forum Swiss Data Forum
 
NoSQL Intro with cassandra
NoSQL Intro with cassandraNoSQL Intro with cassandra
NoSQL Intro with cassandra
Brian Enochson
 
cassandra_presentation_final
cassandra_presentation_finalcassandra_presentation_final
cassandra_presentation_final
SergioBruno21
 
Cassandra
Cassandra Cassandra
Cassandra
Pooja GV
 
Unit -3 _Cassandra-CRUD Operations_Practice Examples
Unit -3 _Cassandra-CRUD Operations_Practice ExamplesUnit -3 _Cassandra-CRUD Operations_Practice Examples
Unit -3 _Cassandra-CRUD Operations_Practice Examples
chayapathiar1
 
Unit -3 -Features of Cassandra, CQL Data types, CQLSH, Keyspaces
Unit -3 -Features of Cassandra, CQL Data types,  CQLSH, KeyspacesUnit -3 -Features of Cassandra, CQL Data types,  CQLSH, Keyspaces
Unit -3 -Features of Cassandra, CQL Data types, CQLSH, Keyspaces
ssuser9d6aac
 
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
TupleJump: Breakthrough OLAP performance on Cassandra and SparkTupleJump: Breakthrough OLAP performance on Cassandra and Spark
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
DataStax Academy
 
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and SparkFiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
Evan Chan
 
Cassandra - A Basic Introduction Guide
Cassandra - A Basic Introduction GuideCassandra - A Basic Introduction Guide
Cassandra - A Basic Introduction Guide
Mohammed Fazuluddin
 
Breakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and SparkBreakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and Spark
Evan Chan
 
BI, Reporting and Analytics on Apache Cassandra
BI, Reporting and Analytics on Apache CassandraBI, Reporting and Analytics on Apache Cassandra
BI, Reporting and Analytics on Apache Cassandra
Victor Coustenoble
 
5 Factors When Selecting a High Performance, Low Latency Database
5 Factors When Selecting a High Performance, Low Latency Database5 Factors When Selecting a High Performance, Low Latency Database
5 Factors When Selecting a High Performance, Low Latency Database
ScyllaDB
 
Sa introduction to big data pipelining with cassandra &amp; spark west mins...
Sa introduction to big data pipelining with cassandra &amp; spark   west mins...Sa introduction to big data pipelining with cassandra &amp; spark   west mins...
Sa introduction to big data pipelining with cassandra &amp; spark west mins...
Simon Ambridge
 
Database as a Service on the Oracle Database Appliance Platform
Database as a Service on the Oracle Database Appliance PlatformDatabase as a Service on the Oracle Database Appliance Platform
Database as a Service on the Oracle Database Appliance Platform
Maris Elsins
 
Appache Cassandra
Appache Cassandra  Appache Cassandra
Appache Cassandra
nehabsairam
 
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Виталий Бондаренко "Fast Data Platform for Real-Time Analytics. Architecture ...
Fwdays
 
Cassandra for mission critical data
Cassandra for mission critical dataCassandra for mission critical data
Cassandra for mission critical data
Oleksandr Semenov
 
DBaaS - The Next generation of database infrastructure
DBaaS - The Next generation of database infrastructureDBaaS - The Next generation of database infrastructure
DBaaS - The Next generation of database infrastructure
Emiliano Fusaglia
 
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ? Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Swiss Data Forum Swiss Data Forum
 
NoSQL Intro with cassandra
NoSQL Intro with cassandraNoSQL Intro with cassandra
NoSQL Intro with cassandra
Brian Enochson
 
cassandra_presentation_final
cassandra_presentation_finalcassandra_presentation_final
cassandra_presentation_final
SergioBruno21
 
Cassandra
Cassandra Cassandra
Cassandra
Pooja GV
 
Unit -3 _Cassandra-CRUD Operations_Practice Examples
Unit -3 _Cassandra-CRUD Operations_Practice ExamplesUnit -3 _Cassandra-CRUD Operations_Practice Examples
Unit -3 _Cassandra-CRUD Operations_Practice Examples
chayapathiar1
 
Unit -3 -Features of Cassandra, CQL Data types, CQLSH, Keyspaces
Unit -3 -Features of Cassandra, CQL Data types,  CQLSH, KeyspacesUnit -3 -Features of Cassandra, CQL Data types,  CQLSH, Keyspaces
Unit -3 -Features of Cassandra, CQL Data types, CQLSH, Keyspaces
ssuser9d6aac
 
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
TupleJump: Breakthrough OLAP performance on Cassandra and SparkTupleJump: Breakthrough OLAP performance on Cassandra and Spark
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
DataStax Academy
 
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and SparkFiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
Evan Chan
 
Cassandra - A Basic Introduction Guide
Cassandra - A Basic Introduction GuideCassandra - A Basic Introduction Guide
Cassandra - A Basic Introduction Guide
Mohammed Fazuluddin
 
Breakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and SparkBreakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and Spark
Evan Chan
 
BI, Reporting and Analytics on Apache Cassandra
BI, Reporting and Analytics on Apache CassandraBI, Reporting and Analytics on Apache Cassandra
BI, Reporting and Analytics on Apache Cassandra
Victor Coustenoble
 
Ad

More from DataStax Academy (20)

Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Coursera Cassandra Driver
Coursera Cassandra DriverCoursera Cassandra Driver
Coursera Cassandra Driver
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Introduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache CassandraIntroduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache Cassandra
DataStax Academy
 
Cassandra Core Concepts
Cassandra Core ConceptsCassandra Core Concepts
Cassandra Core Concepts
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Bad Habits Die Hard
Bad Habits Die Hard Bad Habits Die Hard
Bad Habits Die Hard
DataStax Academy
 
Advanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache CassandraAdvanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache Cassandra
DataStax Academy
 
Advanced Cassandra
Advanced CassandraAdvanced Cassandra
Advanced Cassandra
DataStax Academy
 
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Introduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache CassandraIntroduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache Cassandra
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Advanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache CassandraAdvanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache Cassandra
DataStax Academy
 

Recently uploaded (20)

Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 

Cassandra Introduction & Features

  • 1. Cassandra Introduction & Key Features Meetup Vienna Cassandra Users 13th of January 2014 [email protected]
  • 2. Definition Apache Cassandra is an open source, distributed, decentralized, elastically scalable, highly available, fault-tolerant, tuneably consistent, column-oriented database that bases its distribution design on Amazon’s Dynamo and its data model on Google’s Bigtable. Created at Facebook, it is now used at some of the most popular sites on the Web [The Definitive Guide, Eben Hewitt, 2010] 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 2
  • 3. History Dynamo, 2007 Bigtable, 2006 OpenSource, 2008 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 3
  • 4. Key Features Distributed and Decentralized High Performance CQL – A SQL like query interface Elastic Scalability Cassandra Columnoriented Key-Value store 13/01/2014 High Availability and Fault Tolerance Tuneable Consistency Cassandra Introduction & Key Features by Philipp Potisk 4
  • 5. Distributed and Decentralized Datacenter 1 • Distributed: Capable of running on multiple machines • Decentralized: No single point of failure No master-slave issues due to peer-to-peer architecture (protocol "gossip") Single Cassandra cluster may run across geographically dispersed data centers 13/01/2014 Datacenter 2 1 7 6 2 5 3 4 12 8 11 9 10 Read- and writerequests to any node Cassandra Introduction & Key Features by Philipp Potisk 5
  • 6. Elastic Scalability 1 8 1 • Cassandra scales horizontally, adding more machines that have all or some of the data on • Adding of nodes increase performance throughput linearly • De-/ and increasing the nodecount happen seamlessly 4 Performance 2 throughput = N 3 2 Performance throughput = N x 2 7 4 6 5 Linearly scales to terabytes and petabytes of data 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 3 6
  • 7. Scaling Benchmark By Netflix* 48, 96, 144 and 288 instances, with 10, 20, 30 and 60 clients respectively. Each client generated ~20.000w/s having 400byte in size Cassandra scales linearly far beyond our current capacity requirements, and very rapid deployment automation makes it easy to manage. In particular, benchmarking in the cloud is fast, cheap and scalable, *http://techblog.netflix.com/201 1/11/benchmarking-cassandrascalability-on.html 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 7
  • 8. High Availability and Fault Tolerance • High Availability? Multiple networked computers operating in a cluster Facility for recognizing node failures Forward failing over requests to another part of the system 1 6 2 5 3 4 • Cassandra has High Availability No single point of failure due to the peer-to-peer architecture 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 8
  • 9. Tunable Consistency • Choose between strong and eventual consistency • Adjustable for read- and writeoperations separately • Conflicts are solved during reads, as focus lies on write-performance TUNABLE Available Consistency Use case dependent level of consistency 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 9
  • 10. When do we have strong consistency? • Simple Formula: jsmith (nodes_written + nodes_read) > replication_factor jsmith t1 t2 NW: 2 NR: 2 RF: 3 t1 t2 jsmith t1 • Ensures that a read always reflects the most recent write • If not: Weak consistency  Eventually consistent jsmith 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk t2 10
  • 11. Column-oriented Key-Value Store Row Key1 Column Key1 Column Value1 Column Key2 Column Value2 Column Key3 Column Value3 … … … • Data is stored in sparse multidimensional hash tables • A row can have multiple columns – not necessarily the same amount of columns for each row • Each row has a unique key, which also determines partitioning • No relations! Stored sorted by row key * Stored sorted by column key/value Map<RowKey, SortedMap<ColumnKey, ColumnValue>> * Row keys (partition keys) should be hashed, in order to distribute data across the cluster evenly 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 11
  • 12. CQL – An SQL-like query interface • “CQL 3 is the default and primary interface into the Cassandra DBMS” * • Familiar SQL-like syntax that maps to Cassandras storage engine and simplifies data modelling CRETE TABLE songs ( id uuid PRIMARY KEY, title text, album text, artist text, data blob, tags set<text> ); INSERT INTO songs (id, title, artist, album, tags) VALUES( 'a3e64f8f...', 'La Grange', 'ZZ Top', 'Tres Hombres'‚ {'cool', 'hot'}); SELECT * FROM songs WHERE id = 'a3e64f8f...'; “SQL-like” but NOT relational SQL * http://www.datastax.com/documentation/cql/3.0/pdf/cql30.pdf 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 12
  • 13. High Performance • Optimized from the ground up for high throughput • All disk writes are sequential, append only operations • No reading before writing • Cassandra`s threading-concept is optimized for running on multiprocessor/ multicore machines 13/01/2014 Optimized for writing, but fast reads are possible as well Cassandra Introduction & Key Features by Philipp Potisk 13
  • 14. Benchmark from 2011 (Cassandra 0.7.4)* ops Cassandra showed outstanding throughput in “INSERT-only” with 20,000 ops Insert: Enter 50 million 1K-sized records Read: Search key for a one hour period + optional update Hardware: Nehalem 6 Core x 2 CPU, 16GB Memory 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk *NoSql Benchmarking by Curbit http://www.cubrid.org/blog/de v-platform/nosqlbenchmarking/ 14
  • 15. Benchmark from 2013 (Cassandra 1.1.6)* * Benchmarking Top NoSQL Databases by End Point Corporation, http://www.datastax.com/wp-content/uploads/2013/02/WP-Benchmarking-Top-NoSQL-Databases.pdf Yahoo! Cloud Serving Benchmark: https://github.com/brianfrankcooper/YCSB 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 15
  • 16. When do we need these features? Lots of Writes, Statistics, and Analysis Geographical Distribution Large Deployments 13/01/2014 Evolving Applications Cassandra Introduction & Key Features by Philipp Potisk 16
  • 17. Who is using Cassandra? 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 17
  • 18. ebay Data Infrastructure* • • • • • • Thousands of nodes > 2K sharded logical host > 16K tables > 27K indexes > 140 billion SQLs/day > 5 PB provisioned • 10+ clusters • 100+ nodes • > 250 TB provisioned (local HDD + shared SSD) • > 9 billion writes/day • > 5 billion reads/day • Hundreds of nodes • Persistent & in-memory • > 40 billion SQLs/day Not replacing RDMBS but complementing! Hundreds of nodes > 50 TB > 2 billion ops/day • Thousands of nodes • The world largest cluster with 2K+ nodes *by Jay Patel, Cassandra Summit June 2013 San Francisco 13/01/2014 Cassandra Introduction & Key Features by Philipp Potisk 18
  • 19. Cassandra Use Case at Ebay Application/Use Case • Time-series data and real-time insights • Fraud detection & prevention • Quality Click Pricing for affiliates • Order & Shipment Tracking •… • Server metrics collection • Taste graph-based next-gen recommendation system • Social Signals on eBay Product & Item pages 13/01/2014 Why Cassandra? • Multi-Datacenter (active-active) • No SPOF • Easy to scale • Write performance • Distributed Counters Cassandra Introduction & Key Features by Philipp Potisk 19
  • 21. Summary • History • Key features of Cassandra • • • • • • • Distributed and Decentralized Elastic Scalability High Availability and Fault Tolerance Tunable Consistency Column-oriented key-value store CQL interface High Performance • Ebay Use Case 13/01/2014 Apache project: http://cassandra.apache.org Community portal: http://planetcassandra.org Documentation: http://www.datastax.com/docs Cassandra Introduction & Key Features by Philipp Potisk 21