The document discusses using Apache Spark and Cassandra for online analytical processing (OLAP) of big data. It describes challenges with relational databases and OLAP cubes at large scales and how Spark can provide fast, distributed querying of data stored in Cassandra. The key points made are that Spark and Cassandra combine to provide horizontally scalable storage with Cassandra and fast, in-memory analytics with Spark; and that for optimal performance, data should be cached in Spark SQL tables for column-oriented querying and aggregation.