SlideShare a Scribd company logo
SAMPLE PAPER -2015
MATHEMATICS
CLASS – XII
Time allowed: 3 hours Maximum marks: 100
General Instructions:
1. All questions are compulsory.
2. The question paper consists of 26 questions divided into three sections-A, B and C. Section A
comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks
each and Section C comprises of 7 questions of six marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact
requirement of the question.
4. There is no overall choice. However, internal choice has been provided in 4 questions of four
marks each and 2 questions of six mark each. You have to attempt only one of the alternatives in
all such questions.
5. Use of calculators is not permitted.
Section A
Q1. Evaluate: tan–1
√3 – sec–1
(–2)
Q2 Find gof if f(x) =8 x3
, g(x)= √ 𝑥
3
.
Q3. If [
3𝑥 − 2𝑦 5
𝑥 −2
] = [
3 5
−3 −2
] , find the value of y .
Q4. Evaluate: | 𝑠𝑖𝑛 300
𝑐𝑜𝑠300
−𝑠𝑖𝑛600
𝑐𝑜𝑠600|
Q5. Find p such that
p
zyx
321
 and
142
zyx


are perpendicular to each other.
Q6. Find the projection of 𝑎⃗ on 𝑏⃗⃗ if 𝑎⃗ . 𝑏⃗⃗ =8 and 𝑏⃗⃗ = 2𝑖̂ +6𝑗̂ + 3𝑘̂
Section B
Q7. 𝐿𝑒𝑡 𝐴 = 𝑁𝑋𝑁, 𝑎𝑛𝑑 ∗ 𝑏𝑒 𝑡ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝐴 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦
(𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑). Show that ∗ is commutative and associative.
Find the identity element for ∗ on A, if any.
Q8. Prove 𝐶𝑜𝑡−1
(
√1+sin 𝑥+√1−sin 𝑥
√1+sin 𝑥− √1−sin 𝑥
) =
𝑥
2
, x∈ (0,
𝜋
4
)
OR
Solve for x . 2 𝑡𝑎𝑛−1(cos 𝑥) = 𝑡𝑎𝑛−1(2 𝑐𝑜𝑠𝑒𝑐 𝑥)
Q9. By using properties of determinants, show that:
|
1 + 𝑎2
− 𝑏2
2𝑎𝑏 −2𝑏
2𝑎𝑏 1 − 𝑎2
+ 𝑏2
2𝑎
2𝑏 −2𝑎 1 − 𝑎2
− 𝑏2
| = (1 + 𝑎2
+ 𝑏2)3
Q10. If cos y = x cos(a + y) with cos a ≠ ± 1, prove that
𝑑𝑦
𝑑𝑥
=
𝑐𝑜𝑠2( 𝑎+𝑦)
sin 𝑎
OR
Find
𝑑𝑦
𝑑𝑥
of the function (cos 𝑥) 𝑦
= (cos 𝑦) 𝑥
Q11. If = (𝑡𝑎𝑛−1
𝑥)2
, show that (𝑥2
+ 1)2
𝑦2 + 2𝑥(𝑥2
+ 1)𝑦1 = 2
Q12
If f(x) =
{
1−cos4𝑥
𝑥2
𝑤ℎ𝑒𝑛 𝑥 < 0
𝑎, 𝑤ℎ𝑒𝑛 𝑥 = 0
√ 𝑥
√16+√ 𝑥−4
, 𝑤ℎ𝑒𝑛 𝑥 > 0
and f is continuous at x = 0, find the value of a.
Q13. Find the intervals in which the function f given by f(x) = 2x3
− 3x2
− 36x + 7 is
(a) strictly increasing (b) strictly decreasing
Q14. Show that [𝑎⃗ + b⃗⃗⃗⃗ 𝑏⃗⃗ + 𝑐⃗⃗⃗ 𝑐⃗ + 𝑎⃗ ] =2[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ]
OR
Find a unit vector perpendicular to each of the vectors (𝑎⃗+ 𝑏⃗⃗) 𝑎𝑛𝑑 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗) where 𝑎⃗ = 𝑖̂ + 𝑗̂ +
𝑘̂ and 𝑏⃗⃗ = 𝑖̂ + 2 𝑗̂ + 3𝑘̂ .
Q15. Evaluate: ∫
2𝑥
(𝑥2+1)(𝑥2+3)
𝑑𝑥 dx
Q16. Evaluate: ∫ 𝑒 𝑥
(
1+sin 𝑥
1+cos 𝑥
) dx
Q17. Using properties of definite integrals, evaluate:
∫
𝑥
4 − 𝑐𝑜𝑠2 𝑥
𝑑𝑥
𝜋
0
OR
Using properties of definite integrals, evaluate:
∫ 𝑙𝑜𝑔(1 + tan 𝑥)𝑑𝑥
𝜋
4⁄
0
Q18. . A man is known to speak truth 3 out of four times .He throw a die and report that it is a
six find the probability that it is actually six. Which value is discussed in this question?
Q19. Find the shortest distance between the lines
)kˆ2jˆ5-iˆ(3kˆ-jˆiˆ2r
and)ˆˆˆ2(ˆˆ






kjijir
Section C
Q20. Two institutions decided to award their employees for the three values of resourcefulness,
competence and determination in the form of prizes at the rate of Rs. x , Rs.y and Rs.z
respectively per person. The first Institute decided to award respectively 4,3 and 2 employees
with a total prize money of Rs.37000 and the second Institute decided to award respectively 5, 3
and 4 employees with a total prize money of Rs.47000.If all the three prizes per person together
amount to Rs.12000, using matrix method find the value of x, y and z. Write the values described
in the question.
Q21. Solve the differential equation
𝑑𝑦
𝑑𝑥
+ 2 𝑦 tan 𝑥 = sin 𝑥 , given that y = 0 where x =
𝜋
3
Q22. ) Find the equation of plane passing through the line of intersection of the planes
x + 2y + 3 z = 4 and 2 x + y – z + 5 = 0 and perpendicular to the plane 5 x + 3y – 6 z + 8 = 0.
Q23. The sum of the perimeter of a circle and square is k, where k is some constant. Prove that
the sum of their areas is least when the side of square is double the radius of the circle.
OR
Show that the volume of greatest cylinder that can be inscribed in a cone of height h and semi
vertical angle α is,  23
tan
27
4
h .
Q.24 There are a group of 50 people who are patriotic, out of which 20 believe in non-violence.
Two persons are selected at random out of them, write the probability distribution for the
selected persons who are non- violent. Also find the mean of the distribution. Explain the
importance of non- violence in patriotism.
Q25. Using integration Find the area lying above x-axis and included between the circle
𝑥2
+ 𝑦2
= 8 x and parabola 𝑦2
= 4 x
OR
Using the method of integration, find the area of the region bounded by the following lines
5x - 2y = 10, x + y – 9 =0 , 2x – 5y – 4 =0
Q26. Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of
the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs
60/kg and Food Q costs Rs 80/kg. Food P contains 3 units /kg of vitamin A and 5 units /kg of
vitamin B while food Q contains 4 units /kg of vitamin A and 2 units /kg of vitamin B.
Determine the minimum cost of the mixture? What is the importance of Vitamins in our body?
Pratima Nayak,KV Teacher
Marking Scheme Second Pre Board Examination Mathematics-2014 Kolkata Region
Q1. -
𝜋
3
Q2.2x Q3. y = -6 Q4. 1 Q5. p = - 2 Q6. 8/7 1 X 6
Q7. (𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑐, 𝑑) ∗ (𝑎, 𝑏) for commutativity.
2
1
1
((𝑎, 𝑏) ∗ (𝑐, 𝑑)) ∗ (𝑒, 𝑓) = (𝑎, 𝑏) ∗ ((𝑐, 𝑑) ∗ (𝑒, 𝑓)) for associativity.
2
1
1
No identity element. 1
______________________________________________________________________
Q8.
1 1/2
2
1
1
2
1
1
½
_______________________________________________________________________
OR
1
1
2
1
1
1/2
_________________________________________________________________________________________
Ans 9.
Applying R1 → R1 + bR3 and R2 → R2 − aR3, we have: 1
1
Expanding along R1, we have: (1 + 𝑎2
+ 𝑏2)3
1
Answer 1
____________________________________________________________________________________
Q10. 𝑥 =
cos 𝑦
cos(𝑎+𝑦)
1
𝑑𝑥
𝑑𝑦
= =
sina
𝑐𝑜𝑠2( 𝑎+𝑦)
1+1
𝑑𝑦
𝑑𝑥
=
𝑐𝑜𝑠2( 𝑎+𝑦)
sin 𝑎
1
________________________________________________________________________________________________
OR
Taking logarithm on both the sides,
Differentiating both sides
1
1
_______________________________________________________________________
Q11. 1
1
1
1
_____________________________________________________________________________
Q12
lim 𝑥→0− 𝑓(𝑥) =
2𝑠𝑖𝑛22𝑥
𝑥2 = 8 1½
RHL on rationalization lim 𝑥→+ 𝑓(𝑥) = 8 1½
a = 8 1
________________________________________________________________________
Q13.
1
x = − 2, 3 1/2
Intervals: (- ∞,-2),( -2,3) and (3, ∞) 1
(f) is strictly increasing in (- ∞,-2) and (3, ∞) and strictly decreasing in interval ),( -2,3) 1½
___________________________________________________________________________
Q14. = {(𝑎⃗ × b⃗⃗)+(𝑎⃗ × c⃗) + (𝑏⃗⃗ × b⃗⃗) + (𝑏⃗⃗ × c⃗)} . (𝑐⃗+𝑎⃗ ) 1
= (𝑎⃗ × b⃗⃗) . 𝑐⃗ + (𝑎⃗ × c⃗). 𝑐⃗+( 𝑏⃗⃗ × c⃗). 𝑐⃗ + (𝑎⃗ × b⃗⃗) . 𝑎⃗ + (𝑎⃗ × c⃗). 𝑎⃗+( 𝑏⃗⃗ × c⃗). 𝑎⃗ 2
=[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ] + [𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ]
2
1
=2[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ]
2
1
_________________________________________________________________________
OR
(𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗) = 2𝑖̂ + 3 𝑗̂ + 4𝑘̂. ( 𝑎⃗- 𝑏⃗⃗) = 0𝑖̂ − 𝑗̂ − 2𝑘̂. 1
(𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗)𝑋 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗) = −2𝑖̂ + 4 𝑗̂ − 2𝑘̂.
2
1
1
|(𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗)𝑋 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗ | =√24 1
2
1
1
√24
(−2𝑖̂ + 4 𝑗̂ − 2𝑘̂) ½
_________________________________________________________________________
Q15. Let x2 = t ⇒ 2x dx = dt 1/2
1
A=1/2, B=-1/2 1/2
2
_____________________________________________________________________________________________________
Q16. 1
2
1
1
½+1
_____________________________________________________________________
Q17 Use of property
∫ 𝑓((𝑥)𝑑𝑥 =
𝑎
0 ∫ 𝑓((𝑎 − 𝑥)𝑑𝑥 =
𝑎
0
, I = ∫
𝜋−𝑥
4−𝑐𝑜𝑠2 𝑥
𝑑𝑥
𝜋
0
1/2
2I = 𝜋 ∫
𝑠𝑒𝑐2 𝑥
3+4 𝑡𝑎𝑛2 𝑥
𝑑𝑥
𝜋
0
1/2
Use of property ∫ 𝑓((𝑥)𝑑𝑥 = 2
2𝑎
0 ∫ 𝑓((𝑎 − 𝑥)𝑑𝑥 𝑎𝑠 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥)
𝑎
0
2I = 2𝜋/4 ∫
𝑠𝑒𝑐2 𝑥
3+4 𝑡𝑎𝑛2 𝑥
𝑑𝑥
𝜋/2
0
1
tan x = t, sec2
x dx =dt 1
& Correct result I =
𝜋2
4√3
1
_________________________________________________________________
OR 1
2
1
_________________________________________________________________________
Q18. P(T) =3/4, P(F) =1/4 1
E: getting a six,F: he is not getting a six
P(E/T)= 1/6, P(E/F)=5/6 1
By Bay,s Theorem P(T/E)=
𝑃(𝑇)𝑃(
𝐸
𝑇
)
𝑃(𝑇)𝑃(
𝐸
𝑇
)+𝑃(𝐹)𝑃(
𝐸
𝐹
)
=3/8
2
1
1
Truthfulness ½
Q19.
59bb
ˆ7ˆˆ31
,ˆˆ
21
2
12




kjibb
kiaa
1+1+1
shortest distance =
21
2221 )).((
bb
aabb


=
59
10
1
_____________________________________________________________________
Q20. 4 x + 3 y + 2z = 37000, 5 x + 3 y + 4z = 47000, x + y + z = 1200 1
|A| = - 3 ≠ 0 so A-1
exists. X = A-1
B 1/2
Cofactors of A 2
[
−1 −1 2
−1 2 1
6 −6 3
]
Adjoint A 1/2
X = 4000 ,y = 5000, z = 3000 1½
Values ½
_______________________________________________________________
Q21. P = 2tan x, Q = sin x
I.F = 𝑠𝑒𝑐2
𝑥 1½
y 𝑠𝑒𝑐2
𝑥 = ∫ sin 𝑥 𝑠𝑒𝑐2
𝑥 𝑑𝑥 + 𝐶 1
y 𝑠𝑒𝑐2
𝑥 = sec x + C 1½
y =
1
sec 𝑥
+
𝐶
𝑠𝑒𝑐2 𝑥
= cos x + C 𝑐𝑜𝑠2
𝑥 -------------------(1) 1½
putting x =
𝜋
3
and y = 0 in eqn (1) C = -2 ½
Y= cos x - 2𝑐𝑜𝑠2
𝑥 1
__________________________________________________________________________
Q22.
Sol: The required plane is (x + 2 y + 3 z ) + k (2 x + y – z +5 )= 0 1
Or (1 + 2 k)x +(2 + k)y +(3 - k)z-4 + 5k = 0 1
5(1+2k) +3 (2+k) -6 (3-k)=0 1
Solving k = 7/19 1
The equation of the plane is : 33 x + 45y +50z = 41 . 2
________________________________________________________________________________
Q23.
Let r be the radius of the circle and a be the side
1+1
1/2
2
1/2
a =2 r 1
___________________________________________________________________
OR fixed height (h) and semi-vertical angle (α )
relation of h and H 1+1/2 ( figure)
1
+ ½
Result 1
_________________________________________________________________
24. Let X = The number of non -violent persons out of selected two.
So, X = 0, 1, 2 1/2
P(X = 0) =
245
87
2
50
2
30

C
C
P(X = 1) =
245
120
2
50
1
30
1
20


C
CC
P(X = 0) =
245
38
2
50
2
20

C
C
3
X 0 1 2
P(X)
245
87
245
120
245
38
Mean =   )(XPX =
245
196
245
38
2
245
120
1
245
87
0  2
Importance of non- violence ½
1
1
______________________________________________________________
25. (1) 𝑥2
+𝑦2
= 8x
 (𝑥 − 4)2
+𝑦2
= 16 represents a circle with centre (4,0) and radius 4 units 1/2
(2) 𝑦2
=4 x represents parabola with vertex at origin and axis as x-axis. ½+ ½ ( figure)
Point of intersection of the curves are (0,0) and (4,4)
= ∫ √4𝑥
4
0
dx + ∫ √8𝑥 − 𝑥28
4
dx 1+1/2
=2∫ 𝑥
4
0
1/2
dx + ∫ √( 16 − (𝑥 − 4)28
4
dx
= 2[
2
3
𝑥
3
2⁄
]
0
4
+ [
𝑥−4
2
√16 − (𝑥 − 4)2 +
16
2
sin−1 𝑥−4
4
]
4
8
2
=
32
3
+ 4𝜋 𝑠𝑞 𝑢𝑛𝑖𝑡𝑠 1
_______________________________________
OR
Solving (1) and (2) point of intersection is C(4,5)
Solving (2) and (3) point of intersection is B(7,2)
Solving (1) and (3) point of intersection is A(2,0)
2
1
1
Area of triangle ABC= area of triangle ACD + area of CDEB + area of triangle ABE
= ∫
5𝑥−10
2
4
2
𝑑𝑥 + ∫ (9 − 𝑥)𝑑𝑥 − ∫
2𝑥−4
5
7
2
7
4
𝑑𝑥
2
1
1
= ½ [ [
5𝑥2
2
− 10𝑥]
2
4
+ [9𝑥 −
𝑥2
2
]
4
7
−
1
5
[𝑥2
− 4𝑥]
2
7
2
1
1
=
21
2
𝑠𝑞 𝑢𝑛𝑖𝑡𝑠
2
1
1
-
______________________________________________________________
Q26. Let the mixture contain x kg of food P and y kg of food Q.
Minimise Z = 60x + 80y 1/2
subject to the constraints,
3x + 4y ≥ 8 … (2)
5x + 2y ≥ 11 … (3)
x, y ≥ 0 … (4)
2
1
1
Figure and shading
2
1
2
The corner points of the feasible region are .A(8/3,0),B(2,1/2),C(0,11/2)
minimum cost Rs 160 at the line segment A(8/3,0) & B(2,1/2)
2
1
1
Marking scheme can be for any alternative method by the evaluator.
Pratima Nayak,KV Teacher

More Related Content

What's hot (20)

PDF
Chapter 4 simultaneous equations
atiqah ayie
 
DOCX
Assignment of class 12 (chapters 2 to 9)
KarunaGupta1982
 
PDF
Mathematics 2014 sample paper and blue print
nitishguptamaps
 
PDF
Form 4 add maths note
Sazlin A Ghani
 
PDF
Chapter 5 indices & logarithms
atiqah ayie
 
DOCX
Assessments for class xi
indu psthakur
 
DOC
Skills In Add Maths
zabidah awang
 
DOCX
Assignmen ts --x
indu psthakur
 
DOCX
some important questions for practice clas 12
nitishguptamaps
 
DOC
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
Thomas Ong
 
PDF
Chapter 3 quadratc functions
atiqah ayie
 
DOCX
10 unsolved papers with answers class 12
nitishguptamaps
 
PDF
Class 12 practice paper
KarunaGupta1982
 
PDF
Applications of Quadratic Equations and Rational Algebraic Equations
Cipriano De Leon
 
DOCX
Mathsclass xii (exampler problems)
nitishguptamaps
 
PDF
Q paper I puc-2014(MATHEMATICS)
Bagalkot
 
PDF
Modul bimbingan add maths
Sasi Villa
 
PPTX
Presentation on calculus
Shariful Haque Robin
 
PDF
Solving Equations Transformable to Quadratic Equation Including Rational Alge...
Cipriano De Leon
 
Chapter 4 simultaneous equations
atiqah ayie
 
Assignment of class 12 (chapters 2 to 9)
KarunaGupta1982
 
Mathematics 2014 sample paper and blue print
nitishguptamaps
 
Form 4 add maths note
Sazlin A Ghani
 
Chapter 5 indices & logarithms
atiqah ayie
 
Assessments for class xi
indu psthakur
 
Skills In Add Maths
zabidah awang
 
Assignmen ts --x
indu psthakur
 
some important questions for practice clas 12
nitishguptamaps
 
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
Thomas Ong
 
Chapter 3 quadratc functions
atiqah ayie
 
10 unsolved papers with answers class 12
nitishguptamaps
 
Class 12 practice paper
KarunaGupta1982
 
Applications of Quadratic Equations and Rational Algebraic Equations
Cipriano De Leon
 
Mathsclass xii (exampler problems)
nitishguptamaps
 
Q paper I puc-2014(MATHEMATICS)
Bagalkot
 
Modul bimbingan add maths
Sasi Villa
 
Presentation on calculus
Shariful Haque Robin
 
Solving Equations Transformable to Quadratic Equation Including Rational Alge...
Cipriano De Leon
 

Viewers also liked (20)

DOC
Class 8 math syllabus
Soumik Banerjee
 
PDF
Class XII CBSE new Mathematics Question Paper Design-2016-17
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
Curso Taller de Preparación para la Certificación (PMI- RMP)®- Realizar el an...
David Salomon Rojas Llaullipoma
 
PPT
Taller mapeo de procesos
Edras Luna
 
PDF
Taller de Preparación para la Certificación (PMI-RMP)® - Realizar el Análisis...
David Salomon Rojas Llaullipoma
 
PDF
63 0116 el mensajero del atardecer
Miguel Angel Huayta Seminario
 
PDF
Proyectos_de_innovacion
WebMD
 
PDF
Progama de formación tecnico en sistemas 865244
David Rojas
 
PPT
JULIOPARI - Elaborando un Plan de Negocios
Julio Pari
 
PDF
Onderzoeksrapport acrs v3.0_definitief
rloggen
 
DOCX
Como hacer un plan de negocios
XPINNERPablo
 
PDF
Manual de convivencia liceo de los andes funed
Alexander Bustos
 
PPT
Schrijven voor het web
Simone Levie
 
PDF
Estrategias competitivas básicas
LarryJimenez
 
PDF
Rodriguez alvarez
Roxana Saldaña
 
DOCX
Fichero de actividades
Carolina Mendez
 
PDF
Amag guía de actuación fiscal en el ncpp
Henry Zevallos
 
PDF
Análisis situacional integral de salud final
Estefanía Echeverría
 
PDF
Guia para el aviso de privacidad
Gerardo Carranza Puga
 
PDF
PMP Sonora Saludable 2010 2015
Instituto Sonorense de Administración Pública, A.C.
 
Class 8 math syllabus
Soumik Banerjee
 
Class XII CBSE new Mathematics Question Paper Design-2016-17
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Curso Taller de Preparación para la Certificación (PMI- RMP)®- Realizar el an...
David Salomon Rojas Llaullipoma
 
Taller mapeo de procesos
Edras Luna
 
Taller de Preparación para la Certificación (PMI-RMP)® - Realizar el Análisis...
David Salomon Rojas Llaullipoma
 
63 0116 el mensajero del atardecer
Miguel Angel Huayta Seminario
 
Proyectos_de_innovacion
WebMD
 
Progama de formación tecnico en sistemas 865244
David Rojas
 
JULIOPARI - Elaborando un Plan de Negocios
Julio Pari
 
Onderzoeksrapport acrs v3.0_definitief
rloggen
 
Como hacer un plan de negocios
XPINNERPablo
 
Manual de convivencia liceo de los andes funed
Alexander Bustos
 
Schrijven voor het web
Simone Levie
 
Estrategias competitivas básicas
LarryJimenez
 
Rodriguez alvarez
Roxana Saldaña
 
Fichero de actividades
Carolina Mendez
 
Amag guía de actuación fiscal en el ncpp
Henry Zevallos
 
Análisis situacional integral de salud final
Estefanía Echeverría
 
Guia para el aviso de privacidad
Gerardo Carranza Puga
 
Ad

Similar to CBSE Mathematics sample question paper with marking scheme (20)

PDF
Mathematics xii 2014 sample paper
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
Maths paper class 12 maths paper class 12
nsridevi1405
 
PDF
Cbse Class 12 Maths Sample Paper 2012
Sunaina Rawat
 
PDF
Cbse Class 12 Maths Sample Paper 2012-13
Sunaina Rawat
 
PDF
JEEAK_This section contains FOUR (04) questions
ShivajiThube2
 
PDF
Triumph- JEE Advanced Maths - Paper 1
askiitians
 
PDF
Math paper class 12 maths paper class 12
nsridevi1405
 
PDF
Maths05
sansharmajs
 
PDF
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Gautham Rajesh
 
PDF
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
ssuser625c41
 
PDF
Sample question paper 2 with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
Aieee 2012 Solved Paper by Prabhat Gaurav
Sahil Gaurav
 
PDF
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
PDF
MFMTQP_MAT_nda question paper for nda class 12
EMALLIKARJUNAREDDY
 
PDF
Cbse Class 12 Maths Sample Paper 2013 Model 3
Sunaina Rawat
 
PDF
Maths04
sansharmajs
 
PDF
Maths sqp
B Bhuvanesh
 
PDF
Mathematics-PQ.pdf
vrat1
 
PDF
H 2012 2015
sjamaths
 
PDF
XII MATHS M.S..pdf
MylittleGamingWorld
 
Mathematics xii 2014 sample paper
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Maths paper class 12 maths paper class 12
nsridevi1405
 
Cbse Class 12 Maths Sample Paper 2012
Sunaina Rawat
 
Cbse Class 12 Maths Sample Paper 2012-13
Sunaina Rawat
 
JEEAK_This section contains FOUR (04) questions
ShivajiThube2
 
Triumph- JEE Advanced Maths - Paper 1
askiitians
 
Math paper class 12 maths paper class 12
nsridevi1405
 
Maths05
sansharmajs
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Gautham Rajesh
 
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
ssuser625c41
 
Sample question paper 2 with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Aieee 2012 Solved Paper by Prabhat Gaurav
Sahil Gaurav
 
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
MFMTQP_MAT_nda question paper for nda class 12
EMALLIKARJUNAREDDY
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Sunaina Rawat
 
Maths04
sansharmajs
 
Maths sqp
B Bhuvanesh
 
Mathematics-PQ.pdf
vrat1
 
H 2012 2015
sjamaths
 
XII MATHS M.S..pdf
MylittleGamingWorld
 
Ad

More from Pratima Nayak ,Kendriya Vidyalaya Sangathan (20)

PPTX
Sustained & active_engagement_with_every_child - Pratima Nayak
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Solving addition word problem knowing key words
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Project based learning Primary Mathematics
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Triangles(Tribhuja) in odia language
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Tips to deal with adolescent behavior- for parents
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Common problems of adolescents
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
Life skill - Self Esteem
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
My Teachers day message to teachers- we can win
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Questions of adolescents
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
क्रोध प्रबंधन: Why to Manage anger?
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Sadness flies away on the wings of time.
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
Emotional skills:Dealing with sadness
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Pushing badmood upwards
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPTX
Sexting?What would your Grandma Think?
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPSX
Emotions : important survival issue
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPSX
Parents must know about cyber bullying 2
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PPSX
Parents must know about cyber bullying 1
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
PDF
No complaining makes you happy child
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Sustained & active_engagement_with_every_child - Pratima Nayak
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Solving addition word problem knowing key words
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Project based learning Primary Mathematics
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Triangles(Tribhuja) in odia language
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Tips to deal with adolescent behavior- for parents
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Common problems of adolescents
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
My Teachers day message to teachers- we can win
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
क्रोध प्रबंधन: Why to Manage anger?
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Sadness flies away on the wings of time.
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Emotional skills:Dealing with sadness
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Sexting?What would your Grandma Think?
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Emotions : important survival issue
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Parents must know about cyber bullying 2
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Parents must know about cyber bullying 1
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
No complaining makes you happy child
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 

Recently uploaded (20)

PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PPTX
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
PPTX
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
PPTX
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
PPTX
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
PPTX
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
PPTX
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
PPSX
Health Planning in india - Unit 03 - CHN 2 - GNM 3RD YEAR.ppsx
Priyanshu Anand
 
PPTX
grade 5 lesson ENGLISH 5_Q1_PPT_WEEK3.pptx
SireQuinn
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PDF
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPT
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
PPTX
Quarter1-English3-W4-Identifying Elements of the Story
FLORRACHELSANTOS
 
PDF
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
PPTX
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
PDF
community health nursing question paper 2.pdf
Prince kumar
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
Health Planning in india - Unit 03 - CHN 2 - GNM 3RD YEAR.ppsx
Priyanshu Anand
 
grade 5 lesson ENGLISH 5_Q1_PPT_WEEK3.pptx
SireQuinn
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
Dimensions of Societal Planning in Commonism
StefanMz
 
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
Quarter1-English3-W4-Identifying Elements of the Story
FLORRACHELSANTOS
 
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
community health nursing question paper 2.pdf
Prince kumar
 

CBSE Mathematics sample question paper with marking scheme

  • 1. SAMPLE PAPER -2015 MATHEMATICS CLASS – XII Time allowed: 3 hours Maximum marks: 100 General Instructions: 1. All questions are compulsory. 2. The question paper consists of 26 questions divided into three sections-A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each. 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. 4. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six mark each. You have to attempt only one of the alternatives in all such questions. 5. Use of calculators is not permitted. Section A Q1. Evaluate: tan–1 √3 – sec–1 (–2) Q2 Find gof if f(x) =8 x3 , g(x)= √ 𝑥 3 . Q3. If [ 3𝑥 − 2𝑦 5 𝑥 −2 ] = [ 3 5 −3 −2 ] , find the value of y . Q4. Evaluate: | 𝑠𝑖𝑛 300 𝑐𝑜𝑠300 −𝑠𝑖𝑛600 𝑐𝑜𝑠600| Q5. Find p such that p zyx 321  and 142 zyx   are perpendicular to each other. Q6. Find the projection of 𝑎⃗ on 𝑏⃗⃗ if 𝑎⃗ . 𝑏⃗⃗ =8 and 𝑏⃗⃗ = 2𝑖̂ +6𝑗̂ + 3𝑘̂
  • 2. Section B Q7. 𝐿𝑒𝑡 𝐴 = 𝑁𝑋𝑁, 𝑎𝑛𝑑 ∗ 𝑏𝑒 𝑡ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝐴 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 (𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑). Show that ∗ is commutative and associative. Find the identity element for ∗ on A, if any. Q8. Prove 𝐶𝑜𝑡−1 ( √1+sin 𝑥+√1−sin 𝑥 √1+sin 𝑥− √1−sin 𝑥 ) = 𝑥 2 , x∈ (0, 𝜋 4 ) OR Solve for x . 2 𝑡𝑎𝑛−1(cos 𝑥) = 𝑡𝑎𝑛−1(2 𝑐𝑜𝑠𝑒𝑐 𝑥) Q9. By using properties of determinants, show that: | 1 + 𝑎2 − 𝑏2 2𝑎𝑏 −2𝑏 2𝑎𝑏 1 − 𝑎2 + 𝑏2 2𝑎 2𝑏 −2𝑎 1 − 𝑎2 − 𝑏2 | = (1 + 𝑎2 + 𝑏2)3 Q10. If cos y = x cos(a + y) with cos a ≠ ± 1, prove that 𝑑𝑦 𝑑𝑥 = 𝑐𝑜𝑠2( 𝑎+𝑦) sin 𝑎 OR Find 𝑑𝑦 𝑑𝑥 of the function (cos 𝑥) 𝑦 = (cos 𝑦) 𝑥 Q11. If = (𝑡𝑎𝑛−1 𝑥)2 , show that (𝑥2 + 1)2 𝑦2 + 2𝑥(𝑥2 + 1)𝑦1 = 2 Q12 If f(x) = { 1−cos4𝑥 𝑥2 𝑤ℎ𝑒𝑛 𝑥 < 0 𝑎, 𝑤ℎ𝑒𝑛 𝑥 = 0 √ 𝑥 √16+√ 𝑥−4 , 𝑤ℎ𝑒𝑛 𝑥 > 0 and f is continuous at x = 0, find the value of a. Q13. Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is (a) strictly increasing (b) strictly decreasing Q14. Show that [𝑎⃗ + b⃗⃗⃗⃗ 𝑏⃗⃗ + 𝑐⃗⃗⃗ 𝑐⃗ + 𝑎⃗ ] =2[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ] OR Find a unit vector perpendicular to each of the vectors (𝑎⃗+ 𝑏⃗⃗) 𝑎𝑛𝑑 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗) where 𝑎⃗ = 𝑖̂ + 𝑗̂ + 𝑘̂ and 𝑏⃗⃗ = 𝑖̂ + 2 𝑗̂ + 3𝑘̂ .
  • 3. Q15. Evaluate: ∫ 2𝑥 (𝑥2+1)(𝑥2+3) 𝑑𝑥 dx Q16. Evaluate: ∫ 𝑒 𝑥 ( 1+sin 𝑥 1+cos 𝑥 ) dx Q17. Using properties of definite integrals, evaluate: ∫ 𝑥 4 − 𝑐𝑜𝑠2 𝑥 𝑑𝑥 𝜋 0 OR Using properties of definite integrals, evaluate: ∫ 𝑙𝑜𝑔(1 + tan 𝑥)𝑑𝑥 𝜋 4⁄ 0 Q18. . A man is known to speak truth 3 out of four times .He throw a die and report that it is a six find the probability that it is actually six. Which value is discussed in this question? Q19. Find the shortest distance between the lines )kˆ2jˆ5-iˆ(3kˆ-jˆiˆ2r and)ˆˆˆ2(ˆˆ       kjijir Section C Q20. Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prizes at the rate of Rs. x , Rs.y and Rs.z respectively per person. The first Institute decided to award respectively 4,3 and 2 employees with a total prize money of Rs.37000 and the second Institute decided to award respectively 5, 3 and 4 employees with a total prize money of Rs.47000.If all the three prizes per person together amount to Rs.12000, using matrix method find the value of x, y and z. Write the values described in the question. Q21. Solve the differential equation 𝑑𝑦 𝑑𝑥 + 2 𝑦 tan 𝑥 = sin 𝑥 , given that y = 0 where x = 𝜋 3 Q22. ) Find the equation of plane passing through the line of intersection of the planes
  • 4. x + 2y + 3 z = 4 and 2 x + y – z + 5 = 0 and perpendicular to the plane 5 x + 3y – 6 z + 8 = 0. Q23. The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle. OR Show that the volume of greatest cylinder that can be inscribed in a cone of height h and semi vertical angle α is,  23 tan 27 4 h . Q.24 There are a group of 50 people who are patriotic, out of which 20 believe in non-violence. Two persons are selected at random out of them, write the probability distribution for the selected persons who are non- violent. Also find the mean of the distribution. Explain the importance of non- violence in patriotism. Q25. Using integration Find the area lying above x-axis and included between the circle 𝑥2 + 𝑦2 = 8 x and parabola 𝑦2 = 4 x OR Using the method of integration, find the area of the region bounded by the following lines 5x - 2y = 10, x + y – 9 =0 , 2x – 5y – 4 =0 Q26. Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units /kg of vitamin A and 5 units /kg of vitamin B while food Q contains 4 units /kg of vitamin A and 2 units /kg of vitamin B. Determine the minimum cost of the mixture? What is the importance of Vitamins in our body? Pratima Nayak,KV Teacher Marking Scheme Second Pre Board Examination Mathematics-2014 Kolkata Region Q1. - 𝜋 3 Q2.2x Q3. y = -6 Q4. 1 Q5. p = - 2 Q6. 8/7 1 X 6 Q7. (𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑐, 𝑑) ∗ (𝑎, 𝑏) for commutativity. 2 1 1 ((𝑎, 𝑏) ∗ (𝑐, 𝑑)) ∗ (𝑒, 𝑓) = (𝑎, 𝑏) ∗ ((𝑐, 𝑑) ∗ (𝑒, 𝑓)) for associativity. 2 1 1 No identity element. 1 ______________________________________________________________________ Q8.
  • 5. 1 1/2 2 1 1 2 1 1 ½ _______________________________________________________________________ OR 1 1 2 1 1 1/2 _________________________________________________________________________________________ Ans 9. Applying R1 → R1 + bR3 and R2 → R2 − aR3, we have: 1 1 Expanding along R1, we have: (1 + 𝑎2 + 𝑏2)3 1 Answer 1 ____________________________________________________________________________________ Q10. 𝑥 = cos 𝑦 cos(𝑎+𝑦) 1 𝑑𝑥 𝑑𝑦 = = sina 𝑐𝑜𝑠2( 𝑎+𝑦) 1+1 𝑑𝑦 𝑑𝑥 = 𝑐𝑜𝑠2( 𝑎+𝑦) sin 𝑎 1 ________________________________________________________________________________________________ OR Taking logarithm on both the sides, Differentiating both sides 1 1
  • 6. _______________________________________________________________________ Q11. 1 1 1 1 _____________________________________________________________________________ Q12 lim 𝑥→0− 𝑓(𝑥) = 2𝑠𝑖𝑛22𝑥 𝑥2 = 8 1½ RHL on rationalization lim 𝑥→+ 𝑓(𝑥) = 8 1½ a = 8 1 ________________________________________________________________________ Q13. 1 x = − 2, 3 1/2 Intervals: (- ∞,-2),( -2,3) and (3, ∞) 1 (f) is strictly increasing in (- ∞,-2) and (3, ∞) and strictly decreasing in interval ),( -2,3) 1½ ___________________________________________________________________________ Q14. = {(𝑎⃗ × b⃗⃗)+(𝑎⃗ × c⃗) + (𝑏⃗⃗ × b⃗⃗) + (𝑏⃗⃗ × c⃗)} . (𝑐⃗+𝑎⃗ ) 1 = (𝑎⃗ × b⃗⃗) . 𝑐⃗ + (𝑎⃗ × c⃗). 𝑐⃗+( 𝑏⃗⃗ × c⃗). 𝑐⃗ + (𝑎⃗ × b⃗⃗) . 𝑎⃗ + (𝑎⃗ × c⃗). 𝑎⃗+( 𝑏⃗⃗ × c⃗). 𝑎⃗ 2 =[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ] + [𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ] 2 1 =2[𝑎⃗ 𝑏⃗⃗ 𝑐⃗ ] 2 1 _________________________________________________________________________ OR (𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗) = 2𝑖̂ + 3 𝑗̂ + 4𝑘̂. ( 𝑎⃗- 𝑏⃗⃗) = 0𝑖̂ − 𝑗̂ − 2𝑘̂. 1 (𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗)𝑋 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗) = −2𝑖̂ + 4 𝑗̂ − 2𝑘̂. 2 1 1 |(𝑎⃗⃗⃗⃗⃗+ 𝑏⃗⃗)𝑋 ( 𝑎⃗⃗⃗⃗- 𝑏⃗⃗ | =√24 1 2 1
  • 7. 1 √24 (−2𝑖̂ + 4 𝑗̂ − 2𝑘̂) ½ _________________________________________________________________________ Q15. Let x2 = t ⇒ 2x dx = dt 1/2 1 A=1/2, B=-1/2 1/2 2 _____________________________________________________________________________________________________ Q16. 1 2 1 1 ½+1 _____________________________________________________________________ Q17 Use of property ∫ 𝑓((𝑥)𝑑𝑥 = 𝑎 0 ∫ 𝑓((𝑎 − 𝑥)𝑑𝑥 = 𝑎 0 , I = ∫ 𝜋−𝑥 4−𝑐𝑜𝑠2 𝑥 𝑑𝑥 𝜋 0 1/2 2I = 𝜋 ∫ 𝑠𝑒𝑐2 𝑥 3+4 𝑡𝑎𝑛2 𝑥 𝑑𝑥 𝜋 0 1/2 Use of property ∫ 𝑓((𝑥)𝑑𝑥 = 2 2𝑎 0 ∫ 𝑓((𝑎 − 𝑥)𝑑𝑥 𝑎𝑠 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥) 𝑎 0 2I = 2𝜋/4 ∫ 𝑠𝑒𝑐2 𝑥 3+4 𝑡𝑎𝑛2 𝑥 𝑑𝑥 𝜋/2 0 1 tan x = t, sec2 x dx =dt 1 & Correct result I = 𝜋2 4√3 1 _________________________________________________________________ OR 1 2 1 _________________________________________________________________________ Q18. P(T) =3/4, P(F) =1/4 1
  • 8. E: getting a six,F: he is not getting a six P(E/T)= 1/6, P(E/F)=5/6 1 By Bay,s Theorem P(T/E)= 𝑃(𝑇)𝑃( 𝐸 𝑇 ) 𝑃(𝑇)𝑃( 𝐸 𝑇 )+𝑃(𝐹)𝑃( 𝐸 𝐹 ) =3/8 2 1 1 Truthfulness ½ Q19. 59bb ˆ7ˆˆ31 ,ˆˆ 21 2 12     kjibb kiaa 1+1+1 shortest distance = 21 2221 )).(( bb aabb   = 59 10 1 _____________________________________________________________________ Q20. 4 x + 3 y + 2z = 37000, 5 x + 3 y + 4z = 47000, x + y + z = 1200 1 |A| = - 3 ≠ 0 so A-1 exists. X = A-1 B 1/2 Cofactors of A 2 [ −1 −1 2 −1 2 1 6 −6 3 ] Adjoint A 1/2 X = 4000 ,y = 5000, z = 3000 1½ Values ½ _______________________________________________________________ Q21. P = 2tan x, Q = sin x I.F = 𝑠𝑒𝑐2 𝑥 1½ y 𝑠𝑒𝑐2 𝑥 = ∫ sin 𝑥 𝑠𝑒𝑐2 𝑥 𝑑𝑥 + 𝐶 1 y 𝑠𝑒𝑐2 𝑥 = sec x + C 1½ y = 1 sec 𝑥 + 𝐶 𝑠𝑒𝑐2 𝑥 = cos x + C 𝑐𝑜𝑠2 𝑥 -------------------(1) 1½ putting x = 𝜋 3 and y = 0 in eqn (1) C = -2 ½ Y= cos x - 2𝑐𝑜𝑠2 𝑥 1 __________________________________________________________________________ Q22. Sol: The required plane is (x + 2 y + 3 z ) + k (2 x + y – z +5 )= 0 1 Or (1 + 2 k)x +(2 + k)y +(3 - k)z-4 + 5k = 0 1 5(1+2k) +3 (2+k) -6 (3-k)=0 1 Solving k = 7/19 1 The equation of the plane is : 33 x + 45y +50z = 41 . 2 ________________________________________________________________________________ Q23.
  • 9. Let r be the radius of the circle and a be the side 1+1 1/2 2 1/2 a =2 r 1 ___________________________________________________________________ OR fixed height (h) and semi-vertical angle (α ) relation of h and H 1+1/2 ( figure) 1 + ½ Result 1 _________________________________________________________________ 24. Let X = The number of non -violent persons out of selected two. So, X = 0, 1, 2 1/2 P(X = 0) = 245 87 2 50 2 30  C C P(X = 1) = 245 120 2 50 1 30 1 20   C CC P(X = 0) = 245 38 2 50 2 20  C C 3 X 0 1 2 P(X) 245 87 245 120 245 38 Mean =   )(XPX = 245 196 245 38 2 245 120 1 245 87 0  2 Importance of non- violence ½ 1 1
  • 10. ______________________________________________________________ 25. (1) 𝑥2 +𝑦2 = 8x  (𝑥 − 4)2 +𝑦2 = 16 represents a circle with centre (4,0) and radius 4 units 1/2 (2) 𝑦2 =4 x represents parabola with vertex at origin and axis as x-axis. ½+ ½ ( figure) Point of intersection of the curves are (0,0) and (4,4) = ∫ √4𝑥 4 0 dx + ∫ √8𝑥 − 𝑥28 4 dx 1+1/2 =2∫ 𝑥 4 0 1/2 dx + ∫ √( 16 − (𝑥 − 4)28 4 dx = 2[ 2 3 𝑥 3 2⁄ ] 0 4 + [ 𝑥−4 2 √16 − (𝑥 − 4)2 + 16 2 sin−1 𝑥−4 4 ] 4 8 2 = 32 3 + 4𝜋 𝑠𝑞 𝑢𝑛𝑖𝑡𝑠 1 _______________________________________ OR Solving (1) and (2) point of intersection is C(4,5) Solving (2) and (3) point of intersection is B(7,2) Solving (1) and (3) point of intersection is A(2,0) 2 1 1 Area of triangle ABC= area of triangle ACD + area of CDEB + area of triangle ABE = ∫ 5𝑥−10 2 4 2 𝑑𝑥 + ∫ (9 − 𝑥)𝑑𝑥 − ∫ 2𝑥−4 5 7 2 7 4 𝑑𝑥 2 1 1 = ½ [ [ 5𝑥2 2 − 10𝑥] 2 4 + [9𝑥 − 𝑥2 2 ] 4 7 − 1 5 [𝑥2 − 4𝑥] 2 7 2 1 1 = 21 2 𝑠𝑞 𝑢𝑛𝑖𝑡𝑠 2 1 1 - ______________________________________________________________ Q26. Let the mixture contain x kg of food P and y kg of food Q. Minimise Z = 60x + 80y 1/2 subject to the constraints, 3x + 4y ≥ 8 … (2) 5x + 2y ≥ 11 … (3) x, y ≥ 0 … (4) 2 1 1 Figure and shading 2 1 2 The corner points of the feasible region are .A(8/3,0),B(2,1/2),C(0,11/2) minimum cost Rs 160 at the line segment A(8/3,0) & B(2,1/2) 2 1 1 Marking scheme can be for any alternative method by the evaluator. Pratima Nayak,KV Teacher