SlideShare a Scribd company logo
Challenging Common Assumptions
in the Unsupervised Learning of
Disentangled Representations
(ICML 2019 Best Paper)
2019.07.17.
Sangwoo Mo
1
Outline
• Quick Review
• What is disentangled representation (DR)?
• Prior work on the unsupervised learning of DR
• Theoretical Results
• Unsupervised learning of DR is impossible without inductive biases
• Empirical Results
• Q1. Which method should be used?
• Q2. How to choose the hyperparameters?
• Q3. How to select the best model from a set of trained models?
2
Quick Review
• Disentangled representation: Learn a representation 𝑧 from the data 𝑥 s.t.
• Contain all the information of 𝑥 in a compact and interpretable structure
• Currently no single formal definition L (many definitions for the factor of variation)
3* Image from BetaVAE (ICLR 2017)
Quick Review: Prior Methods
• BetaVAE (ICLR 2017)
• Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior)
4
Quick Review: Prior Methods
• BetaVAE (ICLR 2017)
• Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior)
• FactorVAE (ICML 2018) & 𝜷-TCVAE (NeurIPS 2018)
• Penalize the total correlation of the representation, which is estimated1 by
adversarial learning (FactorVAE) or (biased) mini-batch approximation (𝛽-TCVAE)
51. It requires the aggregated posterior 𝑞(𝒛)
Quick Review: Prior Methods
• BetaVAE (ICLR 2017)
• Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior)
• FactorVAE (ICML 2018) & 𝜷-TCVAE (NeurIPS 2018)
• Penalize the total correlation of the representation, which is estimated1 by
adversarial learning (FactorVAE) or (biased) mini-batch approximation (𝛽-TCVAE)
• DIP-VAE (ICLR 2018)
• Match 𝑞(𝒛) to the disentangled prior 𝑝(𝒛), where 𝐷 is a (tractable) moment matching
61. It requires the aggregated posterior 𝑞(𝒛)
Quick Review: Evaluation Metrics
• Many heuristics are proposed to quantitatively evaluate the disentanglement
• Basic idea: Factors and representation should have 1-1 correspondence
7
Quick Review: Evaluation Metrics
• Many heuristics are proposed to quantitatively evaluate the disentanglement
• Basic idea: Factors and representation should have 1-1 correspondence
• BetaVAE (ICLR 2017) & FactorVAE (ICML 2018) metric
• Given a factor 𝑐., generate two (simulation) data 𝑥, 𝑥′ with same 𝑐. but different 𝑐1.,
then train a classifier to predict 𝑐. using the difference of the representation |𝑧 − 𝑧4|
• Indeed, the classifier will map the zero-valued index of |𝑧 − 𝑧4
| to the factor 𝑐.
8
Quick Review: Evaluation Metrics
• Many heuristics are proposed to quantitatively evaluate the disentanglement
• Basic idea: Factors and representation should have 1-1 correspondence
• BetaVAE (ICLR 2017) & FactorVAE (ICML 2018) metric
• Given a factor 𝑐., generate two (simulation) data 𝑥, 𝑥′ with same 𝑐. but different 𝑐1.,
then train a classifier to predict 𝑐. using the difference of the representation |𝑧 − 𝑧4|
• Indeed, the classifier will map the zero-valued index of |𝑧 − 𝑧4
| to the factor 𝑐.
• Mutual Information Gap (NeurIPS 2018)
• Compute the mutual information between each factor 𝑐. and each dimension of 𝑧5
• For the highest and second highest dimensions 𝑖7 and 𝑖8 of the mutual information,
measure the difference between them: 𝐼 𝑐., 𝑧5:
− 𝐼(𝑐., 𝑧5;
)
9
Theoretical Results
• “Unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases on both the models and the data”
10
Theoretical Results
• “Unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases on both the models and the data”
• Theorem. For 𝑝 𝒛 = ∏5>7
?
𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t.
• 𝒛 and 𝑓(𝒛) are completely entangled (i.e.,
ABC(𝒖)
AEF
≠ 0 a.e. for all 𝑖, 𝑗)
• 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖)
11
Theoretical Results
• “Unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases on both the models and the data”
• Theorem. For 𝑝 𝒛 = ∏5>7
?
𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t.
• 𝒛 and 𝑓(𝒛) are completely entangled (i.e.,
ABC(𝒖)
AEF
≠ 0 a.e. for all 𝑖, 𝑗)
• 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖)
• Proof sketch. By construction.
• Let 𝑔: supp 𝒛 → 0,1 ?
s.t. 𝑔5 𝒗 = 𝑃(𝑧5 ≤ 𝑣5)
• Let ℎ: 0,1 ? → ℝ? s.t. ℎ5 𝒗 = 𝜓17(𝑣5) where 𝜓 is a c.d.f. of a normal distribution
• Then for any orthogonal matrix 𝑨, the following 𝑓 satisfies the condition:
𝑓 𝒖 = ℎ ∘ 𝑔 17(𝑨 ℎ ∘ 𝑔 𝒖 )
12
Theoretical Results
• “Unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases on both the models and the data”
• Theorem. For 𝑝 𝒛 = ∏5>7
?
𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t.
• 𝒛 and 𝑓(𝒛) are completely entangled (i.e.,
ABC(𝒖)
AEF
≠ 0 a.e. for all 𝑖, 𝑗)
• 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖)
• Corollary. One cannot find the disentangled representation 𝑟(𝒙) (w.r.t. to the generative
model 𝐺(𝒙|𝒛)) as there are two equivalent generative models 𝐺 and 𝐺′ which has same
marginal distribution 𝑝(𝒙) but 𝒛4 = 𝑓(𝒛) is completely entangled w.r.t. 𝒛 (so as 𝑟(𝒙))
• Namely, inferring representation 𝒛 from observation 𝒙 is not a well-defined problem
13
Theoretical Results
• 𝛽-VAE learns some decorrelated features, but they are not semantically decomposed
• E.g., the width is entangled with the leg style in 𝛽-VAE
14* Image from BetaVAE (ICLR 2017)
Empirical Results
• Q1. Which method should be used?
• A. Hyperparameters and random seeds matter more than the choice of the model
15
Empirical Results
• Q2. How to choose the hyperparameters?
• A. Selecting the best hyperparameter is extremely hard due to the randomness
16
Empirical Results
• Q2. How to choose the hyperparameters?
• A. Also, there is no obvious trend over the variation of hyperparameters
17
Empirical Results
• Q2. How to choose the hyperparameters?
• A. Good hyperparameters often can be transferred (e.g., dSprites → color-dSprites)
18
Rank correlation matrix
Empirical Results
• Q3. How to select the best model from a set of trained models?
• A. Unsupervised (training) scores do not correlated to the disentanglement metrics
19
Unsupervised scores vs disentanglement metrics
Summary
• TL;DR: Current unsupervised learning of disentangled representation has a limitation!
• Summary of findings:
• Q1. Which method should be used?
• A. Current methods should be rigorously validated (no significant difference)
20
Summary
• TL;DR: Current unsupervised learning of disentangled representation has a limitation!
• Summary of findings:
• Q1. Which method should be used?
• A. Current methods should be rigorously validated (no significant difference)
• Q2. How to choose the hyperparameters?
• A. No rule of thumb, but transfer across datasets seem to help!
21
Summary
• TL;DR: Current unsupervised learning of disentangled representation has a limitation!
• Summary of findings:
• Q1. Which method should be used?
• A. Current methods should be rigorously validated (no significant difference)
• Q2. How to choose the hyperparameters?
• A. No rule of thumb, but transfer across datasets seem to help!
• Q3. How to select the best model from a set of trained models?
• A. (Unsupervised) model selection remains a key challenge!
22
Following Work & Future Direction
• “Disentangling Factors of Variation Using Few Labels”
(ICLR Workshop 2019, NeurIPS 2019 submission)
• Summary of findings: Using a few labels highly improves the disentanglement!
23
Following Work & Future Direction
• “Disentangling Factors of Variation Using Few Labels”
(ICLR Workshop 2019, NeurIPS 2019 submission)
• Summary of findings: Using a few labels highly improves the disentanglement!
1. Existing disentanglement metrics + few labels perform well on model selection,
even though models are completely trained in an unsupervised manner
24
Following Work & Future Direction
• “Disentangling Factors of Variation Using Few Labels”
(ICLR Workshop 2019, NeurIPS 2019 submission)
• Summary of findings: Using a few labels highly improves the disentanglement!
1. Existing disentanglement metrics + few labels perform well on model selection,
even though models are completely trained in an unsupervised manner
2. One can obtain even better results if one use few labels into the learning processes
(use a simple supervised regularizer)
25
Following Work & Future Direction
• “Disentangling Factors of Variation Using Few Labels”
(ICLR Workshop 2019, NeurIPS 2019 submission)
• Summary of findings: Using a few labels highly improves the disentanglement!
1. Existing disentanglement metrics + few labels perform well on model selection,
even though models are completely trained in an unsupervised manner
2. One can obtain even better results if one use few labels into the learning processes
(use a simple supervised regularizer)
• Take-home message: Future research should be on “how to utilize inductive bias better”
using a few labels, rather than the previous total correlation-like approaches
26
Ad

More Related Content

What's hot (20)

GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi
 
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual RepresentationsPR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
Jinwon Lee
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
준식 최
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
Deep Learning JP
 
Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206
Masakazu Shinoda
 
PR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic ModelsPR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic Models
Hyeongmin Lee
 
データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習
Seiichi Uchida
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
Masahiro Suzuki
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
Masahiro Suzuki
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising
Deep Learning JP
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
Deep Learning JP
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers
Deep Learning JP
 
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
Deep Learning JP
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
Ha Phuong
 
Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)
UMBC
 
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
TRUE_RUTILEA
 
Style gan
Style ganStyle gan
Style gan
哲东 郑
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)
Appsilon Data Science
 
GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi
 
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual RepresentationsPR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
Jinwon Lee
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
Paper Summary of Beta-VAE: Learning Basic Visual Concepts with a Constrained ...
준식 최
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
Deep Learning JP
 
Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206
Masakazu Shinoda
 
PR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic ModelsPR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic Models
Hyeongmin Lee
 
データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習データサイエンス概論第一=8 パターン認識と深層学習
データサイエンス概論第一=8 パターン認識と深層学習
Seiichi Uchida
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
Masahiro Suzuki
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
Masahiro Suzuki
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising
Deep Learning JP
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
Deep Learning JP
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers
Deep Learning JP
 
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
[DL輪読会]物理学による帰納バイアスを組み込んだダイナミクスモデル作成に関する論文まとめ
Deep Learning JP
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
Ha Phuong
 
Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)
UMBC
 
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
RUTILEA社内勉強会第4回 「敵対的生成ネットワーク(GAN)」
TRUE_RUTILEA
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)
Appsilon Data Science
 

Similar to Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (20)

Dowhy: An end-to-end library for causal inference
Dowhy: An end-to-end library for causal inferenceDowhy: An end-to-end library for causal inference
Dowhy: An end-to-end library for causal inference
Amit Sharma
 
Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"
Julius Hietala
 
Machine learning - session 3
Machine learning - session 3Machine learning - session 3
Machine learning - session 3
Luis Borbon
 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
Hadrian7
 
Joint contrastive learning with infinite possibilities
Joint contrastive learning with infinite possibilitiesJoint contrastive learning with infinite possibilities
Joint contrastive learning with infinite possibilities
taeseon ryu
 
Bottle sum
Bottle sumBottle sum
Bottle sum
MasatoUmakoshi
 
Mixed Effects Models - Random Intercepts
Mixed Effects Models - Random InterceptsMixed Effects Models - Random Intercepts
Mixed Effects Models - Random Intercepts
Scott Fraundorf
 
causal inference - important - Presentation
causal inference - important - Presentationcausal inference - important - Presentation
causal inference - important - Presentation
RamprasadBanothu
 
Lec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable RegistrationLec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable Registration
Ulaş Bağcı
 
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdfTop 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
khushnuma khan
 
Data Ananlysis lecture 7 Simon Fraser University
Data Ananlysis lecture 7 Simon Fraser UniversityData Ananlysis lecture 7 Simon Fraser University
Data Ananlysis lecture 7 Simon Fraser University
soniyamarghani
 
MACHINE LEARNING.pptx
MACHINE LEARNING.pptxMACHINE LEARNING.pptx
MACHINE LEARNING.pptx
SOURAVGHOSH623569
 
Building useful models for imbalanced datasets (without resampling)
Building useful models for imbalanced datasets (without resampling)Building useful models for imbalanced datasets (without resampling)
Building useful models for imbalanced datasets (without resampling)
Greg Landrum
 
Introduction to simulating data to improve your research
Introduction to simulating data to improve your researchIntroduction to simulating data to improve your research
Introduction to simulating data to improve your research
Dorothy Bishop
 
A new development in the hierarchical clustering of repertory grid data
A new development in the hierarchical clustering of repertory grid dataA new development in the hierarchical clustering of repertory grid data
A new development in the hierarchical clustering of repertory grid data
Mark Heckmann
 
Menggunakan AlisJK : Equating
Menggunakan AlisJK : EquatingMenggunakan AlisJK : Equating
Menggunakan AlisJK : Equating
Wildan Maulana
 
Declarative data analysis
Declarative data analysisDeclarative data analysis
Declarative data analysis
South West Data Meetup
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01
Henock Beyene
 
Mixed Effects Models - Fixed Effect Interactions
Mixed Effects Models - Fixed Effect InteractionsMixed Effects Models - Fixed Effect Interactions
Mixed Effects Models - Fixed Effect Interactions
Scott Fraundorf
 
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
Vahid Taslimitehrani
 
Dowhy: An end-to-end library for causal inference
Dowhy: An end-to-end library for causal inferenceDowhy: An end-to-end library for causal inference
Dowhy: An end-to-end library for causal inference
Amit Sharma
 
Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"
Julius Hietala
 
Machine learning - session 3
Machine learning - session 3Machine learning - session 3
Machine learning - session 3
Luis Borbon
 
ngboost.pptx
ngboost.pptxngboost.pptx
ngboost.pptx
Hadrian7
 
Joint contrastive learning with infinite possibilities
Joint contrastive learning with infinite possibilitiesJoint contrastive learning with infinite possibilities
Joint contrastive learning with infinite possibilities
taeseon ryu
 
Mixed Effects Models - Random Intercepts
Mixed Effects Models - Random InterceptsMixed Effects Models - Random Intercepts
Mixed Effects Models - Random Intercepts
Scott Fraundorf
 
causal inference - important - Presentation
causal inference - important - Presentationcausal inference - important - Presentation
causal inference - important - Presentation
RamprasadBanothu
 
Lec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable RegistrationLec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable Registration
Ulaş Bağcı
 
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdfTop 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
Top 50+ Data Science Interview Questions and Answers for 2025 (1).pdf
khushnuma khan
 
Data Ananlysis lecture 7 Simon Fraser University
Data Ananlysis lecture 7 Simon Fraser UniversityData Ananlysis lecture 7 Simon Fraser University
Data Ananlysis lecture 7 Simon Fraser University
soniyamarghani
 
Building useful models for imbalanced datasets (without resampling)
Building useful models for imbalanced datasets (without resampling)Building useful models for imbalanced datasets (without resampling)
Building useful models for imbalanced datasets (without resampling)
Greg Landrum
 
Introduction to simulating data to improve your research
Introduction to simulating data to improve your researchIntroduction to simulating data to improve your research
Introduction to simulating data to improve your research
Dorothy Bishop
 
A new development in the hierarchical clustering of repertory grid data
A new development in the hierarchical clustering of repertory grid dataA new development in the hierarchical clustering of repertory grid data
A new development in the hierarchical clustering of repertory grid data
Mark Heckmann
 
Menggunakan AlisJK : Equating
Menggunakan AlisJK : EquatingMenggunakan AlisJK : Equating
Menggunakan AlisJK : Equating
Wildan Maulana
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01
Henock Beyene
 
Mixed Effects Models - Fixed Effect Interactions
Mixed Effects Models - Fixed Effect InteractionsMixed Effects Models - Fixed Effect Interactions
Mixed Effects Models - Fixed Effect Interactions
Scott Fraundorf
 
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
Vahid Taslimitehrani
 
Ad

More from Sangwoo Mo (20)

Brief History of Visual Representation Learning
Brief History of Visual Representation LearningBrief History of Visual Representation Learning
Brief History of Visual Representation Learning
Sangwoo Mo
 
Learning Visual Representations from Uncurated Data
Learning Visual Representations from Uncurated DataLearning Visual Representations from Uncurated Data
Learning Visual Representations from Uncurated Data
Sangwoo Mo
 
Hyperbolic Deep Reinforcement Learning
Hyperbolic Deep Reinforcement LearningHyperbolic Deep Reinforcement Learning
Hyperbolic Deep Reinforcement Learning
Sangwoo Mo
 
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
Sangwoo Mo
 
Self-supervised Learning Lecture Note
Self-supervised Learning Lecture NoteSelf-supervised Learning Lecture Note
Self-supervised Learning Lecture Note
Sangwoo Mo
 
Deep Learning Theory Seminar (Chap 3, part 2)
Deep Learning Theory Seminar (Chap 3, part 2)Deep Learning Theory Seminar (Chap 3, part 2)
Deep Learning Theory Seminar (Chap 3, part 2)
Sangwoo Mo
 
Deep Learning Theory Seminar (Chap 1-2, part 1)
Deep Learning Theory Seminar (Chap 1-2, part 1)Deep Learning Theory Seminar (Chap 1-2, part 1)
Deep Learning Theory Seminar (Chap 1-2, part 1)
Sangwoo Mo
 
Introduction to Diffusion Models
Introduction to Diffusion ModelsIntroduction to Diffusion Models
Introduction to Diffusion Models
Sangwoo Mo
 
Object-Region Video Transformers
Object-Region Video TransformersObject-Region Video Transformers
Object-Region Video Transformers
Sangwoo Mo
 
Deep Implicit Layers: Learning Structured Problems with Neural Networks
Deep Implicit Layers: Learning Structured Problems with Neural NetworksDeep Implicit Layers: Learning Structured Problems with Neural Networks
Deep Implicit Layers: Learning Structured Problems with Neural Networks
Sangwoo Mo
 
Learning Theory 101 ...and Towards Learning the Flat Minima
Learning Theory 101 ...and Towards Learning the Flat MinimaLearning Theory 101 ...and Towards Learning the Flat Minima
Learning Theory 101 ...and Towards Learning the Flat Minima
Sangwoo Mo
 
Sharpness-aware minimization (SAM)
Sharpness-aware minimization (SAM)Sharpness-aware minimization (SAM)
Sharpness-aware minimization (SAM)
Sangwoo Mo
 
Explicit Density Models
Explicit Density ModelsExplicit Density Models
Explicit Density Models
Sangwoo Mo
 
Score-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential EquationsScore-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Sangwoo Mo
 
Self-Attention with Linear Complexity
Self-Attention with Linear ComplexitySelf-Attention with Linear Complexity
Self-Attention with Linear Complexity
Sangwoo Mo
 
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit GradientsMeta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Sangwoo Mo
 
Generative Models for General Audiences
Generative Models for General AudiencesGenerative Models for General Audiences
Generative Models for General Audiences
Sangwoo Mo
 
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-LearningBayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Sangwoo Mo
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
Sangwoo Mo
 
Domain Transfer and Adaptation Survey
Domain Transfer and Adaptation SurveyDomain Transfer and Adaptation Survey
Domain Transfer and Adaptation Survey
Sangwoo Mo
 
Brief History of Visual Representation Learning
Brief History of Visual Representation LearningBrief History of Visual Representation Learning
Brief History of Visual Representation Learning
Sangwoo Mo
 
Learning Visual Representations from Uncurated Data
Learning Visual Representations from Uncurated DataLearning Visual Representations from Uncurated Data
Learning Visual Representations from Uncurated Data
Sangwoo Mo
 
Hyperbolic Deep Reinforcement Learning
Hyperbolic Deep Reinforcement LearningHyperbolic Deep Reinforcement Learning
Hyperbolic Deep Reinforcement Learning
Sangwoo Mo
 
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
A Unified Framework for Computer Vision Tasks: (Conditional) Generative Model...
Sangwoo Mo
 
Self-supervised Learning Lecture Note
Self-supervised Learning Lecture NoteSelf-supervised Learning Lecture Note
Self-supervised Learning Lecture Note
Sangwoo Mo
 
Deep Learning Theory Seminar (Chap 3, part 2)
Deep Learning Theory Seminar (Chap 3, part 2)Deep Learning Theory Seminar (Chap 3, part 2)
Deep Learning Theory Seminar (Chap 3, part 2)
Sangwoo Mo
 
Deep Learning Theory Seminar (Chap 1-2, part 1)
Deep Learning Theory Seminar (Chap 1-2, part 1)Deep Learning Theory Seminar (Chap 1-2, part 1)
Deep Learning Theory Seminar (Chap 1-2, part 1)
Sangwoo Mo
 
Introduction to Diffusion Models
Introduction to Diffusion ModelsIntroduction to Diffusion Models
Introduction to Diffusion Models
Sangwoo Mo
 
Object-Region Video Transformers
Object-Region Video TransformersObject-Region Video Transformers
Object-Region Video Transformers
Sangwoo Mo
 
Deep Implicit Layers: Learning Structured Problems with Neural Networks
Deep Implicit Layers: Learning Structured Problems with Neural NetworksDeep Implicit Layers: Learning Structured Problems with Neural Networks
Deep Implicit Layers: Learning Structured Problems with Neural Networks
Sangwoo Mo
 
Learning Theory 101 ...and Towards Learning the Flat Minima
Learning Theory 101 ...and Towards Learning the Flat MinimaLearning Theory 101 ...and Towards Learning the Flat Minima
Learning Theory 101 ...and Towards Learning the Flat Minima
Sangwoo Mo
 
Sharpness-aware minimization (SAM)
Sharpness-aware minimization (SAM)Sharpness-aware minimization (SAM)
Sharpness-aware minimization (SAM)
Sangwoo Mo
 
Explicit Density Models
Explicit Density ModelsExplicit Density Models
Explicit Density Models
Sangwoo Mo
 
Score-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential EquationsScore-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Sangwoo Mo
 
Self-Attention with Linear Complexity
Self-Attention with Linear ComplexitySelf-Attention with Linear Complexity
Self-Attention with Linear Complexity
Sangwoo Mo
 
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit GradientsMeta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Sangwoo Mo
 
Generative Models for General Audiences
Generative Models for General AudiencesGenerative Models for General Audiences
Generative Models for General Audiences
Sangwoo Mo
 
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-LearningBayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Sangwoo Mo
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
Sangwoo Mo
 
Domain Transfer and Adaptation Survey
Domain Transfer and Adaptation SurveyDomain Transfer and Adaptation Survey
Domain Transfer and Adaptation Survey
Sangwoo Mo
 
Ad

Recently uploaded (20)

Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

  • 1. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (ICML 2019 Best Paper) 2019.07.17. Sangwoo Mo 1
  • 2. Outline • Quick Review • What is disentangled representation (DR)? • Prior work on the unsupervised learning of DR • Theoretical Results • Unsupervised learning of DR is impossible without inductive biases • Empirical Results • Q1. Which method should be used? • Q2. How to choose the hyperparameters? • Q3. How to select the best model from a set of trained models? 2
  • 3. Quick Review • Disentangled representation: Learn a representation 𝑧 from the data 𝑥 s.t. • Contain all the information of 𝑥 in a compact and interpretable structure • Currently no single formal definition L (many definitions for the factor of variation) 3* Image from BetaVAE (ICLR 2017)
  • 4. Quick Review: Prior Methods • BetaVAE (ICLR 2017) • Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior) 4
  • 5. Quick Review: Prior Methods • BetaVAE (ICLR 2017) • Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior) • FactorVAE (ICML 2018) & 𝜷-TCVAE (NeurIPS 2018) • Penalize the total correlation of the representation, which is estimated1 by adversarial learning (FactorVAE) or (biased) mini-batch approximation (𝛽-TCVAE) 51. It requires the aggregated posterior 𝑞(𝒛)
  • 6. Quick Review: Prior Methods • BetaVAE (ICLR 2017) • Use 𝛽 > 1 for the VAE objective (force to the factorized Gaussian prior) • FactorVAE (ICML 2018) & 𝜷-TCVAE (NeurIPS 2018) • Penalize the total correlation of the representation, which is estimated1 by adversarial learning (FactorVAE) or (biased) mini-batch approximation (𝛽-TCVAE) • DIP-VAE (ICLR 2018) • Match 𝑞(𝒛) to the disentangled prior 𝑝(𝒛), where 𝐷 is a (tractable) moment matching 61. It requires the aggregated posterior 𝑞(𝒛)
  • 7. Quick Review: Evaluation Metrics • Many heuristics are proposed to quantitatively evaluate the disentanglement • Basic idea: Factors and representation should have 1-1 correspondence 7
  • 8. Quick Review: Evaluation Metrics • Many heuristics are proposed to quantitatively evaluate the disentanglement • Basic idea: Factors and representation should have 1-1 correspondence • BetaVAE (ICLR 2017) & FactorVAE (ICML 2018) metric • Given a factor 𝑐., generate two (simulation) data 𝑥, 𝑥′ with same 𝑐. but different 𝑐1., then train a classifier to predict 𝑐. using the difference of the representation |𝑧 − 𝑧4| • Indeed, the classifier will map the zero-valued index of |𝑧 − 𝑧4 | to the factor 𝑐. 8
  • 9. Quick Review: Evaluation Metrics • Many heuristics are proposed to quantitatively evaluate the disentanglement • Basic idea: Factors and representation should have 1-1 correspondence • BetaVAE (ICLR 2017) & FactorVAE (ICML 2018) metric • Given a factor 𝑐., generate two (simulation) data 𝑥, 𝑥′ with same 𝑐. but different 𝑐1., then train a classifier to predict 𝑐. using the difference of the representation |𝑧 − 𝑧4| • Indeed, the classifier will map the zero-valued index of |𝑧 − 𝑧4 | to the factor 𝑐. • Mutual Information Gap (NeurIPS 2018) • Compute the mutual information between each factor 𝑐. and each dimension of 𝑧5 • For the highest and second highest dimensions 𝑖7 and 𝑖8 of the mutual information, measure the difference between them: 𝐼 𝑐., 𝑧5: − 𝐼(𝑐., 𝑧5; ) 9
  • 10. Theoretical Results • “Unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data” 10
  • 11. Theoretical Results • “Unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data” • Theorem. For 𝑝 𝒛 = ∏5>7 ? 𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t. • 𝒛 and 𝑓(𝒛) are completely entangled (i.e., ABC(𝒖) AEF ≠ 0 a.e. for all 𝑖, 𝑗) • 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖) 11
  • 12. Theoretical Results • “Unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data” • Theorem. For 𝑝 𝒛 = ∏5>7 ? 𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t. • 𝒛 and 𝑓(𝒛) are completely entangled (i.e., ABC(𝒖) AEF ≠ 0 a.e. for all 𝑖, 𝑗) • 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖) • Proof sketch. By construction. • Let 𝑔: supp 𝒛 → 0,1 ? s.t. 𝑔5 𝒗 = 𝑃(𝑧5 ≤ 𝑣5) • Let ℎ: 0,1 ? → ℝ? s.t. ℎ5 𝒗 = 𝜓17(𝑣5) where 𝜓 is a c.d.f. of a normal distribution • Then for any orthogonal matrix 𝑨, the following 𝑓 satisfies the condition: 𝑓 𝒖 = ℎ ∘ 𝑔 17(𝑨 ℎ ∘ 𝑔 𝒖 ) 12
  • 13. Theoretical Results • “Unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data” • Theorem. For 𝑝 𝒛 = ∏5>7 ? 𝑝(𝑧5), there exists an infinite family of bijective functions 𝑓 s.t. • 𝒛 and 𝑓(𝒛) are completely entangled (i.e., ABC(𝒖) AEF ≠ 0 a.e. for all 𝑖, 𝑗) • 𝒛 and 𝑓(𝒛) have same marginal distribution (i.e., 𝑃 𝒛 ≤ 𝒖 = 𝑃(𝑓 𝒛 ≤ 𝒖) for all 𝒖) • Corollary. One cannot find the disentangled representation 𝑟(𝒙) (w.r.t. to the generative model 𝐺(𝒙|𝒛)) as there are two equivalent generative models 𝐺 and 𝐺′ which has same marginal distribution 𝑝(𝒙) but 𝒛4 = 𝑓(𝒛) is completely entangled w.r.t. 𝒛 (so as 𝑟(𝒙)) • Namely, inferring representation 𝒛 from observation 𝒙 is not a well-defined problem 13
  • 14. Theoretical Results • 𝛽-VAE learns some decorrelated features, but they are not semantically decomposed • E.g., the width is entangled with the leg style in 𝛽-VAE 14* Image from BetaVAE (ICLR 2017)
  • 15. Empirical Results • Q1. Which method should be used? • A. Hyperparameters and random seeds matter more than the choice of the model 15
  • 16. Empirical Results • Q2. How to choose the hyperparameters? • A. Selecting the best hyperparameter is extremely hard due to the randomness 16
  • 17. Empirical Results • Q2. How to choose the hyperparameters? • A. Also, there is no obvious trend over the variation of hyperparameters 17
  • 18. Empirical Results • Q2. How to choose the hyperparameters? • A. Good hyperparameters often can be transferred (e.g., dSprites → color-dSprites) 18 Rank correlation matrix
  • 19. Empirical Results • Q3. How to select the best model from a set of trained models? • A. Unsupervised (training) scores do not correlated to the disentanglement metrics 19 Unsupervised scores vs disentanglement metrics
  • 20. Summary • TL;DR: Current unsupervised learning of disentangled representation has a limitation! • Summary of findings: • Q1. Which method should be used? • A. Current methods should be rigorously validated (no significant difference) 20
  • 21. Summary • TL;DR: Current unsupervised learning of disentangled representation has a limitation! • Summary of findings: • Q1. Which method should be used? • A. Current methods should be rigorously validated (no significant difference) • Q2. How to choose the hyperparameters? • A. No rule of thumb, but transfer across datasets seem to help! 21
  • 22. Summary • TL;DR: Current unsupervised learning of disentangled representation has a limitation! • Summary of findings: • Q1. Which method should be used? • A. Current methods should be rigorously validated (no significant difference) • Q2. How to choose the hyperparameters? • A. No rule of thumb, but transfer across datasets seem to help! • Q3. How to select the best model from a set of trained models? • A. (Unsupervised) model selection remains a key challenge! 22
  • 23. Following Work & Future Direction • “Disentangling Factors of Variation Using Few Labels” (ICLR Workshop 2019, NeurIPS 2019 submission) • Summary of findings: Using a few labels highly improves the disentanglement! 23
  • 24. Following Work & Future Direction • “Disentangling Factors of Variation Using Few Labels” (ICLR Workshop 2019, NeurIPS 2019 submission) • Summary of findings: Using a few labels highly improves the disentanglement! 1. Existing disentanglement metrics + few labels perform well on model selection, even though models are completely trained in an unsupervised manner 24
  • 25. Following Work & Future Direction • “Disentangling Factors of Variation Using Few Labels” (ICLR Workshop 2019, NeurIPS 2019 submission) • Summary of findings: Using a few labels highly improves the disentanglement! 1. Existing disentanglement metrics + few labels perform well on model selection, even though models are completely trained in an unsupervised manner 2. One can obtain even better results if one use few labels into the learning processes (use a simple supervised regularizer) 25
  • 26. Following Work & Future Direction • “Disentangling Factors of Variation Using Few Labels” (ICLR Workshop 2019, NeurIPS 2019 submission) • Summary of findings: Using a few labels highly improves the disentanglement! 1. Existing disentanglement metrics + few labels perform well on model selection, even though models are completely trained in an unsupervised manner 2. One can obtain even better results if one use few labels into the learning processes (use a simple supervised regularizer) • Take-home message: Future research should be on “how to utilize inductive bias better” using a few labels, rather than the previous total correlation-like approaches 26