SlideShare a Scribd company logo
January 27, 2005 11:55                  L24-CH15                       Sheet number 1 Page number 655                                           black



                                                                                                       CHAPTER 15
                                                                                   Multiple Integrals

              EXERCISE SET 15.1
                         1       2                                         1                                                     3       1                               3
               1.                    (x + 3)dy dx =                            (2x + 6)dx = 7                          2.                    (2x − 4y)dy dx =                4x dx = 16
                     0       0                                         0                                                     1       −1                              1

                         4       1                                 4                                                             0       2                               0
                                                                       1
               3.                       x2 y dx dy =                     y dy = 2                                      4.                     (x2 + y 2 )dx dy =             (3 + 3y 2 )dy = 14
                     2       0                                 2       3                                                     −2          −1                          −2

                         ln 3           ln 2                                   ln 3
               5.                               ex+y dy dx =                               ex dx = 2
                     0              0                                      0

                         2       1                                         2
                                                                               1
               6.                       y sin x dy dx =                          sin x dx = (1 − cos 2)/2
                     0       0                                         0       2

                         0          5                     0                                                                      6       7                  6
               7.                       dx dy =                3 dy = 3                                                8.                     dy dx =           10dx = 20
                     −1         2                         −1                                                                 4       −3                 4

                         1       1                                                     1
                                            x                                                          1
               9.                                 dy dx =                                   1−                     dx = 1 − ln 2
                     0       0          (xy + 1)2                                  0                  x+1

                         π           2                                             π
              10.                        x cos xy dy dx =                                  (sin 2x − sin x)dx = −2
                     π/2         1                                             π/2


                         ln 2           1                                          ln 2
                                                      2                                     1 x
              11.                           xy ey x dy dx =                                   (e − 1)dx = (1 − ln 2)/2
                     0              0                                          0            2

                         4       2                                                 4
                                           1                                                1   1
              12.                                dy dx =                                      −                       dx = ln(25/24)
                     3       1          (x + y)2                               3           x+1 x+2

                         1          2                                  1
              13.                        4xy 3 dy dx =                     0 dx = 0
                     −1         −2                                 −1

                         1       1
                                                     xy                                          1                                        √     √
              14.                                               dy dx =                              [x(x2 + 2)1/2 − x(x2 + 1)1/2 ]dx = (3 3 − 4 2 + 1)/3
                     0       0              x2 + y 2 + 1                                    0


                         1       3                                                     1
              15.                       x 1 − x2 dy dx =                                   x(1 − x2 )1/2 dx = 1/3
                     0       2                                                     0

                         π/2             π/3                                                                 π/2
                                                                                                                    x π2
              16.                               (x sin y − y sin x)dy dx =                                            −    sin x dx = π 2 /144
                     0               0                                                                   0          2   18

              17. (a) x∗ = k/2 − 1/4, k = 1, 2, 3, 4; yl = l/2 − 1/4, l = 1, 2, 3, 4,
                       k
                                                       ∗

                                                                                   4         4                               4       4
                                                f (x, y) dxdy ≈                                      f (x∗ , yl )∆Akl =
                                                                                                         k
                                                                                                              ∗
                                                                                                                                         [(k/2−1/4)2 +(l/2−1/4)](1/2)2 = 37/4
                                            R                                  k=1 l=1                                      k=1 l=1
                                        2        2
                    (b)                              (x2 + y) dxdy = 28/3; the error is |37/4 − 28/3| = 1/12
                                    0        0


                                                                                                                    655
January 27, 2005 11:55                 L24-CH15                     Sheet number 2 Page number 656                                        black



             656                                                                                                                                                                 Chapter 15


             18. (a) x∗ = k/2 − 1/4, k = 1, 2, 3, 4; yl = l/2 − 1/4, l = 1, 2, 3, 4,
                      k
                                                      ∗

                                                                             4       4                                  4     4
                                              f (x, y) dxdy ≈                                f (x∗ , yl )∆Akl =
                                                                                                 k
                                                                                                      ∗
                                                                                                                                      [(k/2 − 1/4) − 2(l/2 − 1/4)](1/2)2 = −4
                                          R                                 k=1 l=1                                   k=1 l=1
                                      2        2
                   (b)                             (x − 2y) dxdy = −4; the error is zero
                                  0        0



             19. (a)                                z                                                                  (b)                 z

                              (1, 0, 4)                                                                                                    (0, 0, 5)

                                                                                                                                                        (0, 4, 3)


                                                                                     y                                                                              y


                                                                (2, 5, 0)                                                                      (3, 4, 0)
                                   x                                                                                              x



                                                    z                                                                                          z
             20. (a)                                                                                                   (b)                         (2, 2, 8)

                                                    (0, 0, 2)




                                                                                 y                                                                                           y

                                                                                                                                            (2, 2, 0)
                                                    (1, 1, 0)


                              x                                                                                                   x



                                   5          2                                      5
             21. V =                              (2x + y)dy dx =                        (2x + 3/2)dx = 19
                               3          1                                      3


                                   3          2                                                  3
             22. V =                              (3x3 + 3x2 y)dy dx =                               (6x3 + 6x2 )dx = 172
                               1          0                                                  1


                                   2          3                         2
             23. V =                              x2 dy dx =                3x2 dx = 8
                               0          0                         0


                                   3          4                                              3
             24. V =                              5(1 − x/3)dy dx =                              5(4 − 4x/3)dx = 30
                               0          0                                              0



                        1/2           π                                                               1/2                     π
             25.                          x cos(xy) cos2 πx dy dx =                                         cos2 πx sin(xy)       dx
                    0             0                                                               0                           0
                                                                                                      1/2                                                  1/2
                                                                                                                                          1                              1
                                                                                         =                  cos2 πx sin πx dx = −           cos3 πx              =
                                                                                                  0                                      3π                0            3π
January 27, 2005 11:55               L24-CH15                                    Sheet number 3 Page number 657                                                    black



              Exercise Set 15.2                                                                                                                                                                                      657

                                                                                                                                                5       2                       5        3
              26. (a)                            z                                                             (b)            V =                           y dy dx +                        (−2y + 6) dy dx
                                                                                                                                            0       0                       0        2

                                                                 (0, 2, 2)
                                                                                                                                   = 10 + 5 = 15

                                                                                                 y
                                                                                 3


                                 5                               (5, 3, 0)
                                  x


                                             π/2                 1                                                      π/2                         x=1                             π/2
                                     2                                                                         2                                                        2                                        2
              27. fave =                                             y sin xy dx dy =                                             − cos xy                       dy =                     (1 − cos y) dy = 1 −
                                     π   0                   0                                                 π    0                               x=0                 π       0                                π

                                         1            3              1                                                        3
                                                                                                                                  1                                   √
              28. average =                                              x(x2 + y)1/2 dx dy =                                       [(1 + y)3/2 − y 3/2 ]dy = 2(31 − 9 3)/45
                                         3        0              0                                                        0       9
                                             1           2                                                                             1                                                      ◦
                                     1                                                                                        1             44                                      14
              29. Tave =                                         10 − 8x2 − 2y 2 dy dx =                                                       − 16x2              dx =                           C
                                     2   0           0                                                                        2    0         3                                      3

                                                         b           d
                                      1                                                                1
              30. fave =                                                 k dy dx =                         (b − a)(d − c)k = k
                                     A(R)            a           c                                    A(R)

              31. 1.381737122                                                                                                      32. 2.230985141

                                                                         b               d                                             b                    d
              33.              f (x, y)dA =                                                  g(x)h(y)dy dx =                               g(x)                 h(y)dy dx
                                                                     a               c                                             a                    c
                         R
                                                                             b                                 d
                                                         =                       g(x)dx                            h(y)dy
                                                                         a                                 c


              34. The integral of tan x (an odd function) over the interval [−1, 1] is zero.

              35. The first integral equals 1/2, the second equals −1/2. No, because the integrand is not continuous.



              EXERCISE SET 15.2
                         1       x                                           1
                                                                                     1 4
               1.                    xy 2 dy dx =                                      (x − x7 )dx = 1/40
                     0       x2                                          0           3

                         3/2          3−y                                            3/2
               2.                            y dx dy =                                       (3y − 2y 2 )dy = 7/24
                     1            y                                              1

                                 √
                         3            9−y 2                                              3
               3.                                y dx dy =                                   y       9 − y 2 dy = 9
                     0       0                                                       0

                         1        x                                                      1           x                                          1
               4.                        x/y dy dx =                                                     x1/2 y −1/2 dy dx =                        2(x − x3/2 )dx = 13/80
                     1/4       x2                                                    1/4         x2                                          1/4
January 27, 2005 11:55               L24-CH15                        Sheet number 4 Page number 658                                                                black



             658                                                                                                                                                                                              Chapter 15

                        √                                                                √
                         2π             x3                                                2π
              5.    √
                                             sin(y/x)dy dx =                            √
                                                                                                     [−x cos(x2 ) + x]dx = π/2
                     π              0                                                    π

                        1       x2                                               1                                                        π               x2                                           π
                                                                                                                                                                  1
              6.                         (x2 − y)dy dx =                                2x4 dx = 4/5                            7.                                  cos(y/x)dy dx =                        sin x dx = 1
                    −1      −x2                                              −1                                                       π/2             0           x                                π/2

                        1       x                               1                                                                         1           x                                            1
                                         2                                   2                                                                                                                         1 3
              8.                    ex dy dx =                      xex dx = (e − 1)/2                                          9.                        y        x2 − y 2 dy dx =                      x dx = 1/12
                    0       0                               0                                                                         0           0                                            0       3

                        2       y2                                      2
                                                  2
             10.                     ex/y dx dy =                           (e − 1)y 2 dy = 7(e − 1)/3
                    1       0                                       1

                                    2            x2                                                                                                       4        2
             11. (a)                                  f (x, y) dydx                                                                  (b)                          √
                                                                                                                                                                       f (x, y) dxdy
                                0         0                                                                                                           0            y
                                                 √                                                                                                                 √
                                    1             x                                                                                                       1         y
             12. (a)                                  f (x, y) dydx                                                                  (b)                                   f (x, y) dxdy
                                0         x2                                                                                                          0           y2

                                     2           3                                                   4        3                                   5        3
             13. (a)                                     f (x, y) dydx +                                          f (x, y) dydx +                                  f (x, y) dydx
                                1            −2x+5                                               2        1                                   4           2x−7
                                     3           (y+7)/2
                   (b)                                     f (x, y) dxdy
                                1            (5−y)/2
                                                 √                                                                                                                 √
                                    1             1−x2                                                                                                    1            1−y 2
             14. (a)                          √            f (x, y) dydx                                                             (b)                               √           f (x, y) dxdy
                                −1           − 1−x2                                                                                                   −1           −       1−y 2

                                     2           x2                              2
                                                                                        1 5      16
             15. (a)                                  xy dy dx =                          x dx =
                                0            0                               0          2        3
                                     3           (y+7)/2                                         3
                   (b)                                     xy dx dy =                                (3y 2 + 3y)dy = 38
                                1            −(y−5)/2                                        1

                                                 √
                                     1            x                                             1
             16. (a)                                  (x + y)dy dx =                                (x3/2 + x/2 − x3 − x4 /2)dx = 3/10
                                0            x2                                             0
                                                 √                                                       √
                                     1            1−x2                                      1             1−x2                        1
                   (b)                        √            x dy dx +                                  √             y dy dx =                 2x 1 − x2 dx + 0 = 0
                                −1           − 1−x2                                     −1           − 1−x2                           −1

                                     8           x                                  8
             17. (a)                                   x2 dy dx =                       (x3 − 16x)dx = 576
                                4            16/x                               4
                                     4           8                               8           8                              8
                                                                                                                                 512 4096                                          8
                                                                                                                                                                                       512 − y 3
                   (b)                                x2 dxdy +                                  x2 dx dy =                         −      dy +                                                  dy
                                2            16/y                            4           y                              4         3   3y 3                                    4           3
                                                                                                                        640 1088
                                                                                                                    =      +     = 576
                                                                                                                         3    3
                                     2           y                               2
                                                                                        1 4
             18. (a)                                 xy 2 dx dy =                         y dy = 31/10
                                1            0                               1          2
                                     1           2                              2        2                                  1                                 2
                                                                                                                                                                  8x − x4
                   (b)                               xy 2 dydx +                                xy 2 dydx =                     7x/3 dx +                                 dx = 7/6 + 29/15 = 31/10
                                0            1                              1           x                               0                                 1          3
January 27, 2005 11:55               L24-CH15                        Sheet number 5 Page number 659                                       black



              Exercise Set 15.2                                                                                                                                    659

                                               √
                                      1         1−x2                                                     1
              19. (a)                         √            (3x − 2y)dy dx =                                   6x 1 − x2 dx = 0
                                  −1         − 1−x2                                                      −1
                                               √
                                      1            1−y 2                                                  1
                    (b)                        √             (3x − 2y) dxdy =                                 −4y       1 − y 2 dy = 0
                                  −1         −       1−y 2                                               −1

                                               √
                                      5         25−x2                                    5
              20. (a)                                        y dy dx =                       (5x − x2 )dx = 125/6
                                  0        5−x                                       0
                                               √
                                      5            25−y 2                                5
                    (b)                                      y dxdy =                        y           25 − y 2 − 5 + y dy = 125/6
                                  0        5−y                                      0

                                 √
                         4        y                                                              4
                                                                                                     1                       √
              21.                         x(1 + y 2 )−1/2 dx dy =                                      y(1 + y 2 )−1/2 dy = ( 17 − 1)/2
                     0       0                                                               0       2

                         π       x                                         π
              22.                     x cos y dy dx =                          x sin x dx = π
                     0       0                                        0

                         2       6−y                                  2
                                                                           1
              23.                         xy dx dy =                         (36y − 12y 2 + y 3 − y 5 )dy = 50/3
                     0       y2                                  0         2
                                        √
                         π/4          1/ 2                                 π/4
                                                                                    1
              24.                                x dx dy =                            cos 2y dy = 1/8
                     0               sin y                             0            4

                         1       x                                         1
              25.                    (x − 1)dy dx =                            (−x4 + x3 + x2 − x)dx = −7/60
                     0       x3                                        0

                           √                                                                                              √
                         1/ 2             2x                              1            1/x                              1/ 2             1
              26.                                2
                                               x dy dx +                √
                                                                                                     2
                                                                                                 x dy dx =                     x3 dx +     √ (x   − x3 )dx = 1/8
                     0                x                               1/ 2          x                               0                    1/ 2


                                                                 y
              27. (a)
                                                             4

                                                             3

                                                             2

                                                             1
                                                                                             x
                                  –2             –1                  0.5         1.5



                    (b) x = (−1.8414, 0.1586), (1.1462, 3.1462)

                                                              1.1462            x+2                              1.1462
                    (c)                   x dA ≈                                             x dydx =                      x(x + 2 − ex ) dx ≈ −0.4044
                                                             −1.8414           ex                               −1.8414
                                 R
                                                              3.1462            ln y                            3.1462
                                                                                                                           ln2 y (y − 2)2
                    (d)                   x dA ≈                                         x dxdy =                               −                 dy ≈ −0.4044
                                                             0.1586            y−2                             0.1586        2      2
                                 R
January 27, 2005 11:55                  L24-CH15                         Sheet number 6 Page number 660                                       black



             660                                                                                                                                                     Chapter 15


             28. (a)                    y                                                                                      (b)      (1, 3), (3, 27)
                            25


                            15                                       R


                                5
                                                                                          x
                                                       1         2                3

                                    3           4x3 −x4                                     3
                                                                                                                                                      224
                   (c)                                         x dy dx =                        x[(4x3 − x4 ) − (3 − 4x + 4x2 )] dx =
                                1           3−4x+4x2                                    1                                                              15

                                    π/4              cos x                        π/4                                         √
             29. A =                                         dy dx =                    (cos x − sin x)dx =                       2−1
                                0                   sin x                     0

                                    1           −y 2                      1
             30. A =                                    dx dy =               (−y 2 − 3y + 4)dy = 125/6
                                −4          3y−4                         −4

                                    3           9−y 2                         3
             31. A =                                         dx dy =               8(1 − y 2 /9)dy = 32
                                −3          1−y 2 /9                       −3

                                    1        cosh x                           1
             32. A =                                        dy dx =               (cosh x − sinh x)dx = 1 − e−1
                                0           sinh x                        0

                        4       6−3x/2                                                                         4
             33.                                    (3 − 3x/4 − y/2) dy dx =                                       [(3 − 3x/4)(6 − 3x/2) − (6 − 3x/2)2 /4] dx = 12
                    0       0                                                                              0

                                √
                        2        4−x2                                                       2
             34.                                       4 − x2 dy dx =                           (4 − x2 ) dx = 16/3
                    0       0                                                           0

                                                √
                                    3            9−x2                                                3
             35. V =                         √               (3 − x)dy dx =                              (6 9 − x2 − 2x 9 − x2 )dx = 27π
                                −3          − 9−x2                                                  −3

                                    1           x                                               1
             36. V =                                (x2 + 3y 2 )dy dx =                             (2x3 − x4 − x6 )dx = 11/70
                                0           x2                                              0

                                    3           2                                               3
             37. V =                                (9x2 + y 2 )dy dx =                             (18x2 + 8/3)dx = 170
                                0           0                                               0

                                    1           1                                     1
             38. V =                                (1 − x)dx dy =                        (1/2 − y 2 + y 4 /2)dy = 8/15
                                −1          y2                                     −1

                                                     √
                                    3/2               9−4x2                                               3/2
             39. V =                                 √      (y       + 3)dy dx =                                   6     9 − 4x2 dx = 27π/2
                                −3/2                − 9−4x2                                              −3/2

                                    3           3                                             3
             40. V =                                  (9 − x2 )dx dy =                            (18 − 3y 2 + y 6 /81)dy = 216/7
                                0           y 2 /3                                        0

                                                    √
                                        5            25−x2                                                         5
             41. V = 8                                           25 − x2 dy dx = 8                                     (25 − x2 )dx = 2000/3
                                    0           0                                                              0
January 27, 2005 11:55                L24-CH15                                  Sheet number 7 Page number 661                                                      black



              Exercise Set 15.2                                                                                                                                                                                   661

                                                       √
                                           2                1−(y−1)2                                                                          2
                                                                                                                                                    1
              42. V = 2                                                         (x2 + y 2 )dx dy = 2                                                  [1 − (y − 1)2 ]3/2 + y 2 [1 − (y − 1)2 ]1/2 dy,
                                       0           0                                                                                      0         3
                                                                                                          π/2
                                                                                                                          1
                    let y − 1 = sin θ to get V = 2                                                                          cos3 θ + (1 + sin θ)2 cos θ cos θ dθ which eventually yields
                                                                                                      −π/2                3
                    V = 3π/2
                                                       √
                                           1            1−x2                                                                                  1
                                                                                                                                  8
              43. V = 4                                            (1 − x2 − y 2 )dy dx =                                                         (1 − x2 )3/2 dx = π/2
                                       0           0                                                                              3       0

                                                   √
                                      2             4−x2                                                              2
                                                                                                                                                      1
              44. V =                                            (x2 + y 2 )dy dx =                                           x2              4 − x2 + (4 − x2 )3/2 dx = 2π
                                  0            0                                                                  0                                   3
                         √
                          2           2                                                                               8           x/2                                            e2        2
              45.                          f (x, y)dx dy                                            46.                                       f (x, y)dy dx           47.                        f (x, y)dy dx
                     0            y2                                                                              0           0                                              1            ln x
                                                                                                                                                                                          √
                         1        e                                                                                   π/2                 sin x                                  1         x
              48.                     f (x, y)dx dy                                                 49.                                            f (x, y)dy dx      50.                        f (x, y)dy dx
                     0        ey                                                                                  0                   0                                      0        x2

                         4        y/4                                                   4
                                                                                            1 −y2
                                           e−y dx dy =                                        ye dy = (1 − e−16 )/8
                                                       2
              51.
                     0        0                                                     0       4
                         1        2x                                                        1
              52.                         cos(x2 )dy dx =                                       2x cos(x2 )dx = sin 1
                     0        0                                                         0

                         2        x2                                            2
                                               3                                                3
              53.                         ex dy dx =                                x2 ex dx = (e8 − 1)/3
                     0        0                                             0

                         ln 3          3                                            ln 3
                                                                    1                                                                 1
              54.                          x dx dy =                                        (9 − e2y )dy =                              (9 ln 3 − 4)
                     0             ey                               2           0                                                     2

                         2        y2                                                        2
              55.                         sin(y 3 )dx dy =                                      y 2 sin(y 3 )dy = (1 − cos 8)/3
                     0        0                                                         0

                         1        e                                     1
              56.                     x dy dx =                             (ex − xex )dx = e/2 − 1
                     0        ex                                    0

                                       4           2
              57. (a)                          √
                                                           sin πy 3 dy dx; the inner integral is non-elementary.
                                   0            x
                                       2           y2                                                         2                                                             2
                                                                                                                                                              1
                                                           sin πy 3 dx dy =                                       y 2 sin πy 3 dy = −                           cos πy 3         =0
                                   0           0                                                          0                                                  3π             0
                                       1           π/2
                    (b)                                          sec2 (cos x)dx dy ; the inner integral is non-elementary.
                                   0           sin−1         y
                                       π/2                 sin x                                                              π/2
                                                                   sec2 (cos x)dy dx =                                                 sec2 (cos x) sin x dx = tan 1
                                   0                   0                                                                  0
                                                       √
                                           2            4−x2                                                                      2
                                                                                                                                                            1
              58. V = 4                                            (x2 + y 2 ) dy dx = 4                                                  x2        4 − x2 + (4 − x2 )3/2            dx           (x = 2 sin θ)
                                       0           0                                                                          0                             3
                                      π/2
                                                       64 64           128                                                                          64 π 64 π 128 π 1 · 3
                         =                                +   sin2 θ −     sin4 θ                                                     dθ =               +     −          = 8π
                                  0                     3   3           3                                                                            3 2   3 4   3 2 2·4
January 27, 2005 11:55                  L24-CH15                     Sheet number 8 Page number 662                                                   black



             662                                                                                                                                                                   Chapter 15


             59. The region is symmetric with respect to the y-axis, and the integrand is an odd function of x,
                 hence the answer is zero.

             60. This is the volume in the first octant under the surface z =                                                                         1 − x2 − y 2 , so 1/8 of the volume of
                                              π
                 the sphere of radius 1, thus .
                                              6
                                                                                              1       1                                          1
                                             ¯                                                                   1                                      1       x        π
             61. Area of triangle is 1/2, so f = 2                                                                   dy dx = 2                              −        dx = − ln 2
                                                                                          0           x       1 + x2                         0       1 + x2   1 + x2     2

                                            2
             62. Area =                         (3x − x2 − x) dx = 4/3, so
                                        0
                                        2        3x−x2                                                        2
                   ¯ 3
                   f=                                         (x2 − xy)dy dx =
                                                                                                  3
                                                                                                                  (−2x3 + 2x4 − x5 /2)dx = −
                                                                                                                                                              3 8
                                                                                                                                                                   =−
                                                                                                                                                                      2
                      4             0           x                                                 4       0                                                   4 15    5

                                         1
             63. Tave =                                        (5xy + x2 ) dA. The diamond has corners (±2, 0), (0, ±4) and thus has area
                                        A(R)
                                                         R
                           1
                   A(R) = 4 2(4) = 16m2 . Since 5xy is an odd function of x (as well as y),                                                                            5xy dA = 0. Since
                           2
                                                                                                                                                                   R
                   x2 is an even function of both x and y,
                                                                                                                                                                                       2◦
                                                                                        4−2x                                   2                                               2
                                     4                                   1 2                                           1                                      1   4 3 1 4
                   Tave =                                x2 dA =          st                      x2 dydx =                        (4 − 2x)x2 dx =                  x − x          =      C
                                    16                                   4 0        0                                  4   0                                  4   3    2       0       3
                                              R
                                            x,y>0



             64. The area of the lens is πR2 = 4π and the average thickness Tave is
                                                             √
                                                    2         4−x2                                                                     2
                               4                                                                                           1               1
                   Tave     =                                        1 − (x2 + y 2 )/4 dydx =                                                (4 − x2 )3/2 dx       (x = 2 cos θ)
                              4π                0        0                                                                 π       0       6
                                     8              π
                                                                              8 1·3π     1
                            =                           sin4 θ dθ =                     = in
                                    3π          0                            3π 2 · 4 2  2

             65. y = sin x and y = x/2 intersect at x = 0 and x = a = 1.895494, so
                                    a        sin x
                   V =                                       1 + x + y dy dx = 0.676089
                                0           x/2




             EXERCISE SET 15.3
                        π/2         sin θ                                         π/2
                                                                                        1
              1.                                r cos θdr dθ =                            sin2 θ cos θ dθ = 1/6
                    0           0                                             0         2

                        π       1+cos θ                                  π
                                                                             1
              2.                                    r dr dθ =                  (1 + cos θ)2 dθ = 3π/4
                    0       0                                        0       2

                        π/2         a sin θ                                  π/2
                                                                                   a3            2
              3.                                    r2 dr dθ =                        sin3 θ dθ = a3
                    0           0                                        0         3             9

                        π/6         cos 3θ                               π/6
                                                                                  1
              4.                                    r dr dθ =                       cos2 3θ dθ = π/24
                    0           0                                    0            2
January 27, 2005 11:55                L24-CH15                          Sheet number 9 Page number 663                                                    black



              Exercise Set 15.3                                                                                                                                                                663

                         π        1−sin θ                                                  π
                                                                                                1
               5.                                  r2 cos θ dr dθ =                               (1 − sin θ)3 cos θ dθ = 0
                     0        0                                                        0        3

                         π/2              cos θ                              π/2
                                                                                   1
               6.                                 r3 dr dθ =                         cos4 θ dθ = 3π/64
                     0                0                                  0         4

                                      2π          1−cos θ                                  2π
                                                                                                   1
               7. A =                                               r dr dθ =                        (1 − cos θ)2 dθ = 3π/2
                               0             0                                         0           2

                                          π/2             sin 2θ                                   π/2
               8. A = 4                                              r dr dθ = 2                         sin2 2θ dθ = π/2
                                      0               0                                        0

                                      π/2             1                            π/2
                                                                                                1
               9. A =                                          r dr dθ =                          (1 − sin2 2θ)dθ = π/16
                               π/4                sin 2θ                        π/4             2

                                          π/3             2                            π/3                                                       √
              10. A = 2                                            r dr dθ =                    (4 − sec2 θ)dθ = 4π/3 −                              3
                                      0               sec θ                        0

                                      5π/6                4 sin θ                                                                                    3π/2       1
              11. A =                                               f (r, θ) r dr dθ                                               12. A =                                   f (r, θ)r dr dθ
                               π/6                    2                                                                                          π/2           1+cos θ

                                          π/2              3                                                                                             π/2       2 sin θ
              13. V = 8                                        r     9 − r2 dr dθ                                                  14. V = 2                                 r2 dr dθ
                                      0               1                                                                                              0         0

                                          π/2              cos θ                                                                                         π/2       3
              15. V = 2                                            (1 − r2 )r dr dθ                                                16. V = 4                           dr dθ
                                      0               0                                                                                              0         1

                                          π/2              3
                                                                                                    128 √                  π/2
                                                                                                                                          64 √
              17. V = 8                                        r     9 − r2 dr dθ =                       2                        dθ =        2π
                                      0               1                                              3                 0                  3

                                          π/2              2 sin θ                                      π/2
                                                                                           16
              18. V = 2                                              r2 dr dθ =                                sin3 θ dθ = 32/9
                                      0               0                                    3        0

                                          π/2              cos θ                                                   π/2
                                                                                                         1
              19. V = 2                                            (1 − r2 )r dr dθ =                                    (2 cos2 θ − cos4 θ)dθ = 5π/32
                                      0               0                                                  2     0

                                          π/2              3                       π/2
              20. V = 4                                        dr dθ = 8                    dθ = 4π
                                      0               1                        0

                                      π/2             3 sin θ                                                π/2
                                                                                                                                          27
              21. V =                                              r2 sin θ drdθ = 9                               sin4 θ dθ =               π
                                  0               0                                                      0                                16

                                          π/2              2                                                       π           2
              22. V = 2                                               4 − r2 r drdθ + 2                                             4 − r2 r drdθ
                                      0               2 cos θ                                                  π/2         0
                                      π/2                                                                 π
                                             16                                                                16      32 8
                         =                      (1 − cos2 θ)3/2 θ dθ +                                            dθ =   + π
                                  0           3                                                          π/2    3      9  3

                         2π           1                                                                  2π
                                                                        1
                                          e−r r dr dθ =                   (1 − e−1 )                          dθ = (1 − e−1 )π
                                                  2
              23.
                     0            0                                     2                            0
January 27, 2005 11:55               L24-CH15                             Sheet number 10 Page number 664                                           black



             664                                                                                                                                                            Chapter 15

                       π/2           3                                                         π/2
             24.                         r           9 − r2 dr dθ = 9                                dθ = 9π/2
                   0             0                                                         0

                       π/4           2                                                              π/4
                                           1             1                                                             π
             25.                                r dr dθ = ln 5                                               dθ =        ln 5
                   0             0       1 + r2          2                                      0                      8

                       π/2           2 cos θ                                                            π/2
                                                                                           16
             26.                                     2r2 sin θ dr dθ =                                           cos3 θ sin θ dθ = 1/3
                   π/4           0                                                         3         π/4


                       π/2           1                                       π/2
                                                                    1
             27.                         r3 dr dθ =                                  dθ = π/8
                   0             0                                  4    0

                       2π        2                                                                          2π
                                                                        1
                                     e−r r dr dθ =                        (1 − e−4 )                             dθ = (1 − e−4 )π
                                                 2
             28.
                   0         0                                          2                               0

                       π/2           2 cos θ                                             π/2
                                                                             8
             29.                                     r2 dr dθ =                                cos3 θ dθ = 16/9
                   0             0                                           3       0

                       π/2           1                                                                  π/2
                                                                                 1                                      π
             30.                         cos(r2 )r dr dθ =                         sin 1                         dθ =     sin 1
                   0             0                                               2                  0                   4

                       π/2           a
                                              r               π
             31.                                      dr dθ =   1 − 1/                                             1 + a2
                   0             0       (1 + r2 )3/2         2

                       π/4           sec θ tan θ
                                                                                     1        π/4                         √
             32.                                           r2 dr dθ =                                sec3 θ tan3 θ dθ = 2( 2 + 1)/45
                   0             0                                                   3    0

                       π/4           2
                                              r           π √
             33.                         √         dr dθ = ( 5 − 1)
                   0             0           1+r 2        4

                       π/2                           5                                        π/2
                                                                                     1
             34.                                               r dr dθ =                                         (25 − 9 csc2 θ)dθ
                   tan−1 (3/4)                   3 csc θ                             2    tan−1 (3/4)

                                                                                     25 π                     25
                                                                             =            − tan−1 (3/4) − 6 =    tan−1 (4/3) − 6
                                                                                     2 2                       2
                                 2π              a                                   2π
                                                                                              a2
             35. V =                                 hr dr dθ =                           h      dθ = πa2 h
                             0               0                                   0            2

                                                         π/2        a                                                                               a
                                                                        c 2                       4c                                                        4 2
             36. (a) V = 8                                                (a − r2 )1/2 r dr dθ = − π(a2 − r2 )3/2                                       =     πa c
                                                     0          0       a                         3a                                                0       3
                                             4
                   (b) V ≈                     π(6378.1370)2 6356.5231 ≈ 1,083,168,200,000 km3
                                             3

                                     π/2                 a sin θ                                                                    π/2
                                                                    c 2                     2
             37. V = 2                                                (a − r2 )1/2 r dr dθ = a2 c                                         (1 − cos3 θ)dθ = (3π − 4)a2 c/9
                                 0                   0              a                       3                                   0

                                                          √
                                     π/4                 a 2 cos 2θ                                              π/4
             38. A = 4                                                   r dr dθ = 4a2                                 cos 2θ dθ = 2a2
                                 0                   0                                                       0
January 27, 2005 11:55             L24-CH15                              Sheet number 11 Page number 665                                                                   black



              Exercise Set 15.4                                                                                                                                                                                       665

                                π/4                4 sin θ                                 π/2             4 sin θ
              39. A =                          √                    r dr dθ +                                        r dr dθ
                               π/6              8 cos 2θ                               π/4             0
                                π/4                                                                     π/2                           √
                      =                    (8 sin2 θ − 4 cos 2θ)dθ +                                            8 sin2 θ dθ = 4π/3 + 2 3 − 2
                               π/6                                                                     π/4

                                   φ           2a sin θ                                        φ
                                                                                                                     1
              40. A =                                        r dr dθ = 2a2                         sin2 θ dθ = a2 φ − a2 sin 2φ
                               0           0                                               0                         2
                                                           +∞                          +∞                                           +∞               +∞
                                                                e−x dx                         e−y dy =                                                       e−x dx e−y dy
                                                                     2                                      2                                                         2                 2
              41. (a) I 2 =
                                                    0                              0                                            0                0
                                                    +∞              +∞                                                  +∞              +∞
                                                                         e−x e−y dx dy =                                                        e−(x
                                                                               2       2                                                                 2
                                                                                                                                                             +y 2 )
                                       =                                                                                                                              dx dy
                                                0               0                                                   0               0
                                                       π/2          +∞
                                                                                                           1        π/2
                                                                                                                                                                                            √
                                                                         e−r r dr dθ =
                                                                            2
                    (b) I 2 =                                                                                             dθ = π/4                                        (c)       I=              π/2
                                                   0            0                                          2    0
                                                                                               √
              42. The two quarter-circles with center at the origin and of radius A and 2A lie inside and outside
                  of the square with corners (0, 0), (A, 0), (A, A), (0, A), so the following inequalities hold:
                                                                                                                                                                                    √
                         π/2           A                                                   A           A                                                                  π/2        2A
                                               1                                                                        1                                                                       1
                                                      rdr dθ ≤                                                                                  dx dy ≤                                                rdr dθ
                     0             0       (1 + r2 )2                                  0           0        (1 +     x2     +       y 2 )2                            0         0           (1 + r2 )2
                                                                                                                                                     2
                                                                         πA
                    The integral on the left can be evaluated as                 and the integral on the right equals
                                                                      4(1 + A2 )
                           2
                       2πA                                               π
                             2)
                                . Since both of these quantities tend to   as A → +∞, it follows by sandwiching that
                    4(1 + 2A                                             4
                         +∞            +∞
                                                         1                 π
                                                                    dx dy = .
                     0             0               (1 + x2 + y 2 )2        4
                                                                                                                                            π       1                                           1
                                                                                                                                                        re−r dr dθ = π                              re−r dr ≈ 1.173108605
                                                                                                                                                                4                                         4
              43. (a) 1.173108605                                                                                    (b)
                                                                                                                                        0       0                                           0

                                   2π              R                                   2π              R                                                                            R
              44. V =                                  D(r)r dr dθ =                                        ke−r r dr dθ = −2πk(1 + r)e−r                                               = 2πk[1 − (R + 1)e−R ]
                               0               0                                   0               0                                                                                0

                         tan−1 (2)                     2                                           tan−1 (2)                                                   tan−1 (2)
              45.                                          r3 cos2 θ dr dθ = 4                                          cos2 θ dθ = 2                                           (1 + cos(2θ)) dθ
                     tan−1 (1/3)                   0                                           tan−1 (1/3)                                                   tan−1 (1/3)
                                                   √      √
                    = 2(tan−1 2 − tan−1 (1/3)) + 2/ 5 − 1/ 10



              EXERCISE SET 15.4
               1. (a)                                           z                      (b)                                  z                                               (c)                                  z




                                                                                                                                                                      y
                                                                                                        x                                                                               x
                               x                                           y                                                                                                                                           y
January 27, 2005 11:55     L24-CH15         Sheet number 12 Page number 666                   black



             666                                                                                                        Chapter 15


                                   z                                                           z
              2. (a)                                                             (b)




                                                                                       x


                                                                                                               y
                                                      y



                               x

                   (c)                      z




                                                          y
                           x




                                           5 3
              3. (a) x = u, y = v, z =      + u − 2v                             (b) x = u, y = v, z = u2
                                           2 2
                                              v                                                          1 2 5
              4. (a) x = u, y = v, z =                                           (b) x = u, y = v, z =     v −
                                           1 + u2                                                        3     3

              5. (a) x = 5 cos u, y = 5 sin u, z = v; 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1
                   (b) x = 2 cos u, y = v, z = 2 sin u; 0 ≤ u ≤ 2π, 1 ≤ v ≤ 3

              6. (a) x = u, y = 1 − u, z = v; −1 ≤ v ≤ 1                         (b) x = u, y = 5 + 2v, z = v; 0 ≤ u ≤ 3

              7. x = u, y = sin u cos v, z = sin u sin v                     8. x = u, y = eu cos v, z = eu sin v

                                                   1
                                                                            10. x = r cos θ, y = r sin θ, z = e−r
                                                                                                                    2
              9. x = r cos θ, y = r sin θ, z =
                                                 1 + r2
             11. x = r cos θ, y = r sin θ, z = 2r2 cos θ sin θ

             12. x = r cos θ, y = r sin θ, z = r2 (cos2 θ − sin2 θ)
                                                 √                  √
             13. x = r cos θ, y = r sin θ, z =       9 − r2 ; r ≤       5
                                                                                                              √
                                                                                   1            1               3
             14. x = r cos θ, y = r sin θ, z = r; r ≤ 3                     15. x = ρ cos θ, y = ρ sin θ, z =     ρ
                                                                                   2            2              2
             16. x = 3 cos θ, y = 3 sin θ, z = 3 cot φ                      17. z = x − 2y; a plane

             18. y = x2 + z 2 , 0 ≤ y ≤ 4; part of a circular paraboloid

             19. (x/3)2 + (y/2)2 = 1; 2 ≤ z ≤ 4; part of an elliptic cylinder
January 27, 2005 11:55        L24-CH15               Sheet number 13 Page number 667                                           black



              Exercise Set 15.4                                                                                                                                               667


              20. z = x2 + y 2 ; 0 ≤ z ≤ 4; part of a circular paraboloid

              21. (x/3)2 + (y/4)2 = z 2 ; 0 ≤ z ≤ 1; part of an elliptic cone

              22. x2 + (y/2)2 + (z/3)2 = 1; an ellipsoid
                                                                                                                              √
              23. (a) x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 2; x = u, y = v, z =                                               u2 + v 2 ; 0 ≤ u2 + v 2 ≤ 4
                                                                                              √
              24. (a) I: x = r cos θ, y = r sin θ, z = r2 , 0 ≤ r ≤                                  2; II: x = u, y = v, z = u2 + v 2 ; u2 + v 2 ≤ 2

              25. (a) 0 ≤ u ≤ 3, 0 ≤ v ≤ π                                                                 (b) 0 ≤ u ≤ 4, −π/2 ≤ v ≤ π/2

              26. (a) 0 ≤ u ≤ 6, −π ≤ v ≤ 0                                                                (b) 0 ≤ u ≤ 5, π/2 ≤ v ≤ 3π/2

              27. (a) 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π                                                              (b) 0 ≤ φ ≤ π, 0 ≤ θ ≤ π

              28. (a) π/2 ≤ φ ≤ π, 0 ≤ θ ≤ 2π                                                              (b) 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2

              29. u = 1, v = 2, ru × rv = −2i − 4j + k; 2x + 4y − z = 5

              30. u = 1, v = 2, ru × rv = −4i − 2j + 8k; 2x + y − 4z = −6

              31. u = 0, v = 1, ru × rv = 6k; z = 0                                              32. ru × rv = 2i − j − 3k; 2x − y − 3z = −4
                                                                                                     √          √
                             √         √                                                                  2    π 2
              33. ru × rv = ( 2/2)i − ( 2/2)j + (1/2)k; x − y +                                             z=
                                                                                                         2      8

              34. ru × rv = 2i − ln 2k; 2x − (ln 2)z = 0

              35. z =      9 − y 2 , zx = 0, zy = −y/                       9 − y 2 , zx + zy + 1 = 9/(9 − y 2 ),
                                                                                       2    2

                              2   3                                     2
                                           3
                    S=                            dy dx =                   3π dx = 6π
                          0       −3     9 − y2                     0


                                                                                                               4       4−x                            4
              36. z = 8 − 2x − 2y, zx + zy + 1 = 4 + 4 + 1 = 9, S =
                                    2    2
                                                                                                                             3 dy dx =                    3(4 − x)dx = 24
                                                                                                           0       0                              0


              37. z 2 = 4x2 + 4y 2 , 2zzx = 8x so zx = 4x/z, similarly zy = 4y/z thus
                                                                                                     1     x   √                  √           1                     √
                    zx + zy + 1 = (16x2 + 16y 2 )/z 2 + 1 = 5, S =
                     2    2
                                                                                                                   5 dy dx =          5           (x − x2 )dx =         5/6
                                                                                                 0        x2                              0


              38. z 2 = x2 + y 2 , zx = x/z, zy = y/z, zx + zy + 1 = (z 2 + y 2 )/z 2 + 1 = 2,
                                                        2    2

                                  √                  π/2       2 cos θ   √                 √                   π/2                        √
                    S=                2 dA = 2                                2 r dr dθ = 4 2                          cos2 θ dθ =            2π
                                                 0         0                                               0
                          R


              39. zx = −2x, zy = −2y, zx + zy + 1 = 4x2 + 4y 2 + 1,
                                       2    2

                                                                         2π        1
                    S=                4x2 + 4y 2 + 1 dA =                              r   4r2 + 1 dr dθ
                                                                     0         0
                          R
                                                                    1 √                          2π             √
                                                               =      (5 5 − 1)                          dθ = (5 5 − 1)π/6
                                                                   12                        0
January 27, 2005 11:55           L24-CH15                      Sheet number 14 Page number 668                                                   black



             668                                                                                                                                                               Chapter 15


             40. zx = 2, zy = 2y, zx + zy + 1 = 5 + 4y 2 ,
                                   2    2

                             1        y                                       1                                    √
                   S=                          5 + 4y 2 dx dy =                   y           5 + 4y 2 dy = (27 − 5 5)/12
                         0        0                                       0


             41. ∂r/∂u = cos vi + sin vj + 2uk, ∂r/∂v = −u sin vi + u cos vj,
                                    √                                                              2π        2                              √      √
                   ∂r/∂u × ∂r/∂v = u 4u2 + 1; S =                                                                u       4u2 + 1 du dv = (17 17 − 5 5)π/6
                                                                                               0         1


             42. ∂r/∂u = cos vi + sin vj + k, ∂r/∂v = −u sin vi + u cos vj,
                                                         2v √
                                                                          √
                                      √            π/2
                                                                            2 3
                  ∂r/∂u × ∂r/∂v = 2u; S =                     2 u du dv =     π
                                                 0     0                   12

             43. zx = y, zy = x, zx + zy + 1 = x2 + y 2 + 1,
                                  2    2

                                                                          π/6              3
                                                                                                                                      1    √                  π/6           √
                   S=                 x2 + y 2 + 1 dA =                                        r    r2 + 1 dr dθ =                      (10 10 − 1)                 dθ = (10 10 − 1)π/18
                                                                      0                0                                              3                   0
                         R


             44. zx = x, zy = y, zx + zy + 1 = x2 + y 2 + 1,
                                  2    2
                                                                                       √
                                                                          2π            8                                                       2π
                                                                                                                                       26
                   S=                 x2      +   y2   + 1 dA =                                r        r2 + 1 dr dθ =                               dθ = 52π/3
                                                                      0            0                                                   3    0
                         R



             45. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 16/(16 − x2 − y 2 );
                                                               2    2

                 the planes z = 1 and z = 2 intersect the sphere along the circles x2 + y 2 = 15 and x2 + y 2 = 12;
                                                                                           √
                                                                              2π            15                                                  2π
                                                  4                                                       4r
                   S=                                          dA =                    √
                                                                                                    √            dr dθ = 4                           dθ = 8π
                                      16 − x2 − y 2                       0             12               16 − r2                            0
                         R


             46. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 8/(8 − x2 − y 2 );
                                                                  2    2
                                                         2     2
                 the cone cuts the sphere in the circle x + y = 4;
                                  √
                         2π   2
                                 2 2r                 √      2π           √
                 S=             √       dr dθ = (8 − 4 2)       dθ = 8(2 − 2)π
                       0    0     8−r 2
                                                           0


             47. r(u, v) = a cos u sin vi + a sin u sin vj + a cos vk, ru × rv = a2 sin v,
                             π        2π                                                  π
                   S=                         a2 sin v du dv = 2πa2                            sin v dv = 4πa2
                         0        0                                                   0

                                                                                                                         h       2π
             48. r = r cos ui + r sin uj + vk, ru × rv = r; S =                                                                       r du dv = 2πrh
                                                                                                                     0       0


                         h                x                    h      y                   2    2                             h2 x2 + h2 y 2
             49. zx =                                 , zy =                           , zx + zy + 1 =                                      + 1 = (a2 + h2 )/a2 ,
                         a        x2 + y 2             x2 + y 2a                                                             a2 (x2 + y 2 )
                             2π      a
                                       √                                                                             2π
                                         a2 + h2           1
                   S=                            r dr dθ = a a2 + h2                                                      dθ = πa a2 + h2
                         0         0       a               2                                                     0
January 27, 2005 11:55        L24-CH15                             Sheet number 15 Page number 669                       black



              Exercise Set 15.4                                                                                                                  669


              50. (a) Revolving a point (a0 , 0, b0 ) of the xz-plane around the z-axis generates a circle, an equation
                      of which is r = a0 cos ui + a0 sin uj + b0 k, 0 ≤ u ≤ 2π. A point on the circle (x − a)2 + z 2 = b2
                      which generates the torus can be written r = (a + b cos v)i + b sin vk, 0 ≤ v ≤ 2π. Set
                      a0 = a + b cos v and b0 = a + b sin v and use the first result: any point on the torus can thus
                      be written in the form r = (a + b cos v) cos ui + (a + b cos v) sin uj + b sin vk, which yields the
                      result.

              51. ∂r/∂u = −(a + b cos v) sin ui + (a + b cos v) cos uj,
                  ∂r/∂v = −b sin v cos ui − b sin v sin uj + b cos vk, ∂r/∂u × ∂r/∂v = b(a + b cos v);
                              2π       2π
                    S=                      b(a + b cos v)du dv = 4π 2 ab
                          0        0


                                        √                                     4π       5                           5
              52.    ru × rv =              u2 + 1; S =                                    u2 + 1 du dv = 4π           u2 + 1 du = 174.7199011
                                                                          0        0                           0


              53. z = −1 when v ≈ 0.27955, z = 1 when v ≈ 2.86204, ru × rv = | cos v|;
                              2π       2.86204
                    S=                                | cos v| dv du ≈ 9.099
                          0        0.27955


              54. (a) Let S1 be the set of points (x, y, z) which satisfy the equation x2/3 + y 2/3 + z 2/3 = a2/3 , and
                      let S2 be the set of points (x, y, z) where x = a(sin φ cos θ)3 , y = a(sin φ sin θ)3 , z = a cos3 φ,
                      0 ≤ φ ≤ π, 0 ≤ θ < 2π.
                          If (x, y, z) is a point of S2 then
                          x2/3 + y 2/3 + z 2/3 = a2/3 [(sin φ cos θ)3 + (sin φ sin θ)3 + cos3 φ] = a2/3
                          so (x, y, z) belongs to S1 .
                          If (x, y, z) is a point of S1 then x2/3 + y 2/3 + z 2/3 = a2/3 . Let
                          x1 = x1/3 , y1 = y 1/3 , z1 = z 1/3 , a1 = a1/3 . Then x2 + y1 + z1 = a2 , so in spherical coordinates
                                                                                  1
                                                                                       2    2
                                                                                                 1
                          x1 = a1 sin φ cos θ, y1 = a1 sin φ sin θ, z1 = a1 cos φ, with
                                       y1               y 1/3                z1         z                                   1/3
                          θ = tan−1          = tan−1            , φ = cos−1     = cos−1                                           . Then
                                       x1               x                    a1         a
                          x = x3 = a3 (sin φ cos θ)3 = a(sin φ cos θ)3 , similarly y = a(sin φ sin θ)3 , z = a cos φ so (x, y, z)
                               1     1
                          belongs to S2 . Thus S1 = S2

                    (b) Let a = 1 and r = (cos θ sin φ)3 i + (sin θ sin φ)3 j + cos3 φk, then
                                            π/2              π/2
                          S=8                                          rθ × rφ dφ dθ
                                        0                0
                                                π/2              π/2
                              = 72                                     sin θ cos θ sin4 φ cos φ cos2 φ + sin2 φ sin2 θ cos2 θ dθ dφ ≈ 4.4506
                                            0                0


              55. (a) (x/a)2 +(y/b)2 +(z/c)2 = sin2 φ cos2 θ+sin2 φ sin2 θ+cos2 φ = sin2 φ+cos2 φ = 1, an ellipsoid
                    (b) r(φ, θ) = 2 sin φ cos θ, 3 sin φ sin θ, 4 cos φ ; rφ ×rθ = 2 6 sin2 φ cos θ, 4 sin2 φ sin θ, 3 cos φ sin φ ,

                           rφ × rθ = 2 16 sin4 φ + 20 sin4 φ cos2 θ + 9 sin2 φ cos2 φ,
                                       2π            π
                          S=                             2        16 sin4 φ + 20 sin4 φ cos2 θ + 9 sin2 φ cos2 φ dφ dθ ≈ 111.5457699
                                   0             0
January 27, 2005 11:55                  L24-CH15                              Sheet number 16 Page number 670                                                                    black



             670                                                                                                                                                                                               Chapter 15


             56. (a) x = v cos u, y = v sin u, z = f (v), for example                                                                                                      (b)     x = v cos u, y = v sin u, z = 1/v 2

                   (c)                                           z




                                x
                                                                                  y


                    x       2                   y       2            z   2
             57.                +                            +               = 1, ellipsoid
                    a                           b                    c
                    x       2                   y       2            z   2
             58.                +                            −               = 1, hyperboloid of one sheet
                    a                           b                    c
                            x       2                y       2           z   2
             59. −                      −                        +               = 1, hyperboloid of two sheets
                            a                        b                   c



             EXERCISE SET 15.5
                        1           2           1                                                                       1              2                                                 1
              1.                                    (x2 + y 2 + z 2 )dx dy dz =                                                            (1/3 + y 2 + z 2 )dy dz =                         (10/3 + 2z 2 )dz = 8
                    −1          0           0                                                                       −1             0                                                 −1

                                                                                                                                                                                                                    √
                        1/2             π           1                                                          1/2                 π
                                                                                                                                       1                                     1/2
                                                                                                                                                                                   1                   1                3−2
              2.                                        zx sin xy dz dy dx =                                                             x sin xy dy dx =                            (1 − cos πx)dx =    +
                    1/3             0           0                                                             1/3              0       2                                    1/3    2                  12                4π

                        2       y2              z                                         2           y2                                                       2
                                                                                                                                                                       1 7 1 5 1        47
              3.                                     yz dx dz dy =                                            (yz 2 + yz)dz dy =                                         y + y − y dy =
                    0       −1              −1                                        0           −1                                                       0           3    2   6        3

                        π/4             1           x2                                                        π/4              1                                           π/4
                                                                                                                                                                                 1           √
              4.                                            x cos y dz dx dy =                                                     x3 cos y dx dy =                                cos y dy = 2/8
                    0               0           0                                                         0                0                                           0         4
                                √                                                                                 √
                        3        9−z 2                       x                                        3            9−z 2                                           3
                                                                                                                                       1 3                             1
              5.                                                 xy dy dx dz =                                                           x dx dz =                       (81 − 18z 2 + z 4 )dz = 81/5
                    0       0                            0                                        0           0                        2                       0       8

                        3       x2              ln z                                              3           x2                                               3
                                                                                                                                                                       1 5 3 3
              6.                                            xey dy dz dx =                                         (xz − x)dz dx =                                       x − x + x2 dx = 118/3
                    1       x               0                                                 1           x                                                1           2    2
                                √                                                                                                  √
                        2        4−x2                        3−x2 −y 2                                                 2            4−x2
              7.                                                             x dz dy dx =                                                     [2x(4 − x2 ) − 2xy 2 ]dy dx
                    0       0                            −5+x2 +y 2                                                0           0
                                                                                                                       2
                                                                                                                            4
                                                                                                      =                       x(4 − x2 )3/2 dx = 128/15
                                                                                                                   0        3
                                            √
                        2       2            3y                                                               2         2                              2
                                                               y                                                               π                           π
              8.                                                     dx dy dz =                                                  dy dz =                     (2 − z)dz = π/6
                    1       z           0                   x2 + y 2                                      1         z          3                   1       3
January 27, 2005 11:55                    L24-CH15                                  Sheet number 17 Page number 671                                                        black



              Exercise Set 15.5                                                                                                                                                                                   671

                          π           1           π/6                                                        π          1                                                            π
               9.                                             xy sin yz dz dy dx =                                           x[1 − cos(πy/6)]dy dx =                                     (1 − 3/π)x dx = π(π − 3)/2
                      0           0           0                                                          0          0                                                            0


                          1           1−x2                    y                               1          1−x2                                     1
                                                                                                                                                      1
              10.                                                 y dz dy dx =                                          y 2 dy dx =                     (1 − x2 )3 dx = 32/105
                      −1          0                       0                                  −1      0                                          −1    3

                          √                                                                             √                                                                      √
                           2              x           2−x2                                               2              x                                                       2
                                                                                                                            1                                                        1 3
              11.                                                     xyz dz dy dx =                                          xy(2 − x2 )2 dy dx =                                     x (2 − x2 )2 dx = 1/6
                      0               0           0                                                 0               0       2                                              0         4

                          π/2                 π/2             xy                                                    π/2           π/2                                          π/2                       √
              12.                                                     cos(z/y)dz dx dy =                                                   y sin x dx dy =                           y cos y dy = (5π − 6 3)/12
                      π/6                 y               0                                                      π/6          y                                            π/6


                          3           2           1
                                                      √
                                                              x + z2
              13.                                                    dz dy dx ≈ 9.425
                      0           1           −2                y

                                          √                           √
                              1            1−x2                           1−x2 −y 2
                                                                                       e−x        −y 2 −z 2
                                                                                              2
              14. 8                                                                                                 dz dy dx ≈ 2.381
                          0           0                           0


                                          4           (4−x)/2                     (12−3x−6y)/4                                         4        (4−x)/2
                                                                                                                                                              1
              15. V =                                                                               dz dy dx =                                                  (12 − 3x − 6y)dy dx
                                      0           0                           0                                                    0        0                 4
                                          4
                                               3
                          =                      (4 − x)2 dx = 4
                                      0       16
                                                                          √
                                          1           1−x                  y                            1           1−x
                                                                                                                             √                            1
                                                                                                                                                              2
              16. V =                                                          dz dy dx =                                        y dy dx =                      (1 − x)3/2 dx = 4/15
                                      0           0                   0                             0           0                                     0       3

                                              2           4           4−y                                   2           4                                         2
                                                                                                                                                                                1
              17. V = 2                                                        dz dy dx = 2                                 (4 − y)dy dx = 2                           8 − 4x2 + x4 dx = 256/15
                                          0           x2          0                                     0           x2                                        0                 2

                                                                  √
                                          1           y               1−y 2                                 1           y                                          1
              18. V =                                                             dz dx dy =                                  1 − y 2 dx dy =                          y       1 − y 2 dy = 1/3
                                      0           0           0                                         0           0                                          0


              19. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1,
                                                                      √
                                                          1            1−x2            4−3y 2
                    (a) V =                                        √                               f (x, y, z)dz dy dx
                                                      −1          − 1−x2              4x2 +y 2
                                                                      √
                                                          1                1−y 2       4−3y 2
                    (b) V =                                               √                        f (x, y, z)dz dx dy
                                                      −1          −           1−y 2   4x2 +y 2



              20. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4,
                                                          √                √
                                                           2                4−2x2           8−x2 −y 2
                    (a) V =                            √                   √                                    f (x, y, z)dz dy dx
                                                      − 2                 − 4−2x2          3x2 +y 2
                                                                      √
                                                          2                (4−y 2 )/2        8−x2 −y 2
                    (b) V =                                               √                                         f (x, y, z)dz dx dy
                                                      −2          −           (4−y 2 )/2    3x2 +y 2
January 27, 2005 11:55            L24-CH15                            Sheet number 18 Page number 672                                 black



             672                                                                                                                                                                Chapter 15


             21. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1,
                                               √
                                   1            1−x2            4−3y 2
                   V =4                                                     dz dy dx
                               0           0                   4x2 +y 2


             22. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4,
                                   √               √
                                    2               4−2x2             8−x2 −y 2
                   V =4                                                            dz dy dx
                               0               0                  3x2 +y 2

                                               √                                                                                      √                 √
                                   3            9−x2 /3               x+3                                                     1        1−x2              1−x2
             23. V = 2                                                      dz dy dx          24. V = 8                                                          dz dy dx
                               −3          0                      0                                                       0       0                 0



             25. (a)                                       z                        (b)                  z                                    (c)                   z

                                                                                                                      (0, 9, 9)
                                                                                                                                                                   (0, 0, 1)
                             (0, 0, 1)

                                                                                                                                                                                        y
                                                                               y
                         (0, –1, 0)                              (1, 0, 0)                x
                                                                                                                                                                            (1, 2, 0)
                                                                                                                 (3, 9, 0)            y
                                                                                                                                                        x
                                   x


             26. (a)                            z                                                        (b)                              z

                                                                                                                                      (0, 0, 2)


                                               (0, 0, 2)
                                                                                                                                                            (0, 2, 0)
                                                                               y                                                                                        y


                                                                 (3, 9, 0)
                                                                                                                              (2, 0, 0)
                         x                                                                                            x

                   (c)                             z

                                                   (0, 0, 4)




                                                                               y

                                                       (2, 2, 0)



                         x


                              1            1−x             1−x−y                                     1           1−x          1−x−y
                                                                                                                                                                                 3
             27. V =                                                  dz dy dx = 1/6, fave = 6                                            (x + y + z) dz dy dx =
                          0            0               0                                         0           0            0                                                      4

             28. The integrand is an odd function of each of x, y, and z, so the answer is zero.
January 27, 2005 11:55               L24-CH15                                        Sheet number 19 Page number 673                                                              black



              Exercise Set 15.5                                                                                                                                                                                                    673


                                   3π
              29. The volume V = √ , and thus
                                     2
                                      √
                                        2
                              rave =          x2 + y 2 + z 2 dV
                                      3π
                                                                                             G
                                                                             √                     √
                                                                                                 1/ 2
                                                                                                             √
                                                                                                              1−2x2                 6−7x2 −y 2
                                                                    2
                                                                 =                              √          √                                                   x2 + y 2 + z 2 dz dy dx ≈ 3.291
                                                                   3π                        −1/ 2        − 1−2x2                 5x2 +5y 2

                                                                         1           1           1
                                                         1
              30. V = 1, dave =                                                                        (x − z)2 + (y − z)2 + z 2 dx dy dz ≈ 0.771
                                                         V           0           0           0

                                     a           b(1−x/a)                        c(1−x/a−y/b)                                            b           a(1−y/b)            c(1−x/a−y/b)
              31. (a)                                                                                        dz dy dx,                                                                                 dz dx dy,
                                 0           0                               0                                                       0           0                   0
                                     c           a(1−z/c)                        b(1−x/a−z/c)                                           a            c(1−x/a)            b(1−x/a−z/c)
                                                                                                           dy dx dz,                                                                                   dy dz dx,
                                 0           0                               0                                                      0            0                   0
                                     c           b(1−z/c)                        a(1−y/b−z/c)                                           b            c(1−y/b)           a(1−y/b−z/c)
                                                                                                          dx dy dz,                                                                                    dx dz dy
                                 0           0                               0                                                      0            0                  0

                    (b) Use the first integral in Part (a) to get
                                     a           b(1−x/a)                                                                               a                                2
                                                                                             x y                                             1        x                                   1
                                                                         c 1−                  −   dy dx =                                     bc 1 −                        dx =           abc
                                 0           0                                               a   b                                  0        2        a                                   6
                                                         √                                   √ 2 2 2 2
                                         a           b       1−x2 /a2                        c       1−x /a −y /b
              32. V = 8                                                                                                       dz dy dx
                                     0           0                                       0
                                                 √
                                     2            4−x2                       5
              33. (a)                                                            f (x, y, z) dz dy dx
                                 0           0                           0
                                                   √                       √
                                     9           3− x                    3− x                                                                                            2        4−x2                8−y
                    (b)                                                                  f (x, y, z) dz dy dx                                              (c)                                              f (x, y, z) dz dy dx
                                 0           0                       y                                                                                               0        0                   y
                                                 √                           √
                                     3            9−x2                           9−x2 −y 2
              34. (a)                                                                                  f (x, y, z)dz dy dx
                                 0           0                           0
                                     4           x/2             2                                                                                                       2        4−x2                4−y
                    (b)                                              f (x, y, z)dz dy dx                                                                   (c)                                              f (x, y, z)dz dy dx
                                 0           0               0                                                                                                       0        0                   x2


              35. (a) At any point outside the closed sphere {x2 + y 2 + z 2 ≤ 1} the integrand is negative, so to
                      maximize the integral it suffices to include all points inside the sphere; hence the maximum
                      value is taken on the region G = {x2 + y 2 + z 2 ≤ 1}.
                                                                                                                                                                         2π           π       1
                                                                                                                                                                                                                              π2
                    (b) 4.934802202                                                                                                                        (c)                                    (1 − ρ2 )ρ dρ dφ dθ =
                                                                                                                                                                     0            0       0                                   2

                         b       d                                                                                b           d
              36.                            f (x)g(y)h(z)dz dy dx =                                                              f (x)g(y)                        h(z)dz dy dx
                     a       c       k                                                                        a           c                                    k

                                                                                                                      b                          d
                                                                                                         =                f (x)                      g(y)dy dx                            h(z)dz
                                                                                                                  a                          c                                        k

                                                                                                                      b                                    d
                                                                                                         =                f (x)dx                              g(y)dy                     h(z)dz
                                                                                                                  a                                    c                              k
January 27, 2005 11:55            L24-CH15                                    Sheet number 20 Page number 674                                                             black



             674                                                                                                                                                                          Chapter 15


                                      1                             1                           π/2
             37. (a)                      x dx                          y 2 dy                             sin z dz = (0)(1/3)(1) = 0
                                  −1                            0                           0

                                      1                                 ln 3                               ln 2
                   (b)                    e2x dx                               ey dy                               e−z dz = [(e2 − 1)/2](2)(1/2) = (e2 − 1)/2
                                  0                                 0                                  0




             EXERCISE SET 15.6
              1. (a) m1 and m3 are equidistant from x = 5, but m3 has a greater mass, so the sum is positive.
                 (b) Let a be the unknown coordinate of the fulcrum; then the total moment about the fulcrum
                     is 5(0 − a) + 10(5 − a) + 20(10 − a) = 0 for equilibrium, so 250 − 35a = 0, a = 50/7. The
                     fulcrum should be placed 50/7 units to the right of m1 .

              2. (a) The sum must be negative, since m1 , m2 and m3 are all to the left of the fulcrum, and the
                     magnitude of the moment of m1 about x = 4 is by itself greater than the moment of m about
                     x = 4 (i.e. 40 > 28), so even if we replace the masses of m2 and m3 with 0, the sum is
                     negative.
                 (b) At equilibrium, 10(0 − 4) + 3(2 − 4) + 4(3 − 4) + m(6 − 4) = 0, m = 25
                                                   1        1                                                          1           1
                                                                                           1                                                         1
              3. A = 1, x =                                     x dy dx =                    , y=                                      y dy dx =
                                               0        0                                  2                       0           0                     2

                                           1
              4. A = 2, x =                                 x dy dx, and the region of integration is symmetric with respect to the x-axes
                                           2
                                                   G
                   and the integrand is an odd function of x, so x = 0. Likewise, y = 0.
                                                                              1        x                                                                     1       x
              5. A = 1/2,                      x dA =                                      x dy dx = 1/3,                                    y dA =                      y dy dx = 1/6;
                                                                          0        0                                                                     0       0
                                          R                                                                                            R

                   centroid (2/3, 1/3)

                              1           x2                                                                               1           x2
              6. A =                           dy dx = 1/3,                                 x dA =                                          x dy dx = 1/4,
                          0           0                                                                                0           0
                                                                                    R
                                                   1        x2
                         y dA =                                     y dy dx = 1/10; centroid (3/4, 3/10)
                                               0        0
                   R

                              1           2−x2                                                                                     1        2−x2
              7. A =                                   dy dx = 7/6,                                x dA =                                          x dy dx = 5/12,
                          0           x                                                                                        0        x
                                                                                           R
                                                   1        2−x2
                         y dA =                                          y dy dx = 19/15; centroid (5/14, 38/35)
                                               0        x
                   R
                                                                                   √
                                                                        1           1−x2
                    π                                                                                                          1      4       4
              8. A = ,                        x dA =                                            x dy dx =                        ,x=    , y=    by symmetry
                    4                                               0          0                                               3     3π      3π
                                  R

              9. x = 0 from the symmetry of the region,
                         1                                                                         π           b
                                                                                                                                                    2 3                               4(b3 − a3 )
                   A=      π(b2 − a2 ),                                  y dA =                                    r2 sin θ dr dθ =                   (b − a3 ); centroid x = 0, y =              .
                         2                                                                     0           a                                        3                                3π(b2 − a2 )
                                                                R
January 27, 2005 11:55           L24-CH15                                      Sheet number 21 Page number 675                                                 black



              Exercise Set 15.6                                                                                                                                                                        675


              10. y = 0 from the symmetry of the region, A = πa2 /2,
                                                      π/2                 a
                                                                                                                                               4a
                         x dA =                                               r2 cos θ dr dθ = 2a3 /3; centroid                                   ,0
                                                  −π/2                0                                                                        3π
                     R

                                                                                   1       1
              11. M =                    δ(x, y)dA =                                           |x + y − 1| dx dy
                                                                               0       0
                             R
                                 1                1−x                                                     1
                                                                                                                                                   1
                         =                                    (1 − x − y) dy +                                (x + y − 1) dy dx =
                             0                0                                                       1−x                                          3
                                     1        1                                                       1           1−x                                      1
                                                                                                                                                                                                  1
                    x=3                           xδ(x, y) dy dx = 3                                                    x(1 − x − y) dy +                        x(x + y − 1) dy dx =
                                 0        0                                                       0           0                                        1−x                                        2
                                    1
                    By symmetry, y = as well; center of gravity (1/2, 1/2)
                                    2

                             1
              12. x =                         xδ(x, y) dA, and the integrand is an odd function of x while the region is symmetric
                             M
                                     G
                    with respect to the y-axis, thus x = 0; likewise y = 0.
                                              √                                                                                        √
                                 1             x                                                                              1         x
              13. M =                                 (x + y)dy dx = 13/20, Mx =                                                            (x + y)y dy dx = 3/10,
                             0            0                                                                               0        0
                                                  √
                                     1             x
                    My =                                  (x + y)x dy dx = 19/42, x = My /M = 190/273, y = Mx /M = 6/13;
                                 0         0
                    the mass is 13/20 and the center of gravity is at (190/273, 6/13).

                                 π            sin x
              14. M =                                     y dy dx = π/4, x = π/2 from the symmetry of the density and the region,
                             0            0
                                     π            sin x
                                                                                                                                  16                                                         π 16
                    Mx =                                      y 2 dy dx = 4/9, y = Mx /M =                                           ; mass π/4, center of gravity                            ,   .
                                 0            0                                                                                   9π                                                         2 9π

                                         π/2              a
              15. M =                                         r3 sin θ cos θ dr dθ = a4 /8, x = y from the symmetry of the density and the
                                     0                0
                                                                  π/2             a
                    region, My =                                                      r4 sin θ cos2 θ dr dθ = a5 /15, x = 8a/15; mass a4 /8, center of gravity
                                                              0               0
                    (8a/15, 8a/15).

                                 π            1
              16. M =                             r3 dr dθ = π/4, x = 0 from the symmetry of density and region,
                             0            0
                                     π            1
                                                                                                                   8                                                                   8
                    Mx =                              r4 sin θ dr dθ = 2/5, y =                                      ; mass π/4, center of gravity                               0,      .
                                 0            0                                                                   5π                                                                  5π

                                                      1           1       1
                                                                                                          1                    1                                         1 1 1
              17. V = 1, x =                                                  x dz dy dx =                  , similarly y = z = ; centroid                                , ,
                                                  0           0       0                                   2                    2                                         2 2 2

                                                                                                                                                           2        2π       1
              18. V = πr2 h = 2π, x = y = 0 by symmetry,                                                                          z dz dy dx =                                   rz dr dθ dz = 2π, centroid
                                                                                                                                                       0        0        0
                                                                                                                        G
                    = (0, 0, 1)
January 27, 2005 11:55               L24-CH15                                        Sheet number 22 Page number 676                             black



             676                                                                                                                                                           Chapter 15


             19. x = y = z from the symmetry of the region, V = 1/6,
                                         1           1−x                 1−x−y
                         1
                   x=                                                                    x dz dy dx = (6)(1/24) = 1/4; centroid (1/4, 1/4, 1/4)
                         V           0           0                   0


             20. The solid is described by −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y 2 , 0 ≤ x ≤ 1 − z;
                                 1               1−y 2               1−z                                            1       1−y 2       1−z
                                                                                           4      1                                                           5
                   V =                                                           dx dz dy = , x =                                             x dx dz dy =      , y = 0 by symmetry,
                             −1              0                   0                         5      V                −1   0           0                        14
                                         1            1−y 2                  1−z
                         1                                                                               2                               5      2
                   z=                                                                z dx dz dy =          ; the centroid is               , 0,   .
                         V           −1           0                      0                               7                              14      7

             21. x = 1/2 and y = 0 from the symmetry of the region,
                                 1           1               1
                                                                                                       1
                   V =                                           dz dy dx = 4/3, z =                                z dV = (3/4)(4/5) = 3/5; centroid (1/2, 0, 3/5)
                             0           −1              y2                                            V
                                                                                                               G


             22. x = y from the symmetry of the region,
                                 2           2            xy
                                                                                                     1
                   V =                                           dz dy dx = 4, x =                                 x dV = (1/4)(16/3) = 4/3,
                             0           0            0                                              V
                                                                                                           G
                      1
                   z=                                z dV = (1/4)(32/9) = 8/9; centroid (4/3, 4/3, 8/9)
                      V
                                     G



             23. x = y = z from the symmetry of the region, V = πa3 /6,
                              √         √ 2 2 2                       √
                               a2 −x2    a −x −y                        a2 −x2
                     1 a                                      1 a
                 x=                              x dz dy dx =                  x a2 − x2 − y 2 dy dx
                     V 0 0            0                       V 0 0
                                         π/2                 a
                         1                                                                                      6
                    =                                            r2          a2 − r2 cos θ dr dθ =                 (πa4 /16) = 3a/8; centroid (3a/8, 3a/8, 3a/8)
                         V           0                   0                                                     πa3

             24. x = y = 0 from the symmetry of the region, V = 2πa3 /3
                              √        √ 2 2 2                        √
                               a2 −x2   a −x −y                         a2 −x2
                     1 a                                      1 a              1 2
                 z=                              z dz dy dx =                   (a − x2 − y 2 )dy dx
                     V −a −√a2 −x2 0                          V −a −√a2 −x2 2
                                     2π                  a
                         1                                   1 2                   3
                    =                                          (a − r2 )r dr dθ =      (πa4 /4) = 3a/8; centroid (0, 0, 3a/8)
                         V       0                   0       2                    2πa3

                                 a               a           a
             25. M =                                             (a − x)dz dy dx = a4 /2, y = z = a/2 from the symmetry of density and
                             0               0           0
                                                                     a           a       a
                                                  1
                   region, x =                                                               x(a − x)dz dy dx = (2/a4 )(a5 /6) = a/3;
                                                  M              0           0       0
                   mass a4 /2, center of gravity (a/3, a/2, a/2)
January 27, 2005 11:55       L24-CH15                                        Sheet number 23 Page number 677               black



              Exercise Set 15.6                                                                                                                         677

                                             √
                                 a            a2 −x2                         h
                                                                                                      1 2 2
              26. M =                     √                                      (h − z)dz dy dx =      πa h , x = y = 0 from the symmetry of density
                             −a          − a2 −x2                        0                            2
                                                          1                                         2
                    and region, z =                                                z(h − z)dV =          (πa2 h3 /6) = h/3;
                                                          M                                       πa2 h2
                                                                         G
                                 2 2
                    mass πa h /2, center of gravity (0, 0, h/3)

                                 1           1           1−y 2
              27. M =                                                yz dz dy dx = 1/6, x = 0 by the symmetry of density and region,
                             −1          0           0

                         1                                                                                  1
                    y=                           y 2 z dV = (6)(8/105) = 16/35, z =                                  yz 2 dV = (6)(1/12) = 1/2;
                         M                                                                                  M
                                     G                                                                           G
                    mass 1/6, center of gravity (0, 16/35, 1/2)

                                 3       9−x2                    1
                                                                                                        1
              28. M =                                                xz dz dy dx = 81/8, x =                     x2 z dV = (8/81)(81/5) = 8/5,
                             0       0                       0                                          M
                                                                                                             G
                       1                                                         1
                    y=                           xyz dV = (8/81)(243/8) = 3, z =                                     xz 2 dV = (8/81)(27/4) = 2/3;
                       M                                                         M
                                     G                                                                           G
                    mass 81/8, center of gravity (8/5, 3, 2/3)

                                                 1           1
              29. (a) M =                                        k(x2 + y 2 )dy dx = 2k/3, x = y from the symmetry of density and region,
                                             0           0
                                     1                                                       3
                          x=                                 kx(x2 + y 2 )dA =                 (5k/12) = 5/8; center of gravity (5/8, 5/8)
                                     M                                                      2k
                                                 R

                    (b) y = 1/2 from the symmetry of density and region,
                                                 1           1
                                                                                                  1
                          M=                                     kx dy dx = k/2, x =                       kx2 dA = (2/k)(k/3) = 2/3,
                                             0           0                                        M
                                                                                                       R
                          center of gravity (2/3, 1/2)

              30. (a) x = y = z from the symmetry of density and region,
                                                 1           1           1
                          M=                                                 k(x2 + y 2 + z 2 )dz dy dx = k,
                                             0           0           0
                                     1
                          x=                                     kx(x2 + y 2 + z 2 )dV = (1/k)(7k/12) = 7/12; center of gravity (7/12, 7/12, 7/12)
                                     M
                                                     G

                    (b) x = y = z from the symmetry of density and region,
                                                 1           1           1
                          M=                                                 k(x + y + z)dz dy dx = 3k/2,
                                             0           0           0
                                     1                                                           2
                          x=                                     kx(x + y + z)dV =                 (5k/6) = 5/9; center of gravity (5/9, 5/9, 5/9)
                                     M                                                          3k
                                                     G
January 27, 2005 11:55           L24-CH15                           Sheet number 24 Page number 678                                        black



             678                                                                                                                                                     Chapter 15


                                                           π       sin x        1/(1+x2 +y 2 )
             31. V =                  dV =                                                           dz dy dx = 0.666633,
                                                       0       0            0
                             G

                      1                                                                   1                                                 1
                   x=                      xdV = 1.177406, y =                                         ydV = 0.353554, z =                              zdV = 0.231557
                      V                                                                   V                                                 V
                                 G                                                             G                                                 G


             32. (b) Use polar coordinates for x and y to get
                                                                       2π       a       1/(1+r 2 )
                          V =                       dV =                                             r dz dr dθ = π ln(1 + a2 ),
                                                                   0        0       0
                                          G

                                     1                                                   a2
                          z=                           zdV =
                                     V                                  2(1 +       a2 ) ln(1   + a2 )
                                               G

                                                               1
                          Thus lim z =                           ; lim z = 0.
                                          a→0+                 2 a→+∞
                                                   1
                             lim z =                 ; lim z = 0
                          a→0+                     2 a→+∞

                   (c) Solve z = 1/4 for a to obtain a ≈ 1.980291.

             33. Let x = r cos θ, y = r sin θ, and dA = r dr dθ in formulas (11) and (12).

                                                                                                              2π        a(1+sin θ)
             34. x = 0 from the symmetry of the region, A =                                                                            r dr dθ = 3πa2 /2,
                                                                                                          0         0
                                     2π        a(1+sin θ)
                         1                                                                      2
                   y=                                            r2 sin θ dr dθ =                   (5πa3 /4) = 5a/6; centroid (0, 5a/6)
                         A       0         0                                                   3πa2

                                                                                                              π/2           sin 2θ
             35. x = y from the symmetry of the region, A =                                                                          r dr dθ = π/8,
                                                                                                          0             0
                                     π/2           sin 2θ
                         1                                                                                               128                        128 128
                   x=                                       r2 cos θ dr dθ = (8/π)(16/105) =                                 ; centroid                ,
                         A       0             0                                                                        105π                       105π 105π

             36. x = 3/2 and y = 1 from the symmetry of the region,

                         x dA = xA = (3/2)(6) = 9,                                         y dA = yA = (1)(6) = 6
                   R                                                                R


             37. x = 0 from the symmetry of the region, πa2 /2 is the area of the semicircle, 2πy is the distance
                 traveled by the centroid to generate the sphere so 4πa3 /3 = (πa2 /2)(2πy), y = 4a/(3π)

                                          1 2                               4a                1
             38. (a) V =                    πa              2π a +                        =     π(3π + 4)a3
                                          2                                 3π                3
                                                                                                                              √
                                                                                                                                 2          4a
                   (b) the distance between the centroid and the line is                                                               a+          so
                                                                                                                                2           3π
                                                                 √
                              1 2                                   2               4a               1√
                          V =   πa                          2π              a+                 =        2π(3π + 4)a3
                              2                                    2                3π               6
January 27, 2005 11:55                 L24-CH15                            Sheet number 25 Page number 679                                                   black



              Exercise Set 15.7                                                                                                                                                                         679


              39. x = k so V = (πab)(2πk) = 2π 2 abk

              40. y = 4 from the symmetry of the region,
                                   2            8−x2
                    A=                                          dy dx = 64/3 so V = (64/3)[2π(4)] = 512π/3
                               −2           x2


                                                           1
              41. The region generates a cone of volume      πab2 when it is revolved about the x-axis, the area of the
                                                           3
                              1       1         1                                        1
                    region is ab so πab2 =        ab (2πy), y = b/3. A cone of volume πa2 b is generated when the
                              2       3         2                                        3
                                                          1 2        1
                    region is revolved about the y-axis so πa b =      ab (2πx), x = a/3. The centroid is (a/3, b/3).
                                                          3          2

              42. The centroid of the circle which generates the tube travels a distance
                        4π                              √                     √        √
                  s=         sin2 t + cos2 t + 1/16 dt = 17π, so V = π(1/2)2 17π = 17π 2 /4.
                               0

                                       a        b                                                           a           b
                                                                            1                                                                     1 3
              43. Ix =                              y 2 δ dy dx =             δab3 , Iy =                                   x2 δ dy dx =            δa b,
                                   0        0                               3                           0           0                             3
                                       a        b
                                                                                   1
                    Iz =                            (x2 + y 2 )δ dy dx =             δab(a2 + b2 )
                                   0        0                                      3

                                       2π           a                                                                            2π        a
              44. Ix =                                      r3 sin2 θ δ dr dθ = δπa4 /4; Iy =                                                  r3 cos2 θ δ dr dθ = δπa4 /4 = Ix ;
                                   0            0                                                                            0         0
                                                                   4
                    Iz = Ix + Iy = δπa /2



              EXERCISE SET 15.7
                                                √
                         2π        1             1−r 2                                 2π           1                                                   2π
                                                                                                        1                                                    1
               1.                                                zr dz dr dθ =                            (1 − r2 )r dr dθ =                                   dθ = π/4
                     0         0            0                                      0            0       2                                           0        8

                         π/2           cos θ                r2                                  π/2                 cos θ                                        π/2
                                                                                                                                                                       1
               2.                                                r sin θ dz dr dθ =                                          r3 sin θ dr dθ =                            cos4 θ sin θ dθ = 1/20
                     0             0                    0                                   0                   0                                            0         4

                         π/2           π/2                  1                                                   π/2              π/2                                            π/2
                                                                                                                                       1                                              1
               3.                                               ρ3 sin φ cos φ dρ dφ dθ =                                                sin φ cos φ dφ dθ =                            dθ = π/16
                     0             0                    0                                                   0                0         4                                    0         8

                         2π        π/4                  a sec φ                                         2π               π/4                                                    2π
                                                                                                                                 1 3                                                  1 3
               4.                                                  ρ2 sin φ dρ dφ dθ =                                             a sec3 φ sin φ dφ dθ =                               a dθ = πa3 /3
                     0         0                    0                                               0                0           3                                          0         6

               5. f (r, θ, z) = z                                                                                                6. f (r, θ, z) = sin θ
                                                z                                                                                                            z




                                                                       y
                                                                                                                                       x                                y
                         x
January 27, 2005 11:55           L24-CH15                                    Sheet number 26 Page number 680                                                                  black



             680                                                                                                                                                                                                 Chapter 15


              7. f (ρ, φ, θ) = ρ cos φ                                                                                                     8. f (ρ, φ, θ) = 1
                                z                                                                                                                                                z


                                                                                                                                                                                 a


                                                               y

                   x

                                                                                                                                                  x                                                        y


                                2π           3        9                                      2π           3                                                     2π
                                                                                                                                                                     81
              9. V =                                      r dz dr dθ =                                        r(9 − r2 )dr dθ =                                         dθ = 81π/2
                            0            0           r2                                  0            0                                                     0         4
                                                          √
                                    2π           2         9−r 2                                                  2π               2
             10. V = 2                                                       r dz dr dθ = 2                                            r     9 − r2 dr dθ
                                0            0        0                                                       0                0

                                                                                                       2        √                                 2π                √
                                                                                              =          (27 − 5 5)                                    dθ = 4(27 − 5 5)π/3
                                                                                                       3                                      0


             11. r2 + z 2 = 20 intersects z = r2 in a circle of radius 2; the volume consists of two portions, one inside
                                   √
                 the cylinder r = 20 and one outside that cylinder:
                                                                                                                              √             √
                               2π            2       r2                                                    2π                  20            20−r 2
                   V=                              √                     r dz dr dθ +                                                       √               r dz dr dθ
                           0             0        − 20−r 2                                             0                  2                − 20−r 2
                                                                                                                                           √
                               2π            2                                                                                2π            20
                       =                         r r2 +                      20 − r2 dr dθ +                                                     2r         20 − r2 dr dθ
                           0             0                                                                                0            2

                           4    √                                       2π
                                                                                        128           2π
                                                                                                                                  152   80 √
                       =     (10 5 − 13)                                     dθ +                                 dθ =                π+ π 5
                           3                                        0                    3        0                                3     3

             12. z = hr/a intersects z = h in a circle of radius a,
                                2π           a        h                                           2π              a                                                      2π
                                                                                                                      h                                                       1 2
                   V =                                             r dz dr dθ =                                         (ar − r2 )dr dθ =                                       a h dθ = πa2 h/3
                            0            0           hr/a                                     0               0       a                                              0        6

                                2π           π/3              4                                                       2π              π/3                                                 2π
                                                                                                                                            64               32
             13. V =                                               ρ2 sin φ dρ dφ dθ =                                                         sin φ dφ dθ =                                   dθ = 64π/3
                            0            0                0                                                       0               0          3               3                        0


                                2π           π/4              2                                                       2π              π/4
                                                                                                                                            7              7    √                                    2π             √
             14. V =                                               ρ2 sin φ dρ dφ dθ =                                                        sin φ dφ dθ = (2 − 2)                                       dθ = 7(2 − 2)π/3
                            0            0                1                                                       0               0         3              6                                     0


             15. In spherical coordinates the sphere and the plane z = a are ρ = 2a and ρ = a sec φ, respectively.
                 They intersect at φ = π/3,
                               2π            π/3              a sec φ                                                             2π        π/2            2a
                   V=                                                    ρ2 sin φ dρ dφ dθ +                                                                    ρ2 sin φ dρ dφ dθ
                           0             0                0                                                                   0            π/3         0
                               2π            π/3                                                                          2π           π/2
                                                     1 3                                                                                     8 3
                       =                               a sec3 φ sin φ dφ dθ +                                                                  a sin φ dφ dθ
                           0             0           3                                                                0            π/3       3
                                         2π                                       2π
                           1 3                       4
                       =     a                   dθ + a3                               dθ = 11πa3 /3
                           2         0               3                        0
January 27, 2005 11:55                L24-CH15                                          Sheet number 27 Page number 681                                                      black



              Exercise Set 15.7                                                                                                                                                                                         681

                                                                                                                                                                √
                                      2π              π/2              3
                                                                                2
                                                                                                                            2π           π/2
                                                                                                                                                               9 2                         2π          √
              16. V =                                                      ρ sin φ dρ dφ dθ =                                                  9 sin φ dφ dθ =                                   dθ = 9 2π
                                  0               π/4              0                                                    0            π/4                        2                      0

                         π/2              a       a2 −r 2                                                               π/2              a
              17.                                                      r3 cos2 θ dz dr dθ =                                                  (a2 r3 − r5 ) cos2 θ dr dθ
                     0                0       0                                                                     0                0
                                                                                                                                      π/2
                                                                                                                    1 6
                                                                                                               =      a                        cos2 θ dθ = πa6 /48
                                                                                                                   12             0

                         π        π/2                 1                                                                                             π       π/2
                                                                                                                   1
                                                          e−ρ ρ2 sin φ dρ dφ dθ =                                    (1 − e−1 )                                   sin φ dφ dθ = (1 − e−1 )π/3
                                                                   3
              18.
                     0        0                   0                                                                3                            0       0
                                                          √
                         π/2              π/4              8                                      √
              19.                                                  ρ4 cos2 φ sin φ dρ dφ dθ = 32(2 2 − 1)π/15
                     0                0               0

                         2π           π           3
              20.                                     ρ3 sin φ dρ dφ dθ = 81π
                     0            0           0

                                      2               4        π/3                                                               2                                       4                       π/3
                                                                            r tan3 θ                                                            1
              21. (a)                                                       √        dθ dr dz =                                          √           dz                      r dr                      tan3 θ dθ
                                  −2          1               π/6             1 + z2                                            −2            1 + z2                 1                       π/6

                                                                                                                           √       15                                4 1
                                                                                                                   = −2 ln( 5 − 2)                                    − ln 3                     ≈ 16.97774196
                                                                                                                                   2                                 3 2
                               The region is a cylindrical wedge.
                    (b) To convert to rectangular coordinates observe that the rays θ = π/6, θ = π/3 correspond to
                                        √       √
                        the lines y = x/ 3, y = 3x. Then dx dy dz = r dr dθ dz and tan θ = y/x, hence
                                                                                        √
                                                                           4             3x         2
                                                                                                            (y/x)3                                                                  y3
                               Integral =                                             √
                                                                                                            √        dz dy dx,                      so f (x, y, z) =               √        .
                                                                       1            x/ 3            −2        1 + z2                                                             x3 1 + z 2
                                                                           √
                         π/2              π/4
                                                   1                         2                                                  π/2
                                                                                                                                                                   4,294,967,296 √
              22.                                    cos37 θ cos φ dφ dθ =                                                               cos37 θ dθ =                              2 ≈ 0.008040
                     0                0           18                       36                                               0                                     755,505,013,725
                                                                                        √
                                                              2π           a             a2 −r 2
              23. (a) V = 2                                                                             r dz dr dθ = 4πa3 /3
                                                          0            0            0
                                                      2π               π            a
                    (b) V =                                                             ρ2 sin φ dρ dφ dθ = 4πa3 /3
                                                  0                0            0
                                                  √                            √
                                      2            4−x2                             4−x2 −y 2
              24. (a)                                                                                    xyz dz dy dx
                                  0           0                            0
                                                                                                    √
                                                                                            2        4−x2                                                                    2
                                                                                                               1                          1
                                                                            =                                    xy(4 − x2 − y 2 )dy dx =                                        x(4 − x2 )2 dx = 4/3
                                                                                        0       0              2                          8                              0
                                                                       √
                                      π/2                 2             4−r 2
                    (b)                                                                 r3 z sin θ cos θ dz dr dθ
                                  0                   0            0
                                                                                            π/2         2                                                                        π/2
                                                                                                            1 3                              8
                                                                            =                                 (4r − r5 ) sin θ cos θ dr dθ =                                           sin θ cos θ dθ = 4/3
                                                                                        0           0       2                                3                               0
                                      π/2                 π/2               2
                    (c)                                                         ρ5 sin3 φ cos φ sin θ cos θ dρ dφ dθ
                                  0                   0                 0
                                                                                            π/2         π/2                                                                                π/2
                                                                                                              32                                  8
                                                                            =                                    sin3 φ cos φ sin θ cos θ dφ dθ =                                                sin θ cos θ dθ = 4/3
                                                                                        0           0          3                                  3                                    0
January 27, 2005 11:55            L24-CH15                                             Sheet number 28 Page number 682                                                             black



             682                                                                                                                                                                                                               Chapter 15

                                 2π            3              3                                                     2π              3                                                            2π
                                                                                                                                        1                   27
             25. M =                                              (3 − z)r dz dr dθ =                                                     r(3 − r)2 dr dθ =                                           dθ = 27π/4
                             0             0              r                                                     0               0       2                   8                                0

                                 2π            a              h                                         2π              a                                                                   2π
                                                                                                                            1 2           1
             26. M =                                              k zr dz dr dθ =                                             kh r dr dθ = ka2 h2                                                dθ = πka2 h2 /2
                             0             0              0                                         0               0       2             4                                             0

                                 2π            π              a                                                         2π              π                                                                 2π
                                                                                                                                            1 4               1
             27. M =                                              kρ3 sin φ dρ dφ dθ =                                                        ka sin φ dφ dθ = ka4                                             dθ = πka4
                             0             0              0                                                         0               0       4                 2                                       0

                                 2π            π              2                                                 2π              π                                                  2π
                                                                                                                                        3
             28. M =                                              ρ sin φ dρ dφ dθ =                                                      sin φ dφ dθ = 3                               dθ = 6π
                             0             0              1                                                 0               0           2                                      0

             29. x = y = 0 from the symmetry of the region,
                 ¯ ¯
                                                          √
                                 2π           1            2−r 2                                            2π              1                                      √
                   V =                                                            r dz dr dθ =                                  (r          2 − r2 − r3 )dr dθ = (8 2 − 7)π/6,
                             0            0           r2                                                0               0
                                                                  √
                         1            2π              1            2−r 2
                                                                                                                 6                     √
                   z=
                   ¯                                                                   zr dz dr dθ =           √        (7π/12) = 7/(16 2 − 14);
                         V        0               0           r2                                             (8 2 − 7)π
                                                             7
                   centroid            0, 0,                      √
                                                          16 2 − 14
             30. x = y = 0 from the symmetry of the region, V = 8π/3,
                 ¯ ¯
                                      2π              2           2
                         1                                                                          3
                   z=
                   ¯                                                  zr dz dr dθ =                   (4π) = 3/2; centroid (0, 0, 3/2)
                         V        0               0           r                                    8π

             31. x = y = z from the symmetry of the region, V = πa3 /6,
                 ¯ ¯ ¯
                                      π/2                 π/2                 a
                         1                                                                                                                   6
                   z=
                   ¯                                                              ρ3 cos φ sin φ dρ dφ dθ =                                     (πa4 /16) = 3a/8;
                         V        0                   0                   0                                                                 πa3
                   centroid (3a/8, 3a/8, 3a/8)
                                                                                                                                                          2π         π/3       4
             32. x = y = 0 from the symmetry of the region, V =
                 ¯ ¯                                                                                                                                                               ρ2 sin φ dρ dφ dθ = 64π/3,
                                                                                                                                                      0          0         0
                                      2π              π/3                 4
                         1                                                                                                               3
                   z=
                   ¯                                                          ρ3 cos φ sin φ dρ dφ dθ =                                     (48π) = 9/4; centroid (0, 0, 9/4)
                         V        0               0                   0                                                                 64π
                                                                                                                                                     π/2        2 cos θ        r2
             33. y = 0 from the symmetry of the region, V = 2
                 ¯                                                                                                                                                                  r dz dr dθ = 3π/2,
                                                                                                                                                 0          0              0
                                      π/2                 2 cos θ                     r2
                      2                                                                                                              4
                   x=
                   ¯                                                                       r2 cos θ dz dr dθ =                         (π) = 4/3,
                      V           0                   0                           0                                                 3π
                                      π/2                 2 cos θ                 r2
                      2                                                                                              4
                   z=
                   ¯                                                                       rz dz dr dθ =               (5π/6) = 10/9; centroid (4/3, 0, 10/9)
                      V           0                   0                       0                                     3π
                                 π/2              2 cos θ                     4−r 2                                         π/2                 2 cos θ
                                                                                                                                                           1
             34. M =                                                                       zr dz dr dθ =                                                     r(4 − r2 )2 dr dθ
                             0                0                           0                                             0                   0              2
                                          π/2
                         16
                     =                             (1 − sin6 θ)dθ = (16/3)(11π/32) = 11π/6
                         3            0

                                 π/2              π/3                 2                                                  π/2                π/3
                                                                                                                                                      8              4 √                                            π/2
             35. V =                                                      ρ2 sin φ dρ dφ dθ =                                                           sin φ dφ dθ = ( 3 − 1)                                            dθ
                             0                π/6                 0                                                  0                   π/6          3              3                                          0
                         √
                     = 2( 3 − 1)π/3
January 27, 2005 11:55       L24-CH15                                         Sheet number 29 Page number 683                                             black



              Exercise Set 15.7                                                                                                                                                                            683

                                 2π          π/4                 1                                   2π           π/4
                                                                                                                           1              1    √                                    2π               √
              36. M =                                                ρ3 sin φ dρ dφ dθ =                                     sin φ dφ dθ = (2 − 2)                                       dθ = (2 −       2)π/4
                             0           0                   0                                   0            0            4              8                                     0


              37. x = y = 0 from the symmetry of density and region,
                  ¯ ¯
                                 2π          1           1−r 2
                    M=                                                   (r2 + z 2 )r dz dr dθ = π/4,
                             0           0           0
                                      2π             1           1−r 2
                       1
                    z=
                    ¯                                                        z(r2 +z 2 )r dz dr dθ = (4/π)(11π/120) = 11/30; center of gravity (0, 0, 11/30)
                       M          0              0           0

                                                                                                                                                     2π        1       r
              38. x = y = 0 from the symmetry of density and region, M =
                  ¯ ¯                                                                                                                                                      zr dz dr dθ = π/4,
                                                                                                                                                 0         0       0
                                      2π             1           r
                         1
                    z=
                    ¯                                                z 2 r dz dr dθ = (4/π)(2π/15) = 8/15; center of gravity (0, 0, 8/15)
                         M        0              0           0


              39. x = y = 0 from the symmetry of density and region,
                  ¯ ¯
                                 2π          π/2                 a
                    M=                                               kρ3 sin φ dρ dφ dθ = πka4 /2,
                             0           0                   0
                                      2π             π/2                 a
                         1                                                                                          2
                    z=
                    ¯                                                        kρ4 sin φ cos φ dρ dφ dθ =                 (πka5 /5) = 2a/5; center of gravity (0, 0, 2a/5)
                         M        0              0                   0                                             πka4

              40. x = z = 0 from the symmetry of the region, V = 54π/3 − 16π/3 = 38π/3,
                  ¯ ¯
                                     π         π             3                                                         π         π
                         1                                                                                1                          65
                    y=
                    ¯                                            ρ3 sin2 φ sin θ dρ dφ dθ =                                             sin2 φ sin θ dφ dθ
                         V       0         0             2                                                V        0         0        4
                                     π
                         1               65π             3
                     =                       sin θ dθ =     (65π/4) = 195/152; centroid (0, 195/152, 0)
                         V       0        8             38π

                                 2π          π           R                                                                  2π           π
                                                                                                                                             1
                                                                 δ0 e−(ρ/R) ρ2 sin φ dρ dφ dθ =                                                (1 − e−1 )R3 δ0 sin φ dφ dθ
                                                                                   3
              41. M =
                             0           0           0                                                                  0            0       3
                     4
                    = π(1 − e−1 )δ0 R3
                     3

              42. (a) The sphere and cone intersect in a circle of radius ρ0 sin φ0 ,
                                         √ 2 2
                                           θ2                ρ0 sin φ0              ρ0 −r                              θ2            ρ0 sin φ0
                          V=                                                                r dz dr dθ =                                              r     ρ2 − r2 − r2 cot φ0 dr dθ
                                                                                                                                                             0
                                         θ1              0                      r cot φ0                           θ1            0

                                           θ2
                                                     1 3                                     1
                                 =                     ρ0 (1 − cos3 φ0 − sin3 φ0 cot φ0 )dθ = ρ3 (1 − cos3 φ0 − sin2 φ0 cos φ0 )(θ2 − θ1 )
                                         θ1          3                                       3 0

                             1 3
                              ρ (1 − cos φ0 )(θ2 − θ1 ).
                                 =
                             3 0
                    (b) From Part (a), the volume of the solid bounded by θ = θ1 , θ = θ2 , φ = φ1 , φ = φ2 , and
                                  1                           1                            1
                        ρ = ρ0 is ρ3 (1 − cos φ2 )(θ2 − θ1 ) − ρ3 (1 − cos φ1 )(θ2 − θ1 ) = ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 )
                                  3 0                         3 0                          3 0
                        so the volume of the spherical wedge between ρ = ρ1 and ρ = ρ2 is
                               1                                1
                        ∆V = ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 ) − ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 )
                               3 2                              3 1
                                           1 3
                                     =      (ρ − ρ3 )(cos φ1 − cos φ2 )(θ2 − θ1 )
                                           3 2    1
January 27, 2005 11:55           L24-CH15                            Sheet number 30 Page number 684                                                    black



             684                                                                                                                                                                   Chapter 15


                          d
                   (c)       cos φ = − sin φ so from the Mean-Value Theorem cos φ2 −cos φ1 = −(φ2 −φ1 ) sin φ∗ where
                         dφ
                                                              d 3
                         φ∗ is between φ1 and φ2 . Similarly     ρ = 3ρ2 so ρ3 −ρ3 = 3ρ∗2 (ρ2 −ρ1 ) where ρ∗ is between
                                                                             2   1
                                                              dρ
                         ρ1 and ρ2 . Thus cos φ1 −cos φ2 = sin φ ∆φ and ρ2 −ρ1 = 3ρ∗2 ∆ρ so ∆V = ρ∗2 sin φ∗ ∆ρ∆φ∆θ.
                                                                ∗         3   3



                                 2π           a        h                                 2π       a        h
                                                                                                                                                  1
             43. Iz =                                      r2 δ r dz dr dθ = δ                                 r3 dz dr dθ =                        δπa4 h
                             0            0        0                                 0        0        0                                          2

                              2π              a        h                                                            2π        a
                                                                                                                                               1
             44. Iy =                                      (r2 cos2 θ + z 2 )δr dz dr dθ = δ                                      (hr3 cos2 θ + h3 r)dr dθ
                          0               0        0                                                            0         0                    3
                                     2π
                                                  1 4           1             π 4    π
                     =δ                             a h cos2 θ + a2 h3 dθ = δ   a h + a2 h3
                                 0                4             6             4      3

                                 2π           a2           h                             2π       a2           h
                                                                                                                                                       1
             45. Iz =                                          r2 δ r dz dr dθ = δ                                  r3 dz dr dθ =                        δπh(a4 − a4 )
                                                                                                                                                              2    1
                             0            a1           0                             0         a1          0                                           2

                                 2π           π        a                                                                 2π           π           a
                                                                                                                                                                              8
             46. Iz =                                      (ρ2 sin2 φ)δ ρ2 sin φ dρ dφ dθ = δ                                                         ρ4 sin3 φ dρ dφ dθ =      δπa5
                             0            0        0                                                                 0            0           0                              15



             EXERCISE SET 15.8
                   ∂(x, y)                    1      4                                                                   ∂(x, y)                         1    4v
              1.           =                                     = −17                                         2.                =                                 = −1 − 16uv
                   ∂(u, v)                    3     −5                                                                   ∂(u, v)                        4u    −1

                   ∂(x, y)                    cos u            − sin v
              3.           =                                               = cos u cos v + sin u sin v = cos(u − v)
                   ∂(u, v)                    sin u             cos v

                                              2(v 2 − u2 )                   4uv
                                                                      −
                   ∂(x, y)                    (u2 + v 2 )2                (u2 + v 2 )2
              4.           =                                                                  = 4/(u2 + v 2 )2
                   ∂(u, v)                        4uv                     2(v 2 − u2 )
                                              (u 2 + v 2 )2               (u2 + v 2 )2

                         2    5        1   2   ∂(x, y)                                                 2/9               5/9                  1
              5. x =       u + v, y = − u + v;         =                                                                                  =
                         9    9        9   9   ∂(u, v)                                                −1/9               2/9                  9

                                                               ∂(x, y)       1/u     0
              6. x = ln u, y = uv;                                     =                      =1
                                                               ∂(u, v)         v     u

                                                                                                                   1                                       1
                                                                                                                 √ √                                     √ √
                         √         √      √      √   ∂(x, y)                                                    2 2 u+v                                 2 2 u+v               1
              7. x =         u + v/ 2, y = v − u/ 2;         =                                                                                                           = √
                                                     ∂(u, v)                                                       1                                       1              4 v 2 − u2
                                                                                                               − √ √                                     √ √
                                                                                                                2 2 v−u                                 2 2 v−u

                                                                                                          3u1/2                           u3/2
                                                                                                                                  −
                                                                              ∂(x, y)                     2v 1/2                          2v 3/2               1
              8. x = u3/2 /v 1/2 , y = v 1/2 /u1/2 ;                                  =                                                                   =
                                                                              ∂(u, v)                      v   1/2
                                                                                                                                  1                           2v
                                                                                                      −
                                                                                                          2u3/2               2u1/2 v 1/2
January 27, 2005 11:55        L24-CH15                       Sheet number 31 Page number 685                             black



              Exercise Set 15.8                                                                                                                                                                685


                                            3        1  0                                                                     1−v                          −u                      0
                    ∂(x, y, z)                                                                ∂(x, y, z)
               9.              =            1        0 −2           =5              10.                  =                   v − vw                      u − uw                  −uv       = u2 v
                    ∂(u, v, w)                                                                ∂(u, v, w)
                                            0        1  1                                                                      vw                          uw                     uv

                                                                                                                   1/v               −u/v 2                  0
                                                             ∂(x, y, z)
              11. y = v, x = u/y = u/v, z = w − x = w − u/v;            =                                           0                  1                     0           = 1/v
                                                             ∂(u, v, w)
                                                                                                                   −1/v               u/v 2                  1

                                                                                                                    0             1/2                    1/2
                                                                                     ∂(x, y, z)                                                                                      1
              12. x = (v + w)/2, y = (u − w)/2, z = (u − v)/2,                                  =                  1/2             0                     −1/2             =−
                                                                                     ∂(u, v, w)                                                                                      4
                                                                                                                   1/2           −1/2                     0

                                       y                                                                   y
              13.                                                                     14.                                                    (3, 4)
                              (0, 2)                                                                   4

                                                                                                       3

                                                                                                       2

                                                                                                       1
                                                                                                                                                                                 x
                                                                                               (0, 0)                1                   2               3           (4, 0)
                                       (0, 0)                 x
                    (–1, 0)                          (1, 0)

                                       y                                                               y
              15.                 3        (0, 3)                                     16.
                                                                                               2

                                                    (2, 0)
                                                             x
                    –3                                 3                                       1



                                                                                                                                                             x
                                –3
                                                                                                                         1                           2


                                                                                                                                 3           4
                          1    2        2   1 ∂(x, y)  1 1                                     u        1                                        u        3
              17. x =       u + v, y = − u + v,       = ;                                        dAuv =                                            du dv = ln 3
                          5    5        5   5 ∂(u, v)  5 5                                     v        5                    1           1       v        2
                                                                                          S

                                                                                                                                     4           1
                          1    1      1   1 ∂(x, y)   1 1                                                                1                                                           1 4
              18. x =       u + v, y = u − v,       =− ;                                      veuv dAuv =                                            veuv du dv =                      (e − e − 3)
                          2    2      2   2 ∂(u, v)   2 2                                                                2       1           0                                       2
                                                                                      S


                                                                 ∂(x, y)
              19. x = u + v, y = u − v,                                  = −2; the boundary curves of the region S in the uv-plane are
                                                                 ∂(u, v)
                                                                                                       1       u
                                                                                                                                                                                 1
                    v = 0, v = u, and u = 1 so 2                         sin u cos vdAuv = 2                       sin u cos v dv du = 1 −                                         sin 2
                                                                                                   0       0                                                                     2
                                                                     S


                                                √                                 ∂(x, y)     1
              20. x =         v/u, y =              uv so, from Example 3,                = − ; the boundary curves of the region S in
                                                                                  ∂(u, v)    2u
                                                                                                                                                                     4       3
                                                                                                                     1                                   1
                    the uv-plane are u = 1, u = 3, v = 1, and v = 4 so                                 uv 2                      dAuv =                                          v 2 du dv = 21
                                                                                                                    2u                                   2       1       1
                                                                                               S
January 27, 2005 11:55          L24-CH15                       Sheet number 32 Page number 686                                               black



             686                                                                                                                                                                        Chapter 15


                                                  ∂(x, y)
             21. x = 3u, y = 4v,                          = 12; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1.
                                                  ∂(u, v)
                                                                                                                                                      2π           1
                   Use polar coordinates to obtain                                        12       u2 + v 2 (12) dAuv = 144                                            r2 dr dθ = 96π
                                                                                                                                                  0            0
                                                                                  S


                                              ∂(x, y)
             22. x = 2u, y = v,                       = 2; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1. Use
                                              ∂(u, v)
                                                                                                                                2π           1
                                                                                 e−(4u                                                           re−4r dr dθ = (1 − e−4 )π/2
                                                                                           2
                                                                                               +4v 2 )                                                     2
                   polar coordinates to obtain                                                           (2) dAuv = 2
                                                                                                                            0            0
                                                                         S


             23. Let S be the region in the uv-plane bounded by u2 + v 2 = 1, so u = 2x, v = 3y,

                                                      ∂(x, y)            1/2           0
                   x = u/2, y = v/3,                          =                                    = 1/6, use polar coordinates to get
                                                      ∂(u, v)             0           1/3
                                                                             π/2          1                                                       1
                   1                                                1                                             π                                            π
                            sin(u2 + v 2 )du dv =                                             r sin r2 dr dθ =       (− cos r2 )                       =          (1 − cos 1)
                   6                                                6    0            0                           24                              0            24
                       S


                                                                                                                            2π           1
                                                                                   ∂(x, y)
             24. u = x/a, v = y/b, x = au, y = bv;                                         = ab; A = ab                                      r dr dθ = πab
                                                                                   ∂(u, v)                              0            0


                                                                    ∂(x, y, z)
             25. x = u/3, y = v/2, z = w,                                      = 1/6; S is the region in uvw-space enclosed by the sphere
                                                                    ∂(u, v, w)
                   u2 + v 2 + w2 = 36 so
                                                                    2π       π        6
                             u2 1          1
                                  dVuvw =                                                 (ρ sin φ cos θ)2 ρ2 sin φ dρ dφ dθ
                             9 6          54                    0        0        0
                       S
                                                                    2π       π        6
                                                           1                                                                             192
                                                      =                                   ρ4 sin3 φ cos2 θdρ dφ dθ =                         π
                                                          54    0        0        0                                                       5

                                                                                                                                                               ∂(x, y, z)
             26. Let G1 be the region u2 + v 2 + w2 ≤ 1, with x = au, y = bv, z = cw,                                                                                     = abc; then use
                                                                                                                                                               ∂(u, v, w)
                   spherical coordinates in uvw-space:

                   Ix =              (y 2 + z 2 )dx dy dz = abc                                 (b2 v 2 + c2 w2 ) du dv dw
                            G                                                         G1
                                2π        π       1
                       =                              abc(b2 sin2 φ sin2 θ + c2 cos2 φ)ρ4 sin φ dρ dφ dθ
                            0         0       0
                                2π
                                     abc 2 2                   4
                       =                (4b sin θ + 2c2 )dθ =    πabc(b2 + c2 )
                            0        15                       15

             27. u = θ = cot−1 (x/y), v = r =                                x2 + y 2

             28. u = r =             x2 + y 2 , v = (θ + π/2)/π = (1/π) tan−1 (y/x) + 1/2

                           3    2        1   3                                                                         4
             29. u =         x − y, v = − x + y                                                            30. u = −x + y, v = y
                           7    7        7   7                                                                         3
January 27, 2005 11:55                  L24-CH15                   Sheet number 33 Page number 687                                       black



              Exercise Set 15.8                                                                                                                                           687


                                                                                                  1             1           ∂(x, y)   1
              31. Let u = y − 4x, v = y + 4x, then x =                                              (v − u), y = (v + u) so         =− ;
                                                                                                  8             2           ∂(u, v)   8
                                                           5           2
                    1               u        1                             u        1 5
                                      dAuv =                                 du dv = ln
                    8               v        8         2           0       v        4 2
                            S


                                                                                                1             1           ∂(x, y)  1
              32. Let u = y + x, v = y − x, then x =                                              (u − v), y = (u + v) so         = ;
                                                                                                2             2           ∂(u, v)  2
                                                                           2           1
                         1                                     1                                          1
                    −                   uv dAuv = −                                        uv du dv = −
                         2                                     2       0           0                      2
                                S


                                                                                               1             1           ∂(x, y)  1
              33. Let u = x − y, v = x + y, then x =                                             (v + u), y = (v − u) so         = ; the boundary curves of
                                                                                               2             2           ∂(u, v)  2
                    the region S in the uv-plane are u = 0, v = u, and v = π/4; thus

                    1               sin u        1                     π/4             v
                                                                                           sin u        1    √
                                          dAuv =                                                 du dv = [ln( 2 + 1) − π/4]
                    2               cos v        2                 0               0       cos v        2
                            S


                                                                                                    1             1           ∂(x, y)    1
              34. Let u = y − x, v = y + x, then x =                                                  (v − u), y = (u + v) so         = − ; the boundary
                                                                                                    2             2           ∂(u, v)    2
                    curves of the region S in the uv-plane are v = −u, v = u, v = 1, and v = 4; thus
                                                                   4           v
                    1                              1                                                  15
                                    eu/v dAuv =                                    eu/v du dv =          (e − e−1 )
                    2                              2           1           −v                         4
                            S


                                                                                                                             ∂(x, y)   1
              35. Let u = y/x, v = x/y 2 , then x = 1/(u2 v), y = 1/(uv) so                                                          = 4 3;
                                                                                                                             ∂(u, v)  u v
                                                       4           2
                                    1                                    1
                                         dAuv =                                du dv = 35/256
                                u4 v 3             1           1        u4 v 3
                     S


                                                           ∂(x, y)
              36. Let x = 3u, y = 2v,                              = 6; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1
                                                           ∂(u, v)
                                                                                                                        2π        1
                    so              (9 − x − y)dA =                                6(9 − 3u − 2v)dAuv = 6                             (9 − 3r cos θ − 2r sin θ)r dr dθ = 54π
                                                                                                                    0         0
                             R                                         S


                                                                                       ∂(x, y, z)   1
              37. x = u, y = w/u, z = v + w/u,                                                    =− ;
                                                                                       ∂(u, v, w)   u
                                                               4           1           3
                                    v2 w                                                   v2 w
                                         dVuvw =                                                du dv dw = 2 ln 3
                                     u                     2           0           1        u
                        S


              38. u = xy, v = yz, w = xz, 1 ≤ u ≤ 2, 1 ≤ v ≤ 3, 1 ≤ w ≤ 4,
                                                                                                    ∂(x, y, z)     1
                    x=              uw/v, y =          uv/w, z =                            vw/u,              = √
                                                                                                    ∂(u, v, w)  2 uvw
                                                       2           3           4
                                                                                     1                √       √
                    V =                   dV =                                         √ dw dv du = 4( 2 − 1)( 3 − 1)
                                                   1           1           1       2 uvw
                                    G
January 27, 2005 11:55       L24-CH15                                 Sheet number 34 Page number 688                            black



             688                                                                                                                                         Chapter 15


                                             sin3 φ cos3 θ 3ρ sin2 φ cos φ cos3 θ −3ρ sin3 φ cos2 θ sin θ
                   ∂(x, y, z)
             39.              =              sin3 φ sin3 θ 3ρ sin2 φ cos φ sin3 θ  3ρ sin3 φ sin2 θ cos θ
                   ∂(ρ, φ, θ)                          3
                                                   cos φ        −3ρ cos φ sin φ
                                                                        2
                                                                                                        0
                                 = 9ρ2 cos2 θ sin2 θ cos2 φ sin5 φ,
                                2π       π           a
                                                                                                                    4
                   V =9                                  ρ2 cos2 θ sin2 θ cos2 φ sin5 φ dρ dφ dθ =                    πa3
                            0        0           0                                                                 35

             40. (b) If x = x(u, v), y = y(u, v) where u = u(x, y), v = v(x, y), then by the chain rule
                            ∂x ∂u ∂x ∂v   ∂x      ∂x ∂u ∂x ∂v     ∂x
                                 +      =    = 1,       +       =    =0
                            ∂u ∂x ∂v ∂x   ∂x      ∂u ∂y   ∂v ∂y   ∂y
                            ∂y ∂u ∂y ∂v   ∂y      ∂y ∂u ∂y ∂v     ∂y
                                 +      =    = 0,       +       =    =1
                            ∂u ∂x ∂v ∂x   ∂x      ∂u ∂y   ∂v ∂y   ∂y

                           ∂(x, y)                   1−v                  −u                                 y
             41. (a)               =                                                 = u; u = x + y, v =        ,
                           ∂(u, v)                    v                    u                                x+y
                           ∂(u, v)                       1                                1                 x          y        1   1
                                   =                                                                 =            +          =     = ;
                           ∂(x, y)                   −y/(x + y)2                      x/(x + y)2         (x + y)2   (x + y)2   x+y  u
                           ∂(u, v) ∂(x, y)
                                           =1
                           ∂(x, y) ∂(u, v)

                           ∂(x, y)                   v   u                 √       √
                   (b)             =                        = 2v 2 ; u = x/ y, v = y,
                           ∂(u, v)                   0   2v
                                                       √
                           ∂(u, v)                   1/ y −x/(2y 3/2 )      1     1 ∂(u, v) ∂(x, y)
                                   =                             √       =    = 2;                  =1
                           ∂(x, y)                     0    1/(2 y)        2y    2v ∂(x, y) ∂(u, v)

                           ∂(x, y)                   u   v              √           √
                   (c)             =                         = −2uv; u = x + y, v = x − y,
                           ∂(u, v)                   u  −v
                                                         √           √
                           ∂(u, v)                   1/(2 x + y) 1/(2 x + y)           1         1 ∂(u, v) ∂(x, y)
                                   =                     √            √       =−             =−    ;                =1
                           ∂(x, y)                   1/(2 x − y) −1/(2 x − y)      2 x2 − y2    2uv ∂(x, y) ∂(u, v)

                                                                                                                             2    2π
                   ∂(u, v)                 ∂(x, y)    1 1                                            sin u        1                    sin u          2
             42.           = 3xy 4 = 3v so         =   ;                                                   dAuv =                            du dv = − ln 2
                   ∂(x, y)                 ∂(u, v)   3v 3                                              v          3      1       π       v            3
                                                                                                 S


                   ∂(u, v)          ∂(x, y)    1       ∂(x, y)                                                1          1
             43.           = 8xy so         =     ; xy         = xy                                                  =     so
                   ∂(x, y)          ∂(u, v)   8xy      ∂(u, v)                                               8xy         8
                                                         16           4
                   1                         1
                           dAuv =                                         du dv = 21/8
                   8                         8       9            1
                       S


                   ∂(u, v)                    ∂(x, y)         1
             44.           = −2(x2 + y 2 ) so         =−    2 + y2 )
                                                                     ;
                   ∂(x, y)                    ∂(u, v)    2(x

                                         ∂(x, y)    x4 − y 4 xy   1                1
                   (x4 − y 4 )exy                =    2 + y2 )
                                                               e = (x2 − y 2 )exy = veu so
                                         ∂(u, v)   2(x            2                2
                                                                  4           3
                   1                                 1                                          7 3
                           veu dAuv =                                             veu du dv =     (e − e)
                   2                                 2        3           1                     4
                       S
January 27, 2005 11:55            L24-CH15                            Sheet number 35 Page number 689                                                            black



              Review Exercises, Chapter 15                                                                                                                                                                         689


                                                                                                                                                                             1     1        2
                                                                                                                                                         ∂(u, v, w)
              45. Set u = x + y + 2z, v = x − 2y + z, w = 4x + y + z, then                                                                                          =        1    −2        1        = 18, and
                                                                                                                                                         ∂(x, y, z)
                                                                                                                                                                             4     1        1
                                                                      6               2           3
                                                                                                       ∂(x, y, z)                      1
                    V =                       dx dy dz =                                                          du dv dw = 6(4)(12)    = 16
                                                                      −6          −2              −3   ∂(u, v, w)                     18
                                  R


              46. (a) Let u = x + y, v = y, then the triangle R with vertices (0, 0), (1, 0) and (0, 1) becomes the
                      triangle in the uv-plane with vertices (0, 0), (1, 0), (1, 1), and
                                                                                  1           u                                                    1
                                                                                                             ∂(x, y)
                                          f (x + y)dA =                                           f (u)              dv du =                           uf (u) du
                                                                              0           0                  ∂(u, v)                           0
                               R
                                      1                                                   1
                    (b)                   ueu du = (u − 1)eu                                  =1
                                  0                                                       0


                                                              cos θ               −r sin θ                   0
                              ∂(x, y, z)                                                                                          ∂(x, y, z)
              47. (a)                    =                    sin θ                r cos θ                   0    = r,                       =r
                              ∂(r, θ, z)                                                                                          ∂(r, θ, z)
                                                                  0                      0                   1

                                                              sin φ cos θ                         ρ cos φ cos θ                   −ρ sin φ sin θ
                              ∂(x, y, z)                                                                                                                                         ∂(x, y, z)
                    (b)                  =                    sin φ sin θ                          ρ cos φ sin θ                  ρ sin φ cos θ                = ρ2 sin φ;                  = ρ2 sin φ
                              ∂(ρ, φ, θ)                                                                                                                                         ∂(ρ, φ, θ)
                                                                 cos φ                              −ρ sin φ                            0



              REVIEW EXERCISES, CHAPTER 15
                                                                                                                                                                                                 2             2
                                                                                                                                                                                           ∂z             ∂z
               3. (a)                     dA                                              (b)                        dV                                       (c)            1+                       +            dA
                                                                                                                                                                                           ∂x             ∂y
                               R                                                                             G                                                       R


               4. (a) x = a sin φ cos θ, y = a sin φ sin θ, z = a cos φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
                  (b) x = a cos θ, y = a sin θ, z = z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h
                                      √
                         1    1+           1−y 2                                                                                                   2     2x                            3        6−x
               7.                 √                 f (x, y) dx dy                                                                 8.                         f (x, y) dy dx +                        f (x, y) dy dx
                     0       1−           1−y 2                                                                                                0        x                          2        x



               9. (a) (1, 2) = (b, d), (2, 1) = (a, c), so a = 2, b = 1, c = 1, d = 2
                                                          1       1                                                  1        1
                                                                      ∂(x, y)
                    (b)                   dA =                                du dv =                                             3du dv = 3
                                                      0       0       ∂(u, v)                                    0        0
                               R

                                              √
              10. If 0 < x, y < π then 0 < sin xy ≤ 1, with equality only on the hyperbola xy = π 2 /4, so
                                  π           π                           π           π
                                                                                             √                                         π       π
                    0=                            0 dy dx <                               sin xy dy dx <                                           1 dy dx = π 2
                              0           0                           0           0                                                0       0

                         1
                                                                  1                                    1           √
              11.            2x cos(πx2 ) dx =                      sin(πx2 )                                = −1/( 2π)
                     1/2                                          π                                    1/2


                         2                    x=2y                            2                                               2
                             x2 y3                                3                               3              1 y3                  1 8
              12.              e                      dy =                            y 2 ey dy =                  e              =      e −1
                     0       2                x=−y                2       0                                      2            0        2
January 27, 2005 11:55                       L24-CH15                               Sheet number 36 Page number 690                                                    black



             690                                                                                                                                                                                         Chapter 15

                         1           2                                                                                                        π        x
                                                                                                                                                           sin x
             13.                         ex ey dx dy                                                                        14.                                  dy dx
                     0           2y                                                                                                       0        0         x

             15.                 y                                                                                          16. p /2
                         1                                                                                                                             r = a(1 + cos u)
                                         y = sin x


                                                           y = tan (x/2)                                                                          r=a

                                                                                x
                                                                                                                                                       p /6
                                                                       6                                                                                                               0


                             8           y 1/3                                                 8                                                    8
                                                                                       2                            1                                          1
             17. 2                                    x2 sin y 2 dx dy =                            y sin y 2 dy = − cos y 2                               =     (1 − cos 64) ≈ 0.20271
                         0           0                                                 3   0                        3                               0          3

                         π/2                 2
             18.                                 (4 − r2 )r dr dθ = 2π
                     0                   0

                                                                               2xy
             19. sin 2θ = 2 sin θ cos θ =                                             , and r = 2a sin θ is the circle x2 + (y − a)2 = a2 , so
                                                                             x2 + y 2
                                       √
                         a           a+ a2 −x2                                                         a
                                                                    2xy
                                   √                                       dy dx =                         x ln a +             a2 − x2 − ln a −                               a2 − x2             dx = a2
                     0           a− a2 −x2                        x2 + y 2                         0

                         π/2                 2                                                                          π/2
             20.                                 4r2 (cos θ sin θ) r dr dθ = −4 cos 2θ                                          =4
                     π/4                 0                                                                              π/4

                         2           2−y/2                                      2                                                                                                    2
                                                                                           y   y                1/3                                y2   3                y   4/3               3
             21.                                      dx dy =                        2−      −                          dy =            2y −          −                                    =
                     0           (y/2)1/3                                   0              2   2                                                   4    2                2           0         2

                                             π/6              cos 3θ                               π/6
             22. A = 6                                                    r dr dθ = 3                      cos2 3θ = π/4
                                         0                0                                    0

                         2π              2        16                                                       2π                       2
             23.                                          r2 cos2 θ r dz dr dθ =                                cos2 θ dθ               r3 (16 − r4 ) dr = 32π
                     0               0           r4                                                    0                        0

                         π/2                 π/2              1                                                                               π/2
                                                                   1                            π                                   π
             24.                                                      2
                                                                        ρ2 sin φ dρ dφ dθ = 1 −                                                        sin φ dφ
                     0                   0                0       1+ρ                           4                                   2     0

                                                                                                                            π       π                              π/2             π       π
                                                                                                            = 1−                      (− cos φ)                          = 1−
                                                                                                                            4       2                              0               4       2
                                         2π               π/3         a                                                              2π           π/3          a
             25. (a)                                                      (ρ2 sin2 φ)ρ2 sin φ dρ dφ dθ =                                                           ρ4 sin3 φ dρ dφ dθ
                                     0                0       0                                                                     0     0            0
                                                          √                √                                                        √               √
                                         2π                3a/2             a2 −r 2                                        2π         3a/2           a2 −r 2

                   (b)                                                      √          r2 dz rdr dθ =                                                √                 r3 dz dr dθ
                                     0                0                   r/ 3                                         0        0                  r/ 3
                                         √                        √                        √
                                          3a/2                        (3a2 /4)−x2                  a2 −x2 −y 2
                   (c)                √                            √                       √            √             (x2 + y 2 ) dz dy dx
                                     − 3a/2                       −    (3a2 /4)−x2             x2 +y 2 / 3
January 27, 2005 11:55              L24-CH15                           Sheet number 37 Page number 691                                                                 black



              Review Exercises, Chapter 15                                                                                                                                                                                691

                                               √
                                     4          4x−x2                4x                                                                                          π/2        4 cos θ        4r cos θ
              26. (a)                         √                               dz dy dx                                                          (b)                                                   r dz dr dθ
                                 0           − 4x−x2                x2 +y 2                                                                                  −π/2       0              r2

                                                    √                                                                   √
                                    2π            a/ 3          a                                                     a/ 3                     √                   πa3
              27. V =                                         √       r dz dr dθ = 2π                                          r(a −               3r) dr =
                                0             0                3r                                                 0                                                 9

              28. The intersection of the two surfaces projects onto the yz-plane as 2y 2 + z 2 = 1, so
                            √     √     2      2
                                         1/ 2                 1−2y            1−y
                    V =4                                                                dx dz dy
                                     0                0                   y 2 +z 2
                                           √              √                                                                                      √                                          √
                                         1/ 2                 1−2y 2                                                                           1/ 2
                                                                                                                                                      2                                         2π
                         =4                                            (1 − 2y − z ) dz dy = 4
                                                                                        2             2
                                                                                                                                                        (1 − 2y 2 )3/2 dy =
                                     0                0                                                                                    0          3                                         4
                                                  √
              29.    ru × rv =                        2u2 + 2v 2 + 4,
                                                                                                             2π            2   √                                        8π √
                    S=                                2u2 + 2v 2 + 4 dA =                                                          2       r2 + 2 r dr dθ =                (3 3 − 1)
                                                                                                         0             0                                                 3
                             u2 +v 2 ≤4


                                                  √                                 2            3u                                                     2
              30.    ru × rv =                        1 + u2 , S =                                               1 + u2 dv du =                             3u    1 + u2 du = 53/2 − 1
                                                                                0           0                                                       0



              31. (ru × rv )                 u=1
                                                      = −2, −4, 1 , tangent plane 2x + 4y − z = 5
                                             v=2



              32. u = −3, v = 0, (ru × rv )                                   u=−3
                                                                                        = −18, 0, −3 , tangent plane 6x + z = −9
                                                                               v=0


                                    4         2+y 2 /8                          4
                                                                                                          y2                           32
              33. A =                                         dx dy =                       2−                         dy =               ; y = 0 by symmetry;
                                                                                                                                            ¯
                                −4           y 2 /4                            −4                         8                            3
                         4      2+y 2 /8                                   4
                                                                                   1      3 4       256       3 256  8                                                                                         8
                                                  x dx dy =                     2 + y2 −     y dy =     , x=
                                                                                                          ¯         = ; centroid                                                                                 ,0
                     −4        y 2 /4                                     −4       4     128         15      32 15   5                                                                                         5

              34. A = πab/2, x = 0 by symmetry,
                             ¯
                         √ 2 2
                    a   b 1−x /a
                                            1 a 2                                                                                                                                          4b
                                  y dy dx =      b (1 − x2 /a2 )dx = 2ab2 /3, centroid                                                                                                0,
                   −a 0                     2 −a                                                                                                                                           3π

                              1 2
              35. V =           πa h, x = y = 0 by symmetry,
                                      ¯ ¯
                              3
                         2π         a         h−rh/a                                                     a                                 2
                                                                                                                                       r
                                                              rz dz dr dθ = π                                rh2 1 −                            dr = πa2 h2 /12, centroid (0, 0, h/4)
                     0          0         0                                                          0                                 a
                                    2         4           4−y                                2               4                                          2
                                                                                                                                                                      1        256
              36. V =                                           dz dy dx =                                       (4 − y)dy dx =                              8 − 4x2 + x4 dx =     ,
                                −2           x2       0                                     −2           x2                                           −2              2         15
                         2      4            4−y                                    2            4                                                    2
                                                                                                                                                             1 6         32                             1024
                                                      y dz dy dx =                                   (4y − y 2 ) dy dx =                                       x − 2x4 +                        dx =
                     −2        x2        0                                      −2          x2                                                     −2        3            3                              35
                         2      4            4−y                                2                4                                                      2
                                                                                                     1                                                           x6               32                               2048
                                                      z dz dy dx =                                     (4 − y)2 dy dx =                                      −      + 2x4 − 8x2 +                         dx =
                     −2        x2        0                                      −2          x2       2                                              −2           6                 3                               105
                                                                                                 12 8
                    x = 0 by symmetry, centroid
                    ¯                                                                       0,     ,
                                                                                                  7 7
January 27, 2005 11:55      L24-CH15             Sheet number 38 Page number 692                                                 black



             692                                                                                                                                                 Chapter 15

                                                                                       π       2π          a
                         4 3 ¯       3                                       3                                                            3        a4 3
             37. V =       πa , d =                          ρdV =                                             ρ3 sin φ dρ dθ dφ =            2π(2) = a
                         3          4πa3                                    4πa3   0       0           0                                 4πa3      4  4
                                             ρ≤a

                                                                                                                                 2            2
                          1     3          3    1                                                                            1           3             1
             38. x =        u + v and y = − u + v,                                 hence |J(u, v)| =                                 +            =      , and
                         10    10          10  10                                                                           10           10           10

                          x − 3y         1               3           4
                                                                         u            1            3
                                                                                                       1               4
                                                                                                                                      1 2    8
                                 2
                                   dA =                                    2
                                                                             du dv =                      dv               u du =         8=
                         (3x + y)       10           1           0       v           10        1       v2          0                 10 3    15
                   R

                                                                                           1       1
             39. (a) Add u and w to get x = ln(u + w) − ln 2; subtract w from u to get y = u − w, substitute
                                                                                           2       2
                                                               1    1     1                    1
                     these values into v = y + 2z to get z = − u + v + w. Hence xu =                , xv = 0, xw =
                                                               4    2     4                u+w
                       1          1                1         1      1       1            ∂(x, y, z)          1
                           ; yu = , yv = 0, yz = − ; zu = − , zv = , zw = , and thus                  =
                     u+w          2                2         4      2       4           ∂(u, v, w)       2(u + w)
                                             3       2           4
                                                                         1
                   (b) V =           =                                        dw dv du
                                         1       1           0       2(u + w)
                                G
                                                                                1 823543
                            = (7 ln 7 − 5 ln 5 − 3 ln 3)/2 =                      ln       ≈ 1.139172308
                                                                                2    84375

More Related Content

PDF
Ism et chapter_6
Drradz Maths
 
PDF
Stepenovanje
Jelena Dobrivojevic
 
PDF
Actividad 4 calculo diferencial
SIGIFREDO12222
 
PDF
01 derivadas
klorofila
 
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Destiny Nooppynuchy
 
PDF
Sect1 4
inKFUPM
 
PDF
Sect1 2
inKFUPM
 
PPTX
Wordproblem
Yodhathai Reesrikom
 
Ism et chapter_6
Drradz Maths
 
Stepenovanje
Jelena Dobrivojevic
 
Actividad 4 calculo diferencial
SIGIFREDO12222
 
01 derivadas
klorofila
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Destiny Nooppynuchy
 
Sect1 4
inKFUPM
 
Sect1 2
inKFUPM
 
Wordproblem
Yodhathai Reesrikom
 

What's hot (20)

PDF
Nts
tanveersyed
 
PDF
Week 2
Hazrul156
 
PDF
Chapter 07
ramiz100111
 
PDF
Week 3 [compatibility mode]
Hazrul156
 
PDF
Derivadas
CEU Benito Juarez
 
PDF
Chapter 04
ramiz100111
 
PDF
Emat 213 midterm 1 winter 2006
akabaka12
 
PPTX
Antiderivatives nako sa calculus official
Zerick Lucernas
 
PDF
Calculus First Test 2011/10/20
Kuan-Lun Wang
 
DOC
Simultaneous eqn2
zabidah awang
 
PPTX
Jackson d.e.v.
Dougfield32
 
PDF
Ch33 11
schibu20
 
PDF
Math refresher
delilahnan
 
PDF
Lesson 15: The Chain Rule
Matthew Leingang
 
PPTX
Jacob's and Vlad's D.E.V. Project - 2012
Jacob_Evenson
 
DOC
2º mat emática
newtonbonfim
 
PPT
4.1 implicit differentiation
dicosmo178
 
PDF
Integrated exercise a_(book_2_B)_Ans
ken1470
 
DOC
Chapter 4(differentiation)
Eko Wijayanto
 
PDF
Sect1 5
inKFUPM
 
Week 2
Hazrul156
 
Chapter 07
ramiz100111
 
Week 3 [compatibility mode]
Hazrul156
 
Chapter 04
ramiz100111
 
Emat 213 midterm 1 winter 2006
akabaka12
 
Antiderivatives nako sa calculus official
Zerick Lucernas
 
Calculus First Test 2011/10/20
Kuan-Lun Wang
 
Simultaneous eqn2
zabidah awang
 
Jackson d.e.v.
Dougfield32
 
Ch33 11
schibu20
 
Math refresher
delilahnan
 
Lesson 15: The Chain Rule
Matthew Leingang
 
Jacob's and Vlad's D.E.V. Project - 2012
Jacob_Evenson
 
2º mat emática
newtonbonfim
 
4.1 implicit differentiation
dicosmo178
 
Integrated exercise a_(book_2_B)_Ans
ken1470
 
Chapter 4(differentiation)
Eko Wijayanto
 
Sect1 5
inKFUPM
 
Ad

Viewers also liked (6)

DOCX
Finanzas 3
camilarojo8
 
PDF
One Note
Tuan Thanh Dang
 
PPTX
Сказка о юзабилити, или как не отпугнуть пользователей
Oleg Karapuzov
 
PPS
Premios Resaca 2008
joan vallmy
 
PPTX
Animations
Nadia Angelin
 
PPT
Transcripción
COLEGIO ANDRES BELLO
 
Finanzas 3
camilarojo8
 
One Note
Tuan Thanh Dang
 
Сказка о юзабилити, или как не отпугнуть пользователей
Oleg Karapuzov
 
Premios Resaca 2008
joan vallmy
 
Animations
Nadia Angelin
 
Transcripción
COLEGIO ANDRES BELLO
 
Ad

Similar to Chapter 15 (20)

PDF
Ism et chapter_6
Drradz Maths
 
PDF
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Matthew Leingang
 
PDF
Double integration
MuhammadAsadriaz
 
PDF
Maths assignment
Ntshima
 
PDF
Calculus Final Exam
Kuan-Lun Wang
 
PDF
整卷
Kuan-Lun Wang
 
PPT
11X1 T09 03 second derivative
Nigel Simmons
 
PPT
Gaussian Integration
Reza Rahimi
 
PPTX
Differential equations
janetvmiller
 
PDF
Chapter 08
ramiz100111
 
PDF
Lista de derivadas e integrais
Universidade de São Paulo USP
 
PPT
125 5.2
Jeneva Clark
 
PDF
Math integration-homework help
Expertsmind IT Education Pvt Ltd.
 
DOC
Differential Equation Tutorial 1
Yong Sheng
 
PDF
Formulas de taylor
ERICK CONDE
 
PDF
Torsion of circular shafts
aero103
 
PDF
Emat 213 midterm 1 fall 2005
akabaka12
 
PDF
Double integration
Abhishek N Nair
 
PDF
Regras diferenciacao
Uniengenheiros2011
 
PDF
01 regras diferenciacao
Diogo de Lucena
 
Ism et chapter_6
Drradz Maths
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Matthew Leingang
 
Double integration
MuhammadAsadriaz
 
Maths assignment
Ntshima
 
Calculus Final Exam
Kuan-Lun Wang
 
11X1 T09 03 second derivative
Nigel Simmons
 
Gaussian Integration
Reza Rahimi
 
Differential equations
janetvmiller
 
Chapter 08
ramiz100111
 
Lista de derivadas e integrais
Universidade de São Paulo USP
 
125 5.2
Jeneva Clark
 
Math integration-homework help
Expertsmind IT Education Pvt Ltd.
 
Differential Equation Tutorial 1
Yong Sheng
 
Formulas de taylor
ERICK CONDE
 
Torsion of circular shafts
aero103
 
Emat 213 midterm 1 fall 2005
akabaka12
 
Double integration
Abhishek N Nair
 
Regras diferenciacao
Uniengenheiros2011
 
01 regras diferenciacao
Diogo de Lucena
 

More from ramiz100111 (8)

PDF
Chapter 14
ramiz100111
 
PDF
Chapter 16
ramiz100111
 
PDF
Chapter 10
ramiz100111
 
PDF
Chapter 12
ramiz100111
 
PDF
Chapter 09
ramiz100111
 
PDF
Chapter 06
ramiz100111
 
PDF
Chapter 01
ramiz100111
 
PDF
Appendix a page_524
ramiz100111
 
Chapter 14
ramiz100111
 
Chapter 16
ramiz100111
 
Chapter 10
ramiz100111
 
Chapter 12
ramiz100111
 
Chapter 09
ramiz100111
 
Chapter 06
ramiz100111
 
Chapter 01
ramiz100111
 
Appendix a page_524
ramiz100111
 

Recently uploaded (20)

PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PDF
PG-BPSDMP 2 TAHUN 2025PG-BPSDMP 2 TAHUN 2025.pdf
AshifaRamadhani
 
PPTX
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
PPTX
Trends in pediatric nursing .pptx
AneetaSharma15
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
PDF
UTS Health Student Promotional Representative_Position Description.pdf
Faculty of Health, University of Technology Sydney
 
PPTX
CDH. pptx
AneetaSharma15
 
PPTX
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
DOCX
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
PDF
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
PDF
Types of Literary Text: Poetry and Prose
kaelandreabibit
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PDF
Health-The-Ultimate-Treasure (1).pdf/8th class science curiosity /samyans edu...
Sandeep Swamy
 
PPTX
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
PDF
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
PPTX
PPTs-The Rise of Empiresghhhhhhhh (1).pptx
academysrusti114
 
PPTX
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PPTX
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
PPTX
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PG-BPSDMP 2 TAHUN 2025PG-BPSDMP 2 TAHUN 2025.pdf
AshifaRamadhani
 
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
Trends in pediatric nursing .pptx
AneetaSharma15
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
UTS Health Student Promotional Representative_Position Description.pdf
Faculty of Health, University of Technology Sydney
 
CDH. pptx
AneetaSharma15
 
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
Types of Literary Text: Poetry and Prose
kaelandreabibit
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
Health-The-Ultimate-Treasure (1).pdf/8th class science curiosity /samyans edu...
Sandeep Swamy
 
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
PPTs-The Rise of Empiresghhhhhhhh (1).pptx
academysrusti114
 
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
An introduction to Dialogue writing.pptx
drsiddhantnagine
 

Chapter 15

  • 1. January 27, 2005 11:55 L24-CH15 Sheet number 1 Page number 655 black CHAPTER 15 Multiple Integrals EXERCISE SET 15.1 1 2 1 3 1 3 1. (x + 3)dy dx = (2x + 6)dx = 7 2. (2x − 4y)dy dx = 4x dx = 16 0 0 0 1 −1 1 4 1 4 0 2 0 1 3. x2 y dx dy = y dy = 2 4. (x2 + y 2 )dx dy = (3 + 3y 2 )dy = 14 2 0 2 3 −2 −1 −2 ln 3 ln 2 ln 3 5. ex+y dy dx = ex dx = 2 0 0 0 2 1 2 1 6. y sin x dy dx = sin x dx = (1 − cos 2)/2 0 0 0 2 0 5 0 6 7 6 7. dx dy = 3 dy = 3 8. dy dx = 10dx = 20 −1 2 −1 4 −3 4 1 1 1 x 1 9. dy dx = 1− dx = 1 − ln 2 0 0 (xy + 1)2 0 x+1 π 2 π 10. x cos xy dy dx = (sin 2x − sin x)dx = −2 π/2 1 π/2 ln 2 1 ln 2 2 1 x 11. xy ey x dy dx = (e − 1)dx = (1 − ln 2)/2 0 0 0 2 4 2 4 1 1 1 12. dy dx = − dx = ln(25/24) 3 1 (x + y)2 3 x+1 x+2 1 2 1 13. 4xy 3 dy dx = 0 dx = 0 −1 −2 −1 1 1 xy 1 √ √ 14. dy dx = [x(x2 + 2)1/2 − x(x2 + 1)1/2 ]dx = (3 3 − 4 2 + 1)/3 0 0 x2 + y 2 + 1 0 1 3 1 15. x 1 − x2 dy dx = x(1 − x2 )1/2 dx = 1/3 0 2 0 π/2 π/3 π/2 x π2 16. (x sin y − y sin x)dy dx = − sin x dx = π 2 /144 0 0 0 2 18 17. (a) x∗ = k/2 − 1/4, k = 1, 2, 3, 4; yl = l/2 − 1/4, l = 1, 2, 3, 4, k ∗ 4 4 4 4 f (x, y) dxdy ≈ f (x∗ , yl )∆Akl = k ∗ [(k/2−1/4)2 +(l/2−1/4)](1/2)2 = 37/4 R k=1 l=1 k=1 l=1 2 2 (b) (x2 + y) dxdy = 28/3; the error is |37/4 − 28/3| = 1/12 0 0 655
  • 2. January 27, 2005 11:55 L24-CH15 Sheet number 2 Page number 656 black 656 Chapter 15 18. (a) x∗ = k/2 − 1/4, k = 1, 2, 3, 4; yl = l/2 − 1/4, l = 1, 2, 3, 4, k ∗ 4 4 4 4 f (x, y) dxdy ≈ f (x∗ , yl )∆Akl = k ∗ [(k/2 − 1/4) − 2(l/2 − 1/4)](1/2)2 = −4 R k=1 l=1 k=1 l=1 2 2 (b) (x − 2y) dxdy = −4; the error is zero 0 0 19. (a) z (b) z (1, 0, 4) (0, 0, 5) (0, 4, 3) y y (2, 5, 0) (3, 4, 0) x x z z 20. (a) (b) (2, 2, 8) (0, 0, 2) y y (2, 2, 0) (1, 1, 0) x x 5 2 5 21. V = (2x + y)dy dx = (2x + 3/2)dx = 19 3 1 3 3 2 3 22. V = (3x3 + 3x2 y)dy dx = (6x3 + 6x2 )dx = 172 1 0 1 2 3 2 23. V = x2 dy dx = 3x2 dx = 8 0 0 0 3 4 3 24. V = 5(1 − x/3)dy dx = 5(4 − 4x/3)dx = 30 0 0 0 1/2 π 1/2 π 25. x cos(xy) cos2 πx dy dx = cos2 πx sin(xy) dx 0 0 0 0 1/2 1/2 1 1 = cos2 πx sin πx dx = − cos3 πx = 0 3π 0 3π
  • 3. January 27, 2005 11:55 L24-CH15 Sheet number 3 Page number 657 black Exercise Set 15.2 657 5 2 5 3 26. (a) z (b) V = y dy dx + (−2y + 6) dy dx 0 0 0 2 (0, 2, 2) = 10 + 5 = 15 y 3 5 (5, 3, 0) x π/2 1 π/2 x=1 π/2 2 2 2 2 27. fave = y sin xy dx dy = − cos xy dy = (1 − cos y) dy = 1 − π 0 0 π 0 x=0 π 0 π 1 3 1 3 1 √ 28. average = x(x2 + y)1/2 dx dy = [(1 + y)3/2 − y 3/2 ]dy = 2(31 − 9 3)/45 3 0 0 0 9 1 2 1 ◦ 1 1 44 14 29. Tave = 10 − 8x2 − 2y 2 dy dx = − 16x2 dx = C 2 0 0 2 0 3 3 b d 1 1 30. fave = k dy dx = (b − a)(d − c)k = k A(R) a c A(R) 31. 1.381737122 32. 2.230985141 b d b d 33. f (x, y)dA = g(x)h(y)dy dx = g(x) h(y)dy dx a c a c R b d = g(x)dx h(y)dy a c 34. The integral of tan x (an odd function) over the interval [−1, 1] is zero. 35. The first integral equals 1/2, the second equals −1/2. No, because the integrand is not continuous. EXERCISE SET 15.2 1 x 1 1 4 1. xy 2 dy dx = (x − x7 )dx = 1/40 0 x2 0 3 3/2 3−y 3/2 2. y dx dy = (3y − 2y 2 )dy = 7/24 1 y 1 √ 3 9−y 2 3 3. y dx dy = y 9 − y 2 dy = 9 0 0 0 1 x 1 x 1 4. x/y dy dx = x1/2 y −1/2 dy dx = 2(x − x3/2 )dx = 13/80 1/4 x2 1/4 x2 1/4
  • 4. January 27, 2005 11:55 L24-CH15 Sheet number 4 Page number 658 black 658 Chapter 15 √ √ 2π x3 2π 5. √ sin(y/x)dy dx = √ [−x cos(x2 ) + x]dx = π/2 π 0 π 1 x2 1 π x2 π 1 6. (x2 − y)dy dx = 2x4 dx = 4/5 7. cos(y/x)dy dx = sin x dx = 1 −1 −x2 −1 π/2 0 x π/2 1 x 1 1 x 1 2 2 1 3 8. ex dy dx = xex dx = (e − 1)/2 9. y x2 − y 2 dy dx = x dx = 1/12 0 0 0 0 0 0 3 2 y2 2 2 10. ex/y dx dy = (e − 1)y 2 dy = 7(e − 1)/3 1 0 1 2 x2 4 2 11. (a) f (x, y) dydx (b) √ f (x, y) dxdy 0 0 0 y √ √ 1 x 1 y 12. (a) f (x, y) dydx (b) f (x, y) dxdy 0 x2 0 y2 2 3 4 3 5 3 13. (a) f (x, y) dydx + f (x, y) dydx + f (x, y) dydx 1 −2x+5 2 1 4 2x−7 3 (y+7)/2 (b) f (x, y) dxdy 1 (5−y)/2 √ √ 1 1−x2 1 1−y 2 14. (a) √ f (x, y) dydx (b) √ f (x, y) dxdy −1 − 1−x2 −1 − 1−y 2 2 x2 2 1 5 16 15. (a) xy dy dx = x dx = 0 0 0 2 3 3 (y+7)/2 3 (b) xy dx dy = (3y 2 + 3y)dy = 38 1 −(y−5)/2 1 √ 1 x 1 16. (a) (x + y)dy dx = (x3/2 + x/2 − x3 − x4 /2)dx = 3/10 0 x2 0 √ √ 1 1−x2 1 1−x2 1 (b) √ x dy dx + √ y dy dx = 2x 1 − x2 dx + 0 = 0 −1 − 1−x2 −1 − 1−x2 −1 8 x 8 17. (a) x2 dy dx = (x3 − 16x)dx = 576 4 16/x 4 4 8 8 8 8 512 4096 8 512 − y 3 (b) x2 dxdy + x2 dx dy = − dy + dy 2 16/y 4 y 4 3 3y 3 4 3 640 1088 = + = 576 3 3 2 y 2 1 4 18. (a) xy 2 dx dy = y dy = 31/10 1 0 1 2 1 2 2 2 1 2 8x − x4 (b) xy 2 dydx + xy 2 dydx = 7x/3 dx + dx = 7/6 + 29/15 = 31/10 0 1 1 x 0 1 3
  • 5. January 27, 2005 11:55 L24-CH15 Sheet number 5 Page number 659 black Exercise Set 15.2 659 √ 1 1−x2 1 19. (a) √ (3x − 2y)dy dx = 6x 1 − x2 dx = 0 −1 − 1−x2 −1 √ 1 1−y 2 1 (b) √ (3x − 2y) dxdy = −4y 1 − y 2 dy = 0 −1 − 1−y 2 −1 √ 5 25−x2 5 20. (a) y dy dx = (5x − x2 )dx = 125/6 0 5−x 0 √ 5 25−y 2 5 (b) y dxdy = y 25 − y 2 − 5 + y dy = 125/6 0 5−y 0 √ 4 y 4 1 √ 21. x(1 + y 2 )−1/2 dx dy = y(1 + y 2 )−1/2 dy = ( 17 − 1)/2 0 0 0 2 π x π 22. x cos y dy dx = x sin x dx = π 0 0 0 2 6−y 2 1 23. xy dx dy = (36y − 12y 2 + y 3 − y 5 )dy = 50/3 0 y2 0 2 √ π/4 1/ 2 π/4 1 24. x dx dy = cos 2y dy = 1/8 0 sin y 0 4 1 x 1 25. (x − 1)dy dx = (−x4 + x3 + x2 − x)dx = −7/60 0 x3 0 √ √ 1/ 2 2x 1 1/x 1/ 2 1 26. 2 x dy dx + √ 2 x dy dx = x3 dx + √ (x − x3 )dx = 1/8 0 x 1/ 2 x 0 1/ 2 y 27. (a) 4 3 2 1 x –2 –1 0.5 1.5 (b) x = (−1.8414, 0.1586), (1.1462, 3.1462) 1.1462 x+2 1.1462 (c) x dA ≈ x dydx = x(x + 2 − ex ) dx ≈ −0.4044 −1.8414 ex −1.8414 R 3.1462 ln y 3.1462 ln2 y (y − 2)2 (d) x dA ≈ x dxdy = − dy ≈ −0.4044 0.1586 y−2 0.1586 2 2 R
  • 6. January 27, 2005 11:55 L24-CH15 Sheet number 6 Page number 660 black 660 Chapter 15 28. (a) y (b) (1, 3), (3, 27) 25 15 R 5 x 1 2 3 3 4x3 −x4 3 224 (c) x dy dx = x[(4x3 − x4 ) − (3 − 4x + 4x2 )] dx = 1 3−4x+4x2 1 15 π/4 cos x π/4 √ 29. A = dy dx = (cos x − sin x)dx = 2−1 0 sin x 0 1 −y 2 1 30. A = dx dy = (−y 2 − 3y + 4)dy = 125/6 −4 3y−4 −4 3 9−y 2 3 31. A = dx dy = 8(1 − y 2 /9)dy = 32 −3 1−y 2 /9 −3 1 cosh x 1 32. A = dy dx = (cosh x − sinh x)dx = 1 − e−1 0 sinh x 0 4 6−3x/2 4 33. (3 − 3x/4 − y/2) dy dx = [(3 − 3x/4)(6 − 3x/2) − (6 − 3x/2)2 /4] dx = 12 0 0 0 √ 2 4−x2 2 34. 4 − x2 dy dx = (4 − x2 ) dx = 16/3 0 0 0 √ 3 9−x2 3 35. V = √ (3 − x)dy dx = (6 9 − x2 − 2x 9 − x2 )dx = 27π −3 − 9−x2 −3 1 x 1 36. V = (x2 + 3y 2 )dy dx = (2x3 − x4 − x6 )dx = 11/70 0 x2 0 3 2 3 37. V = (9x2 + y 2 )dy dx = (18x2 + 8/3)dx = 170 0 0 0 1 1 1 38. V = (1 − x)dx dy = (1/2 − y 2 + y 4 /2)dy = 8/15 −1 y2 −1 √ 3/2 9−4x2 3/2 39. V = √ (y + 3)dy dx = 6 9 − 4x2 dx = 27π/2 −3/2 − 9−4x2 −3/2 3 3 3 40. V = (9 − x2 )dx dy = (18 − 3y 2 + y 6 /81)dy = 216/7 0 y 2 /3 0 √ 5 25−x2 5 41. V = 8 25 − x2 dy dx = 8 (25 − x2 )dx = 2000/3 0 0 0
  • 7. January 27, 2005 11:55 L24-CH15 Sheet number 7 Page number 661 black Exercise Set 15.2 661 √ 2 1−(y−1)2 2 1 42. V = 2 (x2 + y 2 )dx dy = 2 [1 − (y − 1)2 ]3/2 + y 2 [1 − (y − 1)2 ]1/2 dy, 0 0 0 3 π/2 1 let y − 1 = sin θ to get V = 2 cos3 θ + (1 + sin θ)2 cos θ cos θ dθ which eventually yields −π/2 3 V = 3π/2 √ 1 1−x2 1 8 43. V = 4 (1 − x2 − y 2 )dy dx = (1 − x2 )3/2 dx = π/2 0 0 3 0 √ 2 4−x2 2 1 44. V = (x2 + y 2 )dy dx = x2 4 − x2 + (4 − x2 )3/2 dx = 2π 0 0 0 3 √ 2 2 8 x/2 e2 2 45. f (x, y)dx dy 46. f (x, y)dy dx 47. f (x, y)dy dx 0 y2 0 0 1 ln x √ 1 e π/2 sin x 1 x 48. f (x, y)dx dy 49. f (x, y)dy dx 50. f (x, y)dy dx 0 ey 0 0 0 x2 4 y/4 4 1 −y2 e−y dx dy = ye dy = (1 − e−16 )/8 2 51. 0 0 0 4 1 2x 1 52. cos(x2 )dy dx = 2x cos(x2 )dx = sin 1 0 0 0 2 x2 2 3 3 53. ex dy dx = x2 ex dx = (e8 − 1)/3 0 0 0 ln 3 3 ln 3 1 1 54. x dx dy = (9 − e2y )dy = (9 ln 3 − 4) 0 ey 2 0 2 2 y2 2 55. sin(y 3 )dx dy = y 2 sin(y 3 )dy = (1 − cos 8)/3 0 0 0 1 e 1 56. x dy dx = (ex − xex )dx = e/2 − 1 0 ex 0 4 2 57. (a) √ sin πy 3 dy dx; the inner integral is non-elementary. 0 x 2 y2 2 2 1 sin πy 3 dx dy = y 2 sin πy 3 dy = − cos πy 3 =0 0 0 0 3π 0 1 π/2 (b) sec2 (cos x)dx dy ; the inner integral is non-elementary. 0 sin−1 y π/2 sin x π/2 sec2 (cos x)dy dx = sec2 (cos x) sin x dx = tan 1 0 0 0 √ 2 4−x2 2 1 58. V = 4 (x2 + y 2 ) dy dx = 4 x2 4 − x2 + (4 − x2 )3/2 dx (x = 2 sin θ) 0 0 0 3 π/2 64 64 128 64 π 64 π 128 π 1 · 3 = + sin2 θ − sin4 θ dθ = + − = 8π 0 3 3 3 3 2 3 4 3 2 2·4
  • 8. January 27, 2005 11:55 L24-CH15 Sheet number 8 Page number 662 black 662 Chapter 15 59. The region is symmetric with respect to the y-axis, and the integrand is an odd function of x, hence the answer is zero. 60. This is the volume in the first octant under the surface z = 1 − x2 − y 2 , so 1/8 of the volume of π the sphere of radius 1, thus . 6 1 1 1 ¯ 1 1 x π 61. Area of triangle is 1/2, so f = 2 dy dx = 2 − dx = − ln 2 0 x 1 + x2 0 1 + x2 1 + x2 2 2 62. Area = (3x − x2 − x) dx = 4/3, so 0 2 3x−x2 2 ¯ 3 f= (x2 − xy)dy dx = 3 (−2x3 + 2x4 − x5 /2)dx = − 3 8 =− 2 4 0 x 4 0 4 15 5 1 63. Tave = (5xy + x2 ) dA. The diamond has corners (±2, 0), (0, ±4) and thus has area A(R) R 1 A(R) = 4 2(4) = 16m2 . Since 5xy is an odd function of x (as well as y), 5xy dA = 0. Since 2 R x2 is an even function of both x and y, 2◦ 4−2x 2 2 4 1 2 1 1 4 3 1 4 Tave = x2 dA = st x2 dydx = (4 − 2x)x2 dx = x − x = C 16 4 0 0 4 0 4 3 2 0 3 R x,y>0 64. The area of the lens is πR2 = 4π and the average thickness Tave is √ 2 4−x2 2 4 1 1 Tave = 1 − (x2 + y 2 )/4 dydx = (4 − x2 )3/2 dx (x = 2 cos θ) 4π 0 0 π 0 6 8 π 8 1·3π 1 = sin4 θ dθ = = in 3π 0 3π 2 · 4 2 2 65. y = sin x and y = x/2 intersect at x = 0 and x = a = 1.895494, so a sin x V = 1 + x + y dy dx = 0.676089 0 x/2 EXERCISE SET 15.3 π/2 sin θ π/2 1 1. r cos θdr dθ = sin2 θ cos θ dθ = 1/6 0 0 0 2 π 1+cos θ π 1 2. r dr dθ = (1 + cos θ)2 dθ = 3π/4 0 0 0 2 π/2 a sin θ π/2 a3 2 3. r2 dr dθ = sin3 θ dθ = a3 0 0 0 3 9 π/6 cos 3θ π/6 1 4. r dr dθ = cos2 3θ dθ = π/24 0 0 0 2
  • 9. January 27, 2005 11:55 L24-CH15 Sheet number 9 Page number 663 black Exercise Set 15.3 663 π 1−sin θ π 1 5. r2 cos θ dr dθ = (1 − sin θ)3 cos θ dθ = 0 0 0 0 3 π/2 cos θ π/2 1 6. r3 dr dθ = cos4 θ dθ = 3π/64 0 0 0 4 2π 1−cos θ 2π 1 7. A = r dr dθ = (1 − cos θ)2 dθ = 3π/2 0 0 0 2 π/2 sin 2θ π/2 8. A = 4 r dr dθ = 2 sin2 2θ dθ = π/2 0 0 0 π/2 1 π/2 1 9. A = r dr dθ = (1 − sin2 2θ)dθ = π/16 π/4 sin 2θ π/4 2 π/3 2 π/3 √ 10. A = 2 r dr dθ = (4 − sec2 θ)dθ = 4π/3 − 3 0 sec θ 0 5π/6 4 sin θ 3π/2 1 11. A = f (r, θ) r dr dθ 12. A = f (r, θ)r dr dθ π/6 2 π/2 1+cos θ π/2 3 π/2 2 sin θ 13. V = 8 r 9 − r2 dr dθ 14. V = 2 r2 dr dθ 0 1 0 0 π/2 cos θ π/2 3 15. V = 2 (1 − r2 )r dr dθ 16. V = 4 dr dθ 0 0 0 1 π/2 3 128 √ π/2 64 √ 17. V = 8 r 9 − r2 dr dθ = 2 dθ = 2π 0 1 3 0 3 π/2 2 sin θ π/2 16 18. V = 2 r2 dr dθ = sin3 θ dθ = 32/9 0 0 3 0 π/2 cos θ π/2 1 19. V = 2 (1 − r2 )r dr dθ = (2 cos2 θ − cos4 θ)dθ = 5π/32 0 0 2 0 π/2 3 π/2 20. V = 4 dr dθ = 8 dθ = 4π 0 1 0 π/2 3 sin θ π/2 27 21. V = r2 sin θ drdθ = 9 sin4 θ dθ = π 0 0 0 16 π/2 2 π 2 22. V = 2 4 − r2 r drdθ + 2 4 − r2 r drdθ 0 2 cos θ π/2 0 π/2 π 16 16 32 8 = (1 − cos2 θ)3/2 θ dθ + dθ = + π 0 3 π/2 3 9 3 2π 1 2π 1 e−r r dr dθ = (1 − e−1 ) dθ = (1 − e−1 )π 2 23. 0 0 2 0
  • 10. January 27, 2005 11:55 L24-CH15 Sheet number 10 Page number 664 black 664 Chapter 15 π/2 3 π/2 24. r 9 − r2 dr dθ = 9 dθ = 9π/2 0 0 0 π/4 2 π/4 1 1 π 25. r dr dθ = ln 5 dθ = ln 5 0 0 1 + r2 2 0 8 π/2 2 cos θ π/2 16 26. 2r2 sin θ dr dθ = cos3 θ sin θ dθ = 1/3 π/4 0 3 π/4 π/2 1 π/2 1 27. r3 dr dθ = dθ = π/8 0 0 4 0 2π 2 2π 1 e−r r dr dθ = (1 − e−4 ) dθ = (1 − e−4 )π 2 28. 0 0 2 0 π/2 2 cos θ π/2 8 29. r2 dr dθ = cos3 θ dθ = 16/9 0 0 3 0 π/2 1 π/2 1 π 30. cos(r2 )r dr dθ = sin 1 dθ = sin 1 0 0 2 0 4 π/2 a r π 31. dr dθ = 1 − 1/ 1 + a2 0 0 (1 + r2 )3/2 2 π/4 sec θ tan θ 1 π/4 √ 32. r2 dr dθ = sec3 θ tan3 θ dθ = 2( 2 + 1)/45 0 0 3 0 π/4 2 r π √ 33. √ dr dθ = ( 5 − 1) 0 0 1+r 2 4 π/2 5 π/2 1 34. r dr dθ = (25 − 9 csc2 θ)dθ tan−1 (3/4) 3 csc θ 2 tan−1 (3/4) 25 π 25 = − tan−1 (3/4) − 6 = tan−1 (4/3) − 6 2 2 2 2π a 2π a2 35. V = hr dr dθ = h dθ = πa2 h 0 0 0 2 π/2 a a c 2 4c 4 2 36. (a) V = 8 (a − r2 )1/2 r dr dθ = − π(a2 − r2 )3/2 = πa c 0 0 a 3a 0 3 4 (b) V ≈ π(6378.1370)2 6356.5231 ≈ 1,083,168,200,000 km3 3 π/2 a sin θ π/2 c 2 2 37. V = 2 (a − r2 )1/2 r dr dθ = a2 c (1 − cos3 θ)dθ = (3π − 4)a2 c/9 0 0 a 3 0 √ π/4 a 2 cos 2θ π/4 38. A = 4 r dr dθ = 4a2 cos 2θ dθ = 2a2 0 0 0
  • 11. January 27, 2005 11:55 L24-CH15 Sheet number 11 Page number 665 black Exercise Set 15.4 665 π/4 4 sin θ π/2 4 sin θ 39. A = √ r dr dθ + r dr dθ π/6 8 cos 2θ π/4 0 π/4 π/2 √ = (8 sin2 θ − 4 cos 2θ)dθ + 8 sin2 θ dθ = 4π/3 + 2 3 − 2 π/6 π/4 φ 2a sin θ φ 1 40. A = r dr dθ = 2a2 sin2 θ dθ = a2 φ − a2 sin 2φ 0 0 0 2 +∞ +∞ +∞ +∞ e−x dx e−y dy = e−x dx e−y dy 2 2 2 2 41. (a) I 2 = 0 0 0 0 +∞ +∞ +∞ +∞ e−x e−y dx dy = e−(x 2 2 2 +y 2 ) = dx dy 0 0 0 0 π/2 +∞ 1 π/2 √ e−r r dr dθ = 2 (b) I 2 = dθ = π/4 (c) I= π/2 0 0 2 0 √ 42. The two quarter-circles with center at the origin and of radius A and 2A lie inside and outside of the square with corners (0, 0), (A, 0), (A, A), (0, A), so the following inequalities hold: √ π/2 A A A π/2 2A 1 1 1 rdr dθ ≤ dx dy ≤ rdr dθ 0 0 (1 + r2 )2 0 0 (1 + x2 + y 2 )2 0 0 (1 + r2 )2 2 πA The integral on the left can be evaluated as and the integral on the right equals 4(1 + A2 ) 2 2πA π 2) . Since both of these quantities tend to as A → +∞, it follows by sandwiching that 4(1 + 2A 4 +∞ +∞ 1 π dx dy = . 0 0 (1 + x2 + y 2 )2 4 π 1 1 re−r dr dθ = π re−r dr ≈ 1.173108605 4 4 43. (a) 1.173108605 (b) 0 0 0 2π R 2π R R 44. V = D(r)r dr dθ = ke−r r dr dθ = −2πk(1 + r)e−r = 2πk[1 − (R + 1)e−R ] 0 0 0 0 0 tan−1 (2) 2 tan−1 (2) tan−1 (2) 45. r3 cos2 θ dr dθ = 4 cos2 θ dθ = 2 (1 + cos(2θ)) dθ tan−1 (1/3) 0 tan−1 (1/3) tan−1 (1/3) √ √ = 2(tan−1 2 − tan−1 (1/3)) + 2/ 5 − 1/ 10 EXERCISE SET 15.4 1. (a) z (b) z (c) z y x x x y y
  • 12. January 27, 2005 11:55 L24-CH15 Sheet number 12 Page number 666 black 666 Chapter 15 z z 2. (a) (b) x y y x (c) z y x 5 3 3. (a) x = u, y = v, z = + u − 2v (b) x = u, y = v, z = u2 2 2 v 1 2 5 4. (a) x = u, y = v, z = (b) x = u, y = v, z = v − 1 + u2 3 3 5. (a) x = 5 cos u, y = 5 sin u, z = v; 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1 (b) x = 2 cos u, y = v, z = 2 sin u; 0 ≤ u ≤ 2π, 1 ≤ v ≤ 3 6. (a) x = u, y = 1 − u, z = v; −1 ≤ v ≤ 1 (b) x = u, y = 5 + 2v, z = v; 0 ≤ u ≤ 3 7. x = u, y = sin u cos v, z = sin u sin v 8. x = u, y = eu cos v, z = eu sin v 1 10. x = r cos θ, y = r sin θ, z = e−r 2 9. x = r cos θ, y = r sin θ, z = 1 + r2 11. x = r cos θ, y = r sin θ, z = 2r2 cos θ sin θ 12. x = r cos θ, y = r sin θ, z = r2 (cos2 θ − sin2 θ) √ √ 13. x = r cos θ, y = r sin θ, z = 9 − r2 ; r ≤ 5 √ 1 1 3 14. x = r cos θ, y = r sin θ, z = r; r ≤ 3 15. x = ρ cos θ, y = ρ sin θ, z = ρ 2 2 2 16. x = 3 cos θ, y = 3 sin θ, z = 3 cot φ 17. z = x − 2y; a plane 18. y = x2 + z 2 , 0 ≤ y ≤ 4; part of a circular paraboloid 19. (x/3)2 + (y/2)2 = 1; 2 ≤ z ≤ 4; part of an elliptic cylinder
  • 13. January 27, 2005 11:55 L24-CH15 Sheet number 13 Page number 667 black Exercise Set 15.4 667 20. z = x2 + y 2 ; 0 ≤ z ≤ 4; part of a circular paraboloid 21. (x/3)2 + (y/4)2 = z 2 ; 0 ≤ z ≤ 1; part of an elliptic cone 22. x2 + (y/2)2 + (z/3)2 = 1; an ellipsoid √ 23. (a) x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 2; x = u, y = v, z = u2 + v 2 ; 0 ≤ u2 + v 2 ≤ 4 √ 24. (a) I: x = r cos θ, y = r sin θ, z = r2 , 0 ≤ r ≤ 2; II: x = u, y = v, z = u2 + v 2 ; u2 + v 2 ≤ 2 25. (a) 0 ≤ u ≤ 3, 0 ≤ v ≤ π (b) 0 ≤ u ≤ 4, −π/2 ≤ v ≤ π/2 26. (a) 0 ≤ u ≤ 6, −π ≤ v ≤ 0 (b) 0 ≤ u ≤ 5, π/2 ≤ v ≤ 3π/2 27. (a) 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π (b) 0 ≤ φ ≤ π, 0 ≤ θ ≤ π 28. (a) π/2 ≤ φ ≤ π, 0 ≤ θ ≤ 2π (b) 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2 29. u = 1, v = 2, ru × rv = −2i − 4j + k; 2x + 4y − z = 5 30. u = 1, v = 2, ru × rv = −4i − 2j + 8k; 2x + y − 4z = −6 31. u = 0, v = 1, ru × rv = 6k; z = 0 32. ru × rv = 2i − j − 3k; 2x − y − 3z = −4 √ √ √ √ 2 π 2 33. ru × rv = ( 2/2)i − ( 2/2)j + (1/2)k; x − y + z= 2 8 34. ru × rv = 2i − ln 2k; 2x − (ln 2)z = 0 35. z = 9 − y 2 , zx = 0, zy = −y/ 9 − y 2 , zx + zy + 1 = 9/(9 − y 2 ), 2 2 2 3 2 3 S= dy dx = 3π dx = 6π 0 −3 9 − y2 0 4 4−x 4 36. z = 8 − 2x − 2y, zx + zy + 1 = 4 + 4 + 1 = 9, S = 2 2 3 dy dx = 3(4 − x)dx = 24 0 0 0 37. z 2 = 4x2 + 4y 2 , 2zzx = 8x so zx = 4x/z, similarly zy = 4y/z thus 1 x √ √ 1 √ zx + zy + 1 = (16x2 + 16y 2 )/z 2 + 1 = 5, S = 2 2 5 dy dx = 5 (x − x2 )dx = 5/6 0 x2 0 38. z 2 = x2 + y 2 , zx = x/z, zy = y/z, zx + zy + 1 = (z 2 + y 2 )/z 2 + 1 = 2, 2 2 √ π/2 2 cos θ √ √ π/2 √ S= 2 dA = 2 2 r dr dθ = 4 2 cos2 θ dθ = 2π 0 0 0 R 39. zx = −2x, zy = −2y, zx + zy + 1 = 4x2 + 4y 2 + 1, 2 2 2π 1 S= 4x2 + 4y 2 + 1 dA = r 4r2 + 1 dr dθ 0 0 R 1 √ 2π √ = (5 5 − 1) dθ = (5 5 − 1)π/6 12 0
  • 14. January 27, 2005 11:55 L24-CH15 Sheet number 14 Page number 668 black 668 Chapter 15 40. zx = 2, zy = 2y, zx + zy + 1 = 5 + 4y 2 , 2 2 1 y 1 √ S= 5 + 4y 2 dx dy = y 5 + 4y 2 dy = (27 − 5 5)/12 0 0 0 41. ∂r/∂u = cos vi + sin vj + 2uk, ∂r/∂v = −u sin vi + u cos vj, √ 2π 2 √ √ ∂r/∂u × ∂r/∂v = u 4u2 + 1; S = u 4u2 + 1 du dv = (17 17 − 5 5)π/6 0 1 42. ∂r/∂u = cos vi + sin vj + k, ∂r/∂v = −u sin vi + u cos vj, 2v √ √ √ π/2 2 3 ∂r/∂u × ∂r/∂v = 2u; S = 2 u du dv = π 0 0 12 43. zx = y, zy = x, zx + zy + 1 = x2 + y 2 + 1, 2 2 π/6 3 1 √ π/6 √ S= x2 + y 2 + 1 dA = r r2 + 1 dr dθ = (10 10 − 1) dθ = (10 10 − 1)π/18 0 0 3 0 R 44. zx = x, zy = y, zx + zy + 1 = x2 + y 2 + 1, 2 2 √ 2π 8 2π 26 S= x2 + y2 + 1 dA = r r2 + 1 dr dθ = dθ = 52π/3 0 0 3 0 R 45. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 16/(16 − x2 − y 2 ); 2 2 the planes z = 1 and z = 2 intersect the sphere along the circles x2 + y 2 = 15 and x2 + y 2 = 12; √ 2π 15 2π 4 4r S= dA = √ √ dr dθ = 4 dθ = 8π 16 − x2 − y 2 0 12 16 − r2 0 R 46. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 8/(8 − x2 − y 2 ); 2 2 2 2 the cone cuts the sphere in the circle x + y = 4; √ 2π 2 2 2r √ 2π √ S= √ dr dθ = (8 − 4 2) dθ = 8(2 − 2)π 0 0 8−r 2 0 47. r(u, v) = a cos u sin vi + a sin u sin vj + a cos vk, ru × rv = a2 sin v, π 2π π S= a2 sin v du dv = 2πa2 sin v dv = 4πa2 0 0 0 h 2π 48. r = r cos ui + r sin uj + vk, ru × rv = r; S = r du dv = 2πrh 0 0 h x h y 2 2 h2 x2 + h2 y 2 49. zx = , zy = , zx + zy + 1 = + 1 = (a2 + h2 )/a2 , a x2 + y 2 x2 + y 2a a2 (x2 + y 2 ) 2π a √ 2π a2 + h2 1 S= r dr dθ = a a2 + h2 dθ = πa a2 + h2 0 0 a 2 0
  • 15. January 27, 2005 11:55 L24-CH15 Sheet number 15 Page number 669 black Exercise Set 15.4 669 50. (a) Revolving a point (a0 , 0, b0 ) of the xz-plane around the z-axis generates a circle, an equation of which is r = a0 cos ui + a0 sin uj + b0 k, 0 ≤ u ≤ 2π. A point on the circle (x − a)2 + z 2 = b2 which generates the torus can be written r = (a + b cos v)i + b sin vk, 0 ≤ v ≤ 2π. Set a0 = a + b cos v and b0 = a + b sin v and use the first result: any point on the torus can thus be written in the form r = (a + b cos v) cos ui + (a + b cos v) sin uj + b sin vk, which yields the result. 51. ∂r/∂u = −(a + b cos v) sin ui + (a + b cos v) cos uj, ∂r/∂v = −b sin v cos ui − b sin v sin uj + b cos vk, ∂r/∂u × ∂r/∂v = b(a + b cos v); 2π 2π S= b(a + b cos v)du dv = 4π 2 ab 0 0 √ 4π 5 5 52. ru × rv = u2 + 1; S = u2 + 1 du dv = 4π u2 + 1 du = 174.7199011 0 0 0 53. z = −1 when v ≈ 0.27955, z = 1 when v ≈ 2.86204, ru × rv = | cos v|; 2π 2.86204 S= | cos v| dv du ≈ 9.099 0 0.27955 54. (a) Let S1 be the set of points (x, y, z) which satisfy the equation x2/3 + y 2/3 + z 2/3 = a2/3 , and let S2 be the set of points (x, y, z) where x = a(sin φ cos θ)3 , y = a(sin φ sin θ)3 , z = a cos3 φ, 0 ≤ φ ≤ π, 0 ≤ θ < 2π. If (x, y, z) is a point of S2 then x2/3 + y 2/3 + z 2/3 = a2/3 [(sin φ cos θ)3 + (sin φ sin θ)3 + cos3 φ] = a2/3 so (x, y, z) belongs to S1 . If (x, y, z) is a point of S1 then x2/3 + y 2/3 + z 2/3 = a2/3 . Let x1 = x1/3 , y1 = y 1/3 , z1 = z 1/3 , a1 = a1/3 . Then x2 + y1 + z1 = a2 , so in spherical coordinates 1 2 2 1 x1 = a1 sin φ cos θ, y1 = a1 sin φ sin θ, z1 = a1 cos φ, with y1 y 1/3 z1 z 1/3 θ = tan−1 = tan−1 , φ = cos−1 = cos−1 . Then x1 x a1 a x = x3 = a3 (sin φ cos θ)3 = a(sin φ cos θ)3 , similarly y = a(sin φ sin θ)3 , z = a cos φ so (x, y, z) 1 1 belongs to S2 . Thus S1 = S2 (b) Let a = 1 and r = (cos θ sin φ)3 i + (sin θ sin φ)3 j + cos3 φk, then π/2 π/2 S=8 rθ × rφ dφ dθ 0 0 π/2 π/2 = 72 sin θ cos θ sin4 φ cos φ cos2 φ + sin2 φ sin2 θ cos2 θ dθ dφ ≈ 4.4506 0 0 55. (a) (x/a)2 +(y/b)2 +(z/c)2 = sin2 φ cos2 θ+sin2 φ sin2 θ+cos2 φ = sin2 φ+cos2 φ = 1, an ellipsoid (b) r(φ, θ) = 2 sin φ cos θ, 3 sin φ sin θ, 4 cos φ ; rφ ×rθ = 2 6 sin2 φ cos θ, 4 sin2 φ sin θ, 3 cos φ sin φ , rφ × rθ = 2 16 sin4 φ + 20 sin4 φ cos2 θ + 9 sin2 φ cos2 φ, 2π π S= 2 16 sin4 φ + 20 sin4 φ cos2 θ + 9 sin2 φ cos2 φ dφ dθ ≈ 111.5457699 0 0
  • 16. January 27, 2005 11:55 L24-CH15 Sheet number 16 Page number 670 black 670 Chapter 15 56. (a) x = v cos u, y = v sin u, z = f (v), for example (b) x = v cos u, y = v sin u, z = 1/v 2 (c) z x y x 2 y 2 z 2 57. + + = 1, ellipsoid a b c x 2 y 2 z 2 58. + − = 1, hyperboloid of one sheet a b c x 2 y 2 z 2 59. − − + = 1, hyperboloid of two sheets a b c EXERCISE SET 15.5 1 2 1 1 2 1 1. (x2 + y 2 + z 2 )dx dy dz = (1/3 + y 2 + z 2 )dy dz = (10/3 + 2z 2 )dz = 8 −1 0 0 −1 0 −1 √ 1/2 π 1 1/2 π 1 1/2 1 1 3−2 2. zx sin xy dz dy dx = x sin xy dy dx = (1 − cos πx)dx = + 1/3 0 0 1/3 0 2 1/3 2 12 4π 2 y2 z 2 y2 2 1 7 1 5 1 47 3. yz dx dz dy = (yz 2 + yz)dz dy = y + y − y dy = 0 −1 −1 0 −1 0 3 2 6 3 π/4 1 x2 π/4 1 π/4 1 √ 4. x cos y dz dx dy = x3 cos y dx dy = cos y dy = 2/8 0 0 0 0 0 0 4 √ √ 3 9−z 2 x 3 9−z 2 3 1 3 1 5. xy dy dx dz = x dx dz = (81 − 18z 2 + z 4 )dz = 81/5 0 0 0 0 0 2 0 8 3 x2 ln z 3 x2 3 1 5 3 3 6. xey dy dz dx = (xz − x)dz dx = x − x + x2 dx = 118/3 1 x 0 1 x 1 2 2 √ √ 2 4−x2 3−x2 −y 2 2 4−x2 7. x dz dy dx = [2x(4 − x2 ) − 2xy 2 ]dy dx 0 0 −5+x2 +y 2 0 0 2 4 = x(4 − x2 )3/2 dx = 128/15 0 3 √ 2 2 3y 2 2 2 y π π 8. dx dy dz = dy dz = (2 − z)dz = π/6 1 z 0 x2 + y 2 1 z 3 1 3
  • 17. January 27, 2005 11:55 L24-CH15 Sheet number 17 Page number 671 black Exercise Set 15.5 671 π 1 π/6 π 1 π 9. xy sin yz dz dy dx = x[1 − cos(πy/6)]dy dx = (1 − 3/π)x dx = π(π − 3)/2 0 0 0 0 0 0 1 1−x2 y 1 1−x2 1 1 10. y dz dy dx = y 2 dy dx = (1 − x2 )3 dx = 32/105 −1 0 0 −1 0 −1 3 √ √ √ 2 x 2−x2 2 x 2 1 1 3 11. xyz dz dy dx = xy(2 − x2 )2 dy dx = x (2 − x2 )2 dx = 1/6 0 0 0 0 0 2 0 4 π/2 π/2 xy π/2 π/2 π/2 √ 12. cos(z/y)dz dx dy = y sin x dx dy = y cos y dy = (5π − 6 3)/12 π/6 y 0 π/6 y π/6 3 2 1 √ x + z2 13. dz dy dx ≈ 9.425 0 1 −2 y √ √ 1 1−x2 1−x2 −y 2 e−x −y 2 −z 2 2 14. 8 dz dy dx ≈ 2.381 0 0 0 4 (4−x)/2 (12−3x−6y)/4 4 (4−x)/2 1 15. V = dz dy dx = (12 − 3x − 6y)dy dx 0 0 0 0 0 4 4 3 = (4 − x)2 dx = 4 0 16 √ 1 1−x y 1 1−x √ 1 2 16. V = dz dy dx = y dy dx = (1 − x)3/2 dx = 4/15 0 0 0 0 0 0 3 2 4 4−y 2 4 2 1 17. V = 2 dz dy dx = 2 (4 − y)dy dx = 2 8 − 4x2 + x4 dx = 256/15 0 x2 0 0 x2 0 2 √ 1 y 1−y 2 1 y 1 18. V = dz dx dy = 1 − y 2 dx dy = y 1 − y 2 dy = 1/3 0 0 0 0 0 0 19. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1, √ 1 1−x2 4−3y 2 (a) V = √ f (x, y, z)dz dy dx −1 − 1−x2 4x2 +y 2 √ 1 1−y 2 4−3y 2 (b) V = √ f (x, y, z)dz dx dy −1 − 1−y 2 4x2 +y 2 20. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4, √ √ 2 4−2x2 8−x2 −y 2 (a) V = √ √ f (x, y, z)dz dy dx − 2 − 4−2x2 3x2 +y 2 √ 2 (4−y 2 )/2 8−x2 −y 2 (b) V = √ f (x, y, z)dz dx dy −2 − (4−y 2 )/2 3x2 +y 2
  • 18. January 27, 2005 11:55 L24-CH15 Sheet number 18 Page number 672 black 672 Chapter 15 21. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1, √ 1 1−x2 4−3y 2 V =4 dz dy dx 0 0 4x2 +y 2 22. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4, √ √ 2 4−2x2 8−x2 −y 2 V =4 dz dy dx 0 0 3x2 +y 2 √ √ √ 3 9−x2 /3 x+3 1 1−x2 1−x2 23. V = 2 dz dy dx 24. V = 8 dz dy dx −3 0 0 0 0 0 25. (a) z (b) z (c) z (0, 9, 9) (0, 0, 1) (0, 0, 1) y y (0, –1, 0) (1, 0, 0) x (1, 2, 0) (3, 9, 0) y x x 26. (a) z (b) z (0, 0, 2) (0, 0, 2) (0, 2, 0) y y (3, 9, 0) (2, 0, 0) x x (c) z (0, 0, 4) y (2, 2, 0) x 1 1−x 1−x−y 1 1−x 1−x−y 3 27. V = dz dy dx = 1/6, fave = 6 (x + y + z) dz dy dx = 0 0 0 0 0 0 4 28. The integrand is an odd function of each of x, y, and z, so the answer is zero.
  • 19. January 27, 2005 11:55 L24-CH15 Sheet number 19 Page number 673 black Exercise Set 15.5 673 3π 29. The volume V = √ , and thus 2 √ 2 rave = x2 + y 2 + z 2 dV 3π G √ √ 1/ 2 √ 1−2x2 6−7x2 −y 2 2 = √ √ x2 + y 2 + z 2 dz dy dx ≈ 3.291 3π −1/ 2 − 1−2x2 5x2 +5y 2 1 1 1 1 30. V = 1, dave = (x − z)2 + (y − z)2 + z 2 dx dy dz ≈ 0.771 V 0 0 0 a b(1−x/a) c(1−x/a−y/b) b a(1−y/b) c(1−x/a−y/b) 31. (a) dz dy dx, dz dx dy, 0 0 0 0 0 0 c a(1−z/c) b(1−x/a−z/c) a c(1−x/a) b(1−x/a−z/c) dy dx dz, dy dz dx, 0 0 0 0 0 0 c b(1−z/c) a(1−y/b−z/c) b c(1−y/b) a(1−y/b−z/c) dx dy dz, dx dz dy 0 0 0 0 0 0 (b) Use the first integral in Part (a) to get a b(1−x/a) a 2 x y 1 x 1 c 1− − dy dx = bc 1 − dx = abc 0 0 a b 0 2 a 6 √ √ 2 2 2 2 a b 1−x2 /a2 c 1−x /a −y /b 32. V = 8 dz dy dx 0 0 0 √ 2 4−x2 5 33. (a) f (x, y, z) dz dy dx 0 0 0 √ √ 9 3− x 3− x 2 4−x2 8−y (b) f (x, y, z) dz dy dx (c) f (x, y, z) dz dy dx 0 0 y 0 0 y √ √ 3 9−x2 9−x2 −y 2 34. (a) f (x, y, z)dz dy dx 0 0 0 4 x/2 2 2 4−x2 4−y (b) f (x, y, z)dz dy dx (c) f (x, y, z)dz dy dx 0 0 0 0 0 x2 35. (a) At any point outside the closed sphere {x2 + y 2 + z 2 ≤ 1} the integrand is negative, so to maximize the integral it suffices to include all points inside the sphere; hence the maximum value is taken on the region G = {x2 + y 2 + z 2 ≤ 1}. 2π π 1 π2 (b) 4.934802202 (c) (1 − ρ2 )ρ dρ dφ dθ = 0 0 0 2 b d b d 36. f (x)g(y)h(z)dz dy dx = f (x)g(y) h(z)dz dy dx a c k a c k b d = f (x) g(y)dy dx h(z)dz a c k b d = f (x)dx g(y)dy h(z)dz a c k
  • 20. January 27, 2005 11:55 L24-CH15 Sheet number 20 Page number 674 black 674 Chapter 15 1 1 π/2 37. (a) x dx y 2 dy sin z dz = (0)(1/3)(1) = 0 −1 0 0 1 ln 3 ln 2 (b) e2x dx ey dy e−z dz = [(e2 − 1)/2](2)(1/2) = (e2 − 1)/2 0 0 0 EXERCISE SET 15.6 1. (a) m1 and m3 are equidistant from x = 5, but m3 has a greater mass, so the sum is positive. (b) Let a be the unknown coordinate of the fulcrum; then the total moment about the fulcrum is 5(0 − a) + 10(5 − a) + 20(10 − a) = 0 for equilibrium, so 250 − 35a = 0, a = 50/7. The fulcrum should be placed 50/7 units to the right of m1 . 2. (a) The sum must be negative, since m1 , m2 and m3 are all to the left of the fulcrum, and the magnitude of the moment of m1 about x = 4 is by itself greater than the moment of m about x = 4 (i.e. 40 > 28), so even if we replace the masses of m2 and m3 with 0, the sum is negative. (b) At equilibrium, 10(0 − 4) + 3(2 − 4) + 4(3 − 4) + m(6 − 4) = 0, m = 25 1 1 1 1 1 1 3. A = 1, x = x dy dx = , y= y dy dx = 0 0 2 0 0 2 1 4. A = 2, x = x dy dx, and the region of integration is symmetric with respect to the x-axes 2 G and the integrand is an odd function of x, so x = 0. Likewise, y = 0. 1 x 1 x 5. A = 1/2, x dA = x dy dx = 1/3, y dA = y dy dx = 1/6; 0 0 0 0 R R centroid (2/3, 1/3) 1 x2 1 x2 6. A = dy dx = 1/3, x dA = x dy dx = 1/4, 0 0 0 0 R 1 x2 y dA = y dy dx = 1/10; centroid (3/4, 3/10) 0 0 R 1 2−x2 1 2−x2 7. A = dy dx = 7/6, x dA = x dy dx = 5/12, 0 x 0 x R 1 2−x2 y dA = y dy dx = 19/15; centroid (5/14, 38/35) 0 x R √ 1 1−x2 π 1 4 4 8. A = , x dA = x dy dx = ,x= , y= by symmetry 4 0 0 3 3π 3π R 9. x = 0 from the symmetry of the region, 1 π b 2 3 4(b3 − a3 ) A= π(b2 − a2 ), y dA = r2 sin θ dr dθ = (b − a3 ); centroid x = 0, y = . 2 0 a 3 3π(b2 − a2 ) R
  • 21. January 27, 2005 11:55 L24-CH15 Sheet number 21 Page number 675 black Exercise Set 15.6 675 10. y = 0 from the symmetry of the region, A = πa2 /2, π/2 a 4a x dA = r2 cos θ dr dθ = 2a3 /3; centroid ,0 −π/2 0 3π R 1 1 11. M = δ(x, y)dA = |x + y − 1| dx dy 0 0 R 1 1−x 1 1 = (1 − x − y) dy + (x + y − 1) dy dx = 0 0 1−x 3 1 1 1 1−x 1 1 x=3 xδ(x, y) dy dx = 3 x(1 − x − y) dy + x(x + y − 1) dy dx = 0 0 0 0 1−x 2 1 By symmetry, y = as well; center of gravity (1/2, 1/2) 2 1 12. x = xδ(x, y) dA, and the integrand is an odd function of x while the region is symmetric M G with respect to the y-axis, thus x = 0; likewise y = 0. √ √ 1 x 1 x 13. M = (x + y)dy dx = 13/20, Mx = (x + y)y dy dx = 3/10, 0 0 0 0 √ 1 x My = (x + y)x dy dx = 19/42, x = My /M = 190/273, y = Mx /M = 6/13; 0 0 the mass is 13/20 and the center of gravity is at (190/273, 6/13). π sin x 14. M = y dy dx = π/4, x = π/2 from the symmetry of the density and the region, 0 0 π sin x 16 π 16 Mx = y 2 dy dx = 4/9, y = Mx /M = ; mass π/4, center of gravity , . 0 0 9π 2 9π π/2 a 15. M = r3 sin θ cos θ dr dθ = a4 /8, x = y from the symmetry of the density and the 0 0 π/2 a region, My = r4 sin θ cos2 θ dr dθ = a5 /15, x = 8a/15; mass a4 /8, center of gravity 0 0 (8a/15, 8a/15). π 1 16. M = r3 dr dθ = π/4, x = 0 from the symmetry of density and region, 0 0 π 1 8 8 Mx = r4 sin θ dr dθ = 2/5, y = ; mass π/4, center of gravity 0, . 0 0 5π 5π 1 1 1 1 1 1 1 1 17. V = 1, x = x dz dy dx = , similarly y = z = ; centroid , , 0 0 0 2 2 2 2 2 2 2π 1 18. V = πr2 h = 2π, x = y = 0 by symmetry, z dz dy dx = rz dr dθ dz = 2π, centroid 0 0 0 G = (0, 0, 1)
  • 22. January 27, 2005 11:55 L24-CH15 Sheet number 22 Page number 676 black 676 Chapter 15 19. x = y = z from the symmetry of the region, V = 1/6, 1 1−x 1−x−y 1 x= x dz dy dx = (6)(1/24) = 1/4; centroid (1/4, 1/4, 1/4) V 0 0 0 20. The solid is described by −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y 2 , 0 ≤ x ≤ 1 − z; 1 1−y 2 1−z 1 1−y 2 1−z 4 1 5 V = dx dz dy = , x = x dx dz dy = , y = 0 by symmetry, −1 0 0 5 V −1 0 0 14 1 1−y 2 1−z 1 2 5 2 z= z dx dz dy = ; the centroid is , 0, . V −1 0 0 7 14 7 21. x = 1/2 and y = 0 from the symmetry of the region, 1 1 1 1 V = dz dy dx = 4/3, z = z dV = (3/4)(4/5) = 3/5; centroid (1/2, 0, 3/5) 0 −1 y2 V G 22. x = y from the symmetry of the region, 2 2 xy 1 V = dz dy dx = 4, x = x dV = (1/4)(16/3) = 4/3, 0 0 0 V G 1 z= z dV = (1/4)(32/9) = 8/9; centroid (4/3, 4/3, 8/9) V G 23. x = y = z from the symmetry of the region, V = πa3 /6, √ √ 2 2 2 √ a2 −x2 a −x −y a2 −x2 1 a 1 a x= x dz dy dx = x a2 − x2 − y 2 dy dx V 0 0 0 V 0 0 π/2 a 1 6 = r2 a2 − r2 cos θ dr dθ = (πa4 /16) = 3a/8; centroid (3a/8, 3a/8, 3a/8) V 0 0 πa3 24. x = y = 0 from the symmetry of the region, V = 2πa3 /3 √ √ 2 2 2 √ a2 −x2 a −x −y a2 −x2 1 a 1 a 1 2 z= z dz dy dx = (a − x2 − y 2 )dy dx V −a −√a2 −x2 0 V −a −√a2 −x2 2 2π a 1 1 2 3 = (a − r2 )r dr dθ = (πa4 /4) = 3a/8; centroid (0, 0, 3a/8) V 0 0 2 2πa3 a a a 25. M = (a − x)dz dy dx = a4 /2, y = z = a/2 from the symmetry of density and 0 0 0 a a a 1 region, x = x(a − x)dz dy dx = (2/a4 )(a5 /6) = a/3; M 0 0 0 mass a4 /2, center of gravity (a/3, a/2, a/2)
  • 23. January 27, 2005 11:55 L24-CH15 Sheet number 23 Page number 677 black Exercise Set 15.6 677 √ a a2 −x2 h 1 2 2 26. M = √ (h − z)dz dy dx = πa h , x = y = 0 from the symmetry of density −a − a2 −x2 0 2 1 2 and region, z = z(h − z)dV = (πa2 h3 /6) = h/3; M πa2 h2 G 2 2 mass πa h /2, center of gravity (0, 0, h/3) 1 1 1−y 2 27. M = yz dz dy dx = 1/6, x = 0 by the symmetry of density and region, −1 0 0 1 1 y= y 2 z dV = (6)(8/105) = 16/35, z = yz 2 dV = (6)(1/12) = 1/2; M M G G mass 1/6, center of gravity (0, 16/35, 1/2) 3 9−x2 1 1 28. M = xz dz dy dx = 81/8, x = x2 z dV = (8/81)(81/5) = 8/5, 0 0 0 M G 1 1 y= xyz dV = (8/81)(243/8) = 3, z = xz 2 dV = (8/81)(27/4) = 2/3; M M G G mass 81/8, center of gravity (8/5, 3, 2/3) 1 1 29. (a) M = k(x2 + y 2 )dy dx = 2k/3, x = y from the symmetry of density and region, 0 0 1 3 x= kx(x2 + y 2 )dA = (5k/12) = 5/8; center of gravity (5/8, 5/8) M 2k R (b) y = 1/2 from the symmetry of density and region, 1 1 1 M= kx dy dx = k/2, x = kx2 dA = (2/k)(k/3) = 2/3, 0 0 M R center of gravity (2/3, 1/2) 30. (a) x = y = z from the symmetry of density and region, 1 1 1 M= k(x2 + y 2 + z 2 )dz dy dx = k, 0 0 0 1 x= kx(x2 + y 2 + z 2 )dV = (1/k)(7k/12) = 7/12; center of gravity (7/12, 7/12, 7/12) M G (b) x = y = z from the symmetry of density and region, 1 1 1 M= k(x + y + z)dz dy dx = 3k/2, 0 0 0 1 2 x= kx(x + y + z)dV = (5k/6) = 5/9; center of gravity (5/9, 5/9, 5/9) M 3k G
  • 24. January 27, 2005 11:55 L24-CH15 Sheet number 24 Page number 678 black 678 Chapter 15 π sin x 1/(1+x2 +y 2 ) 31. V = dV = dz dy dx = 0.666633, 0 0 0 G 1 1 1 x= xdV = 1.177406, y = ydV = 0.353554, z = zdV = 0.231557 V V V G G G 32. (b) Use polar coordinates for x and y to get 2π a 1/(1+r 2 ) V = dV = r dz dr dθ = π ln(1 + a2 ), 0 0 0 G 1 a2 z= zdV = V 2(1 + a2 ) ln(1 + a2 ) G 1 Thus lim z = ; lim z = 0. a→0+ 2 a→+∞ 1 lim z = ; lim z = 0 a→0+ 2 a→+∞ (c) Solve z = 1/4 for a to obtain a ≈ 1.980291. 33. Let x = r cos θ, y = r sin θ, and dA = r dr dθ in formulas (11) and (12). 2π a(1+sin θ) 34. x = 0 from the symmetry of the region, A = r dr dθ = 3πa2 /2, 0 0 2π a(1+sin θ) 1 2 y= r2 sin θ dr dθ = (5πa3 /4) = 5a/6; centroid (0, 5a/6) A 0 0 3πa2 π/2 sin 2θ 35. x = y from the symmetry of the region, A = r dr dθ = π/8, 0 0 π/2 sin 2θ 1 128 128 128 x= r2 cos θ dr dθ = (8/π)(16/105) = ; centroid , A 0 0 105π 105π 105π 36. x = 3/2 and y = 1 from the symmetry of the region, x dA = xA = (3/2)(6) = 9, y dA = yA = (1)(6) = 6 R R 37. x = 0 from the symmetry of the region, πa2 /2 is the area of the semicircle, 2πy is the distance traveled by the centroid to generate the sphere so 4πa3 /3 = (πa2 /2)(2πy), y = 4a/(3π) 1 2 4a 1 38. (a) V = πa 2π a + = π(3π + 4)a3 2 3π 3 √ 2 4a (b) the distance between the centroid and the line is a+ so 2 3π √ 1 2 2 4a 1√ V = πa 2π a+ = 2π(3π + 4)a3 2 2 3π 6
  • 25. January 27, 2005 11:55 L24-CH15 Sheet number 25 Page number 679 black Exercise Set 15.7 679 39. x = k so V = (πab)(2πk) = 2π 2 abk 40. y = 4 from the symmetry of the region, 2 8−x2 A= dy dx = 64/3 so V = (64/3)[2π(4)] = 512π/3 −2 x2 1 41. The region generates a cone of volume πab2 when it is revolved about the x-axis, the area of the 3 1 1 1 1 region is ab so πab2 = ab (2πy), y = b/3. A cone of volume πa2 b is generated when the 2 3 2 3 1 2 1 region is revolved about the y-axis so πa b = ab (2πx), x = a/3. The centroid is (a/3, b/3). 3 2 42. The centroid of the circle which generates the tube travels a distance 4π √ √ √ s= sin2 t + cos2 t + 1/16 dt = 17π, so V = π(1/2)2 17π = 17π 2 /4. 0 a b a b 1 1 3 43. Ix = y 2 δ dy dx = δab3 , Iy = x2 δ dy dx = δa b, 0 0 3 0 0 3 a b 1 Iz = (x2 + y 2 )δ dy dx = δab(a2 + b2 ) 0 0 3 2π a 2π a 44. Ix = r3 sin2 θ δ dr dθ = δπa4 /4; Iy = r3 cos2 θ δ dr dθ = δπa4 /4 = Ix ; 0 0 0 0 4 Iz = Ix + Iy = δπa /2 EXERCISE SET 15.7 √ 2π 1 1−r 2 2π 1 2π 1 1 1. zr dz dr dθ = (1 − r2 )r dr dθ = dθ = π/4 0 0 0 0 0 2 0 8 π/2 cos θ r2 π/2 cos θ π/2 1 2. r sin θ dz dr dθ = r3 sin θ dr dθ = cos4 θ sin θ dθ = 1/20 0 0 0 0 0 0 4 π/2 π/2 1 π/2 π/2 π/2 1 1 3. ρ3 sin φ cos φ dρ dφ dθ = sin φ cos φ dφ dθ = dθ = π/16 0 0 0 0 0 4 0 8 2π π/4 a sec φ 2π π/4 2π 1 3 1 3 4. ρ2 sin φ dρ dφ dθ = a sec3 φ sin φ dφ dθ = a dθ = πa3 /3 0 0 0 0 0 3 0 6 5. f (r, θ, z) = z 6. f (r, θ, z) = sin θ z z y x y x
  • 26. January 27, 2005 11:55 L24-CH15 Sheet number 26 Page number 680 black 680 Chapter 15 7. f (ρ, φ, θ) = ρ cos φ 8. f (ρ, φ, θ) = 1 z z a y x x y 2π 3 9 2π 3 2π 81 9. V = r dz dr dθ = r(9 − r2 )dr dθ = dθ = 81π/2 0 0 r2 0 0 0 4 √ 2π 2 9−r 2 2π 2 10. V = 2 r dz dr dθ = 2 r 9 − r2 dr dθ 0 0 0 0 0 2 √ 2π √ = (27 − 5 5) dθ = 4(27 − 5 5)π/3 3 0 11. r2 + z 2 = 20 intersects z = r2 in a circle of radius 2; the volume consists of two portions, one inside √ the cylinder r = 20 and one outside that cylinder: √ √ 2π 2 r2 2π 20 20−r 2 V= √ r dz dr dθ + √ r dz dr dθ 0 0 − 20−r 2 0 2 − 20−r 2 √ 2π 2 2π 20 = r r2 + 20 − r2 dr dθ + 2r 20 − r2 dr dθ 0 0 0 2 4 √ 2π 128 2π 152 80 √ = (10 5 − 13) dθ + dθ = π+ π 5 3 0 3 0 3 3 12. z = hr/a intersects z = h in a circle of radius a, 2π a h 2π a 2π h 1 2 V = r dz dr dθ = (ar − r2 )dr dθ = a h dθ = πa2 h/3 0 0 hr/a 0 0 a 0 6 2π π/3 4 2π π/3 2π 64 32 13. V = ρ2 sin φ dρ dφ dθ = sin φ dφ dθ = dθ = 64π/3 0 0 0 0 0 3 3 0 2π π/4 2 2π π/4 7 7 √ 2π √ 14. V = ρ2 sin φ dρ dφ dθ = sin φ dφ dθ = (2 − 2) dθ = 7(2 − 2)π/3 0 0 1 0 0 3 6 0 15. In spherical coordinates the sphere and the plane z = a are ρ = 2a and ρ = a sec φ, respectively. They intersect at φ = π/3, 2π π/3 a sec φ 2π π/2 2a V= ρ2 sin φ dρ dφ dθ + ρ2 sin φ dρ dφ dθ 0 0 0 0 π/3 0 2π π/3 2π π/2 1 3 8 3 = a sec3 φ sin φ dφ dθ + a sin φ dφ dθ 0 0 3 0 π/3 3 2π 2π 1 3 4 = a dθ + a3 dθ = 11πa3 /3 2 0 3 0
  • 27. January 27, 2005 11:55 L24-CH15 Sheet number 27 Page number 681 black Exercise Set 15.7 681 √ 2π π/2 3 2 2π π/2 9 2 2π √ 16. V = ρ sin φ dρ dφ dθ = 9 sin φ dφ dθ = dθ = 9 2π 0 π/4 0 0 π/4 2 0 π/2 a a2 −r 2 π/2 a 17. r3 cos2 θ dz dr dθ = (a2 r3 − r5 ) cos2 θ dr dθ 0 0 0 0 0 π/2 1 6 = a cos2 θ dθ = πa6 /48 12 0 π π/2 1 π π/2 1 e−ρ ρ2 sin φ dρ dφ dθ = (1 − e−1 ) sin φ dφ dθ = (1 − e−1 )π/3 3 18. 0 0 0 3 0 0 √ π/2 π/4 8 √ 19. ρ4 cos2 φ sin φ dρ dφ dθ = 32(2 2 − 1)π/15 0 0 0 2π π 3 20. ρ3 sin φ dρ dφ dθ = 81π 0 0 0 2 4 π/3 2 4 π/3 r tan3 θ 1 21. (a) √ dθ dr dz = √ dz r dr tan3 θ dθ −2 1 π/6 1 + z2 −2 1 + z2 1 π/6 √ 15 4 1 = −2 ln( 5 − 2) − ln 3 ≈ 16.97774196 2 3 2 The region is a cylindrical wedge. (b) To convert to rectangular coordinates observe that the rays θ = π/6, θ = π/3 correspond to √ √ the lines y = x/ 3, y = 3x. Then dx dy dz = r dr dθ dz and tan θ = y/x, hence √ 4 3x 2 (y/x)3 y3 Integral = √ √ dz dy dx, so f (x, y, z) = √ . 1 x/ 3 −2 1 + z2 x3 1 + z 2 √ π/2 π/4 1 2 π/2 4,294,967,296 √ 22. cos37 θ cos φ dφ dθ = cos37 θ dθ = 2 ≈ 0.008040 0 0 18 36 0 755,505,013,725 √ 2π a a2 −r 2 23. (a) V = 2 r dz dr dθ = 4πa3 /3 0 0 0 2π π a (b) V = ρ2 sin φ dρ dφ dθ = 4πa3 /3 0 0 0 √ √ 2 4−x2 4−x2 −y 2 24. (a) xyz dz dy dx 0 0 0 √ 2 4−x2 2 1 1 = xy(4 − x2 − y 2 )dy dx = x(4 − x2 )2 dx = 4/3 0 0 2 8 0 √ π/2 2 4−r 2 (b) r3 z sin θ cos θ dz dr dθ 0 0 0 π/2 2 π/2 1 3 8 = (4r − r5 ) sin θ cos θ dr dθ = sin θ cos θ dθ = 4/3 0 0 2 3 0 π/2 π/2 2 (c) ρ5 sin3 φ cos φ sin θ cos θ dρ dφ dθ 0 0 0 π/2 π/2 π/2 32 8 = sin3 φ cos φ sin θ cos θ dφ dθ = sin θ cos θ dθ = 4/3 0 0 3 3 0
  • 28. January 27, 2005 11:55 L24-CH15 Sheet number 28 Page number 682 black 682 Chapter 15 2π 3 3 2π 3 2π 1 27 25. M = (3 − z)r dz dr dθ = r(3 − r)2 dr dθ = dθ = 27π/4 0 0 r 0 0 2 8 0 2π a h 2π a 2π 1 2 1 26. M = k zr dz dr dθ = kh r dr dθ = ka2 h2 dθ = πka2 h2 /2 0 0 0 0 0 2 4 0 2π π a 2π π 2π 1 4 1 27. M = kρ3 sin φ dρ dφ dθ = ka sin φ dφ dθ = ka4 dθ = πka4 0 0 0 0 0 4 2 0 2π π 2 2π π 2π 3 28. M = ρ sin φ dρ dφ dθ = sin φ dφ dθ = 3 dθ = 6π 0 0 1 0 0 2 0 29. x = y = 0 from the symmetry of the region, ¯ ¯ √ 2π 1 2−r 2 2π 1 √ V = r dz dr dθ = (r 2 − r2 − r3 )dr dθ = (8 2 − 7)π/6, 0 0 r2 0 0 √ 1 2π 1 2−r 2 6 √ z= ¯ zr dz dr dθ = √ (7π/12) = 7/(16 2 − 14); V 0 0 r2 (8 2 − 7)π 7 centroid 0, 0, √ 16 2 − 14 30. x = y = 0 from the symmetry of the region, V = 8π/3, ¯ ¯ 2π 2 2 1 3 z= ¯ zr dz dr dθ = (4π) = 3/2; centroid (0, 0, 3/2) V 0 0 r 8π 31. x = y = z from the symmetry of the region, V = πa3 /6, ¯ ¯ ¯ π/2 π/2 a 1 6 z= ¯ ρ3 cos φ sin φ dρ dφ dθ = (πa4 /16) = 3a/8; V 0 0 0 πa3 centroid (3a/8, 3a/8, 3a/8) 2π π/3 4 32. x = y = 0 from the symmetry of the region, V = ¯ ¯ ρ2 sin φ dρ dφ dθ = 64π/3, 0 0 0 2π π/3 4 1 3 z= ¯ ρ3 cos φ sin φ dρ dφ dθ = (48π) = 9/4; centroid (0, 0, 9/4) V 0 0 0 64π π/2 2 cos θ r2 33. y = 0 from the symmetry of the region, V = 2 ¯ r dz dr dθ = 3π/2, 0 0 0 π/2 2 cos θ r2 2 4 x= ¯ r2 cos θ dz dr dθ = (π) = 4/3, V 0 0 0 3π π/2 2 cos θ r2 2 4 z= ¯ rz dz dr dθ = (5π/6) = 10/9; centroid (4/3, 0, 10/9) V 0 0 0 3π π/2 2 cos θ 4−r 2 π/2 2 cos θ 1 34. M = zr dz dr dθ = r(4 − r2 )2 dr dθ 0 0 0 0 0 2 π/2 16 = (1 − sin6 θ)dθ = (16/3)(11π/32) = 11π/6 3 0 π/2 π/3 2 π/2 π/3 8 4 √ π/2 35. V = ρ2 sin φ dρ dφ dθ = sin φ dφ dθ = ( 3 − 1) dθ 0 π/6 0 0 π/6 3 3 0 √ = 2( 3 − 1)π/3
  • 29. January 27, 2005 11:55 L24-CH15 Sheet number 29 Page number 683 black Exercise Set 15.7 683 2π π/4 1 2π π/4 1 1 √ 2π √ 36. M = ρ3 sin φ dρ dφ dθ = sin φ dφ dθ = (2 − 2) dθ = (2 − 2)π/4 0 0 0 0 0 4 8 0 37. x = y = 0 from the symmetry of density and region, ¯ ¯ 2π 1 1−r 2 M= (r2 + z 2 )r dz dr dθ = π/4, 0 0 0 2π 1 1−r 2 1 z= ¯ z(r2 +z 2 )r dz dr dθ = (4/π)(11π/120) = 11/30; center of gravity (0, 0, 11/30) M 0 0 0 2π 1 r 38. x = y = 0 from the symmetry of density and region, M = ¯ ¯ zr dz dr dθ = π/4, 0 0 0 2π 1 r 1 z= ¯ z 2 r dz dr dθ = (4/π)(2π/15) = 8/15; center of gravity (0, 0, 8/15) M 0 0 0 39. x = y = 0 from the symmetry of density and region, ¯ ¯ 2π π/2 a M= kρ3 sin φ dρ dφ dθ = πka4 /2, 0 0 0 2π π/2 a 1 2 z= ¯ kρ4 sin φ cos φ dρ dφ dθ = (πka5 /5) = 2a/5; center of gravity (0, 0, 2a/5) M 0 0 0 πka4 40. x = z = 0 from the symmetry of the region, V = 54π/3 − 16π/3 = 38π/3, ¯ ¯ π π 3 π π 1 1 65 y= ¯ ρ3 sin2 φ sin θ dρ dφ dθ = sin2 φ sin θ dφ dθ V 0 0 2 V 0 0 4 π 1 65π 3 = sin θ dθ = (65π/4) = 195/152; centroid (0, 195/152, 0) V 0 8 38π 2π π R 2π π 1 δ0 e−(ρ/R) ρ2 sin φ dρ dφ dθ = (1 − e−1 )R3 δ0 sin φ dφ dθ 3 41. M = 0 0 0 0 0 3 4 = π(1 − e−1 )δ0 R3 3 42. (a) The sphere and cone intersect in a circle of radius ρ0 sin φ0 , √ 2 2 θ2 ρ0 sin φ0 ρ0 −r θ2 ρ0 sin φ0 V= r dz dr dθ = r ρ2 − r2 − r2 cot φ0 dr dθ 0 θ1 0 r cot φ0 θ1 0 θ2 1 3 1 = ρ0 (1 − cos3 φ0 − sin3 φ0 cot φ0 )dθ = ρ3 (1 − cos3 φ0 − sin2 φ0 cos φ0 )(θ2 − θ1 ) θ1 3 3 0 1 3 ρ (1 − cos φ0 )(θ2 − θ1 ). = 3 0 (b) From Part (a), the volume of the solid bounded by θ = θ1 , θ = θ2 , φ = φ1 , φ = φ2 , and 1 1 1 ρ = ρ0 is ρ3 (1 − cos φ2 )(θ2 − θ1 ) − ρ3 (1 − cos φ1 )(θ2 − θ1 ) = ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 ) 3 0 3 0 3 0 so the volume of the spherical wedge between ρ = ρ1 and ρ = ρ2 is 1 1 ∆V = ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 ) − ρ3 (cos φ1 − cos φ2 )(θ2 − θ1 ) 3 2 3 1 1 3 = (ρ − ρ3 )(cos φ1 − cos φ2 )(θ2 − θ1 ) 3 2 1
  • 30. January 27, 2005 11:55 L24-CH15 Sheet number 30 Page number 684 black 684 Chapter 15 d (c) cos φ = − sin φ so from the Mean-Value Theorem cos φ2 −cos φ1 = −(φ2 −φ1 ) sin φ∗ where dφ d 3 φ∗ is between φ1 and φ2 . Similarly ρ = 3ρ2 so ρ3 −ρ3 = 3ρ∗2 (ρ2 −ρ1 ) where ρ∗ is between 2 1 dρ ρ1 and ρ2 . Thus cos φ1 −cos φ2 = sin φ ∆φ and ρ2 −ρ1 = 3ρ∗2 ∆ρ so ∆V = ρ∗2 sin φ∗ ∆ρ∆φ∆θ. ∗ 3 3 2π a h 2π a h 1 43. Iz = r2 δ r dz dr dθ = δ r3 dz dr dθ = δπa4 h 0 0 0 0 0 0 2 2π a h 2π a 1 44. Iy = (r2 cos2 θ + z 2 )δr dz dr dθ = δ (hr3 cos2 θ + h3 r)dr dθ 0 0 0 0 0 3 2π 1 4 1 π 4 π =δ a h cos2 θ + a2 h3 dθ = δ a h + a2 h3 0 4 6 4 3 2π a2 h 2π a2 h 1 45. Iz = r2 δ r dz dr dθ = δ r3 dz dr dθ = δπh(a4 − a4 ) 2 1 0 a1 0 0 a1 0 2 2π π a 2π π a 8 46. Iz = (ρ2 sin2 φ)δ ρ2 sin φ dρ dφ dθ = δ ρ4 sin3 φ dρ dφ dθ = δπa5 0 0 0 0 0 0 15 EXERCISE SET 15.8 ∂(x, y) 1 4 ∂(x, y) 1 4v 1. = = −17 2. = = −1 − 16uv ∂(u, v) 3 −5 ∂(u, v) 4u −1 ∂(x, y) cos u − sin v 3. = = cos u cos v + sin u sin v = cos(u − v) ∂(u, v) sin u cos v 2(v 2 − u2 ) 4uv − ∂(x, y) (u2 + v 2 )2 (u2 + v 2 )2 4. = = 4/(u2 + v 2 )2 ∂(u, v) 4uv 2(v 2 − u2 ) (u 2 + v 2 )2 (u2 + v 2 )2 2 5 1 2 ∂(x, y) 2/9 5/9 1 5. x = u + v, y = − u + v; = = 9 9 9 9 ∂(u, v) −1/9 2/9 9 ∂(x, y) 1/u 0 6. x = ln u, y = uv; = =1 ∂(u, v) v u 1 1 √ √ √ √ √ √ √ √ ∂(x, y) 2 2 u+v 2 2 u+v 1 7. x = u + v/ 2, y = v − u/ 2; = = √ ∂(u, v) 1 1 4 v 2 − u2 − √ √ √ √ 2 2 v−u 2 2 v−u 3u1/2 u3/2 − ∂(x, y) 2v 1/2 2v 3/2 1 8. x = u3/2 /v 1/2 , y = v 1/2 /u1/2 ; = = ∂(u, v) v 1/2 1 2v − 2u3/2 2u1/2 v 1/2
  • 31. January 27, 2005 11:55 L24-CH15 Sheet number 31 Page number 685 black Exercise Set 15.8 685 3 1 0 1−v −u 0 ∂(x, y, z) ∂(x, y, z) 9. = 1 0 −2 =5 10. = v − vw u − uw −uv = u2 v ∂(u, v, w) ∂(u, v, w) 0 1 1 vw uw uv 1/v −u/v 2 0 ∂(x, y, z) 11. y = v, x = u/y = u/v, z = w − x = w − u/v; = 0 1 0 = 1/v ∂(u, v, w) −1/v u/v 2 1 0 1/2 1/2 ∂(x, y, z) 1 12. x = (v + w)/2, y = (u − w)/2, z = (u − v)/2, = 1/2 0 −1/2 =− ∂(u, v, w) 4 1/2 −1/2 0 y y 13. 14. (3, 4) (0, 2) 4 3 2 1 x (0, 0) 1 2 3 (4, 0) (0, 0) x (–1, 0) (1, 0) y y 15. 3 (0, 3) 16. 2 (2, 0) x –3 3 1 x –3 1 2 3 4 1 2 2 1 ∂(x, y) 1 1 u 1 u 3 17. x = u + v, y = − u + v, = ; dAuv = du dv = ln 3 5 5 5 5 ∂(u, v) 5 5 v 5 1 1 v 2 S 4 1 1 1 1 1 ∂(x, y) 1 1 1 1 4 18. x = u + v, y = u − v, =− ; veuv dAuv = veuv du dv = (e − e − 3) 2 2 2 2 ∂(u, v) 2 2 2 1 0 2 S ∂(x, y) 19. x = u + v, y = u − v, = −2; the boundary curves of the region S in the uv-plane are ∂(u, v) 1 u 1 v = 0, v = u, and u = 1 so 2 sin u cos vdAuv = 2 sin u cos v dv du = 1 − sin 2 0 0 2 S √ ∂(x, y) 1 20. x = v/u, y = uv so, from Example 3, = − ; the boundary curves of the region S in ∂(u, v) 2u 4 3 1 1 the uv-plane are u = 1, u = 3, v = 1, and v = 4 so uv 2 dAuv = v 2 du dv = 21 2u 2 1 1 S
  • 32. January 27, 2005 11:55 L24-CH15 Sheet number 32 Page number 686 black 686 Chapter 15 ∂(x, y) 21. x = 3u, y = 4v, = 12; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1. ∂(u, v) 2π 1 Use polar coordinates to obtain 12 u2 + v 2 (12) dAuv = 144 r2 dr dθ = 96π 0 0 S ∂(x, y) 22. x = 2u, y = v, = 2; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1. Use ∂(u, v) 2π 1 e−(4u re−4r dr dθ = (1 − e−4 )π/2 2 +4v 2 ) 2 polar coordinates to obtain (2) dAuv = 2 0 0 S 23. Let S be the region in the uv-plane bounded by u2 + v 2 = 1, so u = 2x, v = 3y, ∂(x, y) 1/2 0 x = u/2, y = v/3, = = 1/6, use polar coordinates to get ∂(u, v) 0 1/3 π/2 1 1 1 1 π π sin(u2 + v 2 )du dv = r sin r2 dr dθ = (− cos r2 ) = (1 − cos 1) 6 6 0 0 24 0 24 S 2π 1 ∂(x, y) 24. u = x/a, v = y/b, x = au, y = bv; = ab; A = ab r dr dθ = πab ∂(u, v) 0 0 ∂(x, y, z) 25. x = u/3, y = v/2, z = w, = 1/6; S is the region in uvw-space enclosed by the sphere ∂(u, v, w) u2 + v 2 + w2 = 36 so 2π π 6 u2 1 1 dVuvw = (ρ sin φ cos θ)2 ρ2 sin φ dρ dφ dθ 9 6 54 0 0 0 S 2π π 6 1 192 = ρ4 sin3 φ cos2 θdρ dφ dθ = π 54 0 0 0 5 ∂(x, y, z) 26. Let G1 be the region u2 + v 2 + w2 ≤ 1, with x = au, y = bv, z = cw, = abc; then use ∂(u, v, w) spherical coordinates in uvw-space: Ix = (y 2 + z 2 )dx dy dz = abc (b2 v 2 + c2 w2 ) du dv dw G G1 2π π 1 = abc(b2 sin2 φ sin2 θ + c2 cos2 φ)ρ4 sin φ dρ dφ dθ 0 0 0 2π abc 2 2 4 = (4b sin θ + 2c2 )dθ = πabc(b2 + c2 ) 0 15 15 27. u = θ = cot−1 (x/y), v = r = x2 + y 2 28. u = r = x2 + y 2 , v = (θ + π/2)/π = (1/π) tan−1 (y/x) + 1/2 3 2 1 3 4 29. u = x − y, v = − x + y 30. u = −x + y, v = y 7 7 7 7 3
  • 33. January 27, 2005 11:55 L24-CH15 Sheet number 33 Page number 687 black Exercise Set 15.8 687 1 1 ∂(x, y) 1 31. Let u = y − 4x, v = y + 4x, then x = (v − u), y = (v + u) so =− ; 8 2 ∂(u, v) 8 5 2 1 u 1 u 1 5 dAuv = du dv = ln 8 v 8 2 0 v 4 2 S 1 1 ∂(x, y) 1 32. Let u = y + x, v = y − x, then x = (u − v), y = (u + v) so = ; 2 2 ∂(u, v) 2 2 1 1 1 1 − uv dAuv = − uv du dv = − 2 2 0 0 2 S 1 1 ∂(x, y) 1 33. Let u = x − y, v = x + y, then x = (v + u), y = (v − u) so = ; the boundary curves of 2 2 ∂(u, v) 2 the region S in the uv-plane are u = 0, v = u, and v = π/4; thus 1 sin u 1 π/4 v sin u 1 √ dAuv = du dv = [ln( 2 + 1) − π/4] 2 cos v 2 0 0 cos v 2 S 1 1 ∂(x, y) 1 34. Let u = y − x, v = y + x, then x = (v − u), y = (u + v) so = − ; the boundary 2 2 ∂(u, v) 2 curves of the region S in the uv-plane are v = −u, v = u, v = 1, and v = 4; thus 4 v 1 1 15 eu/v dAuv = eu/v du dv = (e − e−1 ) 2 2 1 −v 4 S ∂(x, y) 1 35. Let u = y/x, v = x/y 2 , then x = 1/(u2 v), y = 1/(uv) so = 4 3; ∂(u, v) u v 4 2 1 1 dAuv = du dv = 35/256 u4 v 3 1 1 u4 v 3 S ∂(x, y) 36. Let x = 3u, y = 2v, = 6; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1 ∂(u, v) 2π 1 so (9 − x − y)dA = 6(9 − 3u − 2v)dAuv = 6 (9 − 3r cos θ − 2r sin θ)r dr dθ = 54π 0 0 R S ∂(x, y, z) 1 37. x = u, y = w/u, z = v + w/u, =− ; ∂(u, v, w) u 4 1 3 v2 w v2 w dVuvw = du dv dw = 2 ln 3 u 2 0 1 u S 38. u = xy, v = yz, w = xz, 1 ≤ u ≤ 2, 1 ≤ v ≤ 3, 1 ≤ w ≤ 4, ∂(x, y, z) 1 x= uw/v, y = uv/w, z = vw/u, = √ ∂(u, v, w) 2 uvw 2 3 4 1 √ √ V = dV = √ dw dv du = 4( 2 − 1)( 3 − 1) 1 1 1 2 uvw G
  • 34. January 27, 2005 11:55 L24-CH15 Sheet number 34 Page number 688 black 688 Chapter 15 sin3 φ cos3 θ 3ρ sin2 φ cos φ cos3 θ −3ρ sin3 φ cos2 θ sin θ ∂(x, y, z) 39. = sin3 φ sin3 θ 3ρ sin2 φ cos φ sin3 θ 3ρ sin3 φ sin2 θ cos θ ∂(ρ, φ, θ) 3 cos φ −3ρ cos φ sin φ 2 0 = 9ρ2 cos2 θ sin2 θ cos2 φ sin5 φ, 2π π a 4 V =9 ρ2 cos2 θ sin2 θ cos2 φ sin5 φ dρ dφ dθ = πa3 0 0 0 35 40. (b) If x = x(u, v), y = y(u, v) where u = u(x, y), v = v(x, y), then by the chain rule ∂x ∂u ∂x ∂v ∂x ∂x ∂u ∂x ∂v ∂x + = = 1, + = =0 ∂u ∂x ∂v ∂x ∂x ∂u ∂y ∂v ∂y ∂y ∂y ∂u ∂y ∂v ∂y ∂y ∂u ∂y ∂v ∂y + = = 0, + = =1 ∂u ∂x ∂v ∂x ∂x ∂u ∂y ∂v ∂y ∂y ∂(x, y) 1−v −u y 41. (a) = = u; u = x + y, v = , ∂(u, v) v u x+y ∂(u, v) 1 1 x y 1 1 = = + = = ; ∂(x, y) −y/(x + y)2 x/(x + y)2 (x + y)2 (x + y)2 x+y u ∂(u, v) ∂(x, y) =1 ∂(x, y) ∂(u, v) ∂(x, y) v u √ √ (b) = = 2v 2 ; u = x/ y, v = y, ∂(u, v) 0 2v √ ∂(u, v) 1/ y −x/(2y 3/2 ) 1 1 ∂(u, v) ∂(x, y) = √ = = 2; =1 ∂(x, y) 0 1/(2 y) 2y 2v ∂(x, y) ∂(u, v) ∂(x, y) u v √ √ (c) = = −2uv; u = x + y, v = x − y, ∂(u, v) u −v √ √ ∂(u, v) 1/(2 x + y) 1/(2 x + y) 1 1 ∂(u, v) ∂(x, y) = √ √ =− =− ; =1 ∂(x, y) 1/(2 x − y) −1/(2 x − y) 2 x2 − y2 2uv ∂(x, y) ∂(u, v) 2 2π ∂(u, v) ∂(x, y) 1 1 sin u 1 sin u 2 42. = 3xy 4 = 3v so = ; dAuv = du dv = − ln 2 ∂(x, y) ∂(u, v) 3v 3 v 3 1 π v 3 S ∂(u, v) ∂(x, y) 1 ∂(x, y) 1 1 43. = 8xy so = ; xy = xy = so ∂(x, y) ∂(u, v) 8xy ∂(u, v) 8xy 8 16 4 1 1 dAuv = du dv = 21/8 8 8 9 1 S ∂(u, v) ∂(x, y) 1 44. = −2(x2 + y 2 ) so =− 2 + y2 ) ; ∂(x, y) ∂(u, v) 2(x ∂(x, y) x4 − y 4 xy 1 1 (x4 − y 4 )exy = 2 + y2 ) e = (x2 − y 2 )exy = veu so ∂(u, v) 2(x 2 2 4 3 1 1 7 3 veu dAuv = veu du dv = (e − e) 2 2 3 1 4 S
  • 35. January 27, 2005 11:55 L24-CH15 Sheet number 35 Page number 689 black Review Exercises, Chapter 15 689 1 1 2 ∂(u, v, w) 45. Set u = x + y + 2z, v = x − 2y + z, w = 4x + y + z, then = 1 −2 1 = 18, and ∂(x, y, z) 4 1 1 6 2 3 ∂(x, y, z) 1 V = dx dy dz = du dv dw = 6(4)(12) = 16 −6 −2 −3 ∂(u, v, w) 18 R 46. (a) Let u = x + y, v = y, then the triangle R with vertices (0, 0), (1, 0) and (0, 1) becomes the triangle in the uv-plane with vertices (0, 0), (1, 0), (1, 1), and 1 u 1 ∂(x, y) f (x + y)dA = f (u) dv du = uf (u) du 0 0 ∂(u, v) 0 R 1 1 (b) ueu du = (u − 1)eu =1 0 0 cos θ −r sin θ 0 ∂(x, y, z) ∂(x, y, z) 47. (a) = sin θ r cos θ 0 = r, =r ∂(r, θ, z) ∂(r, θ, z) 0 0 1 sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ ∂(x, y, z) ∂(x, y, z) (b) = sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ = ρ2 sin φ; = ρ2 sin φ ∂(ρ, φ, θ) ∂(ρ, φ, θ) cos φ −ρ sin φ 0 REVIEW EXERCISES, CHAPTER 15 2 2 ∂z ∂z 3. (a) dA (b) dV (c) 1+ + dA ∂x ∂y R G R 4. (a) x = a sin φ cos θ, y = a sin φ sin θ, z = a cos φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π (b) x = a cos θ, y = a sin θ, z = z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h √ 1 1+ 1−y 2 2 2x 3 6−x 7. √ f (x, y) dx dy 8. f (x, y) dy dx + f (x, y) dy dx 0 1− 1−y 2 0 x 2 x 9. (a) (1, 2) = (b, d), (2, 1) = (a, c), so a = 2, b = 1, c = 1, d = 2 1 1 1 1 ∂(x, y) (b) dA = du dv = 3du dv = 3 0 0 ∂(u, v) 0 0 R √ 10. If 0 < x, y < π then 0 < sin xy ≤ 1, with equality only on the hyperbola xy = π 2 /4, so π π π π √ π π 0= 0 dy dx < sin xy dy dx < 1 dy dx = π 2 0 0 0 0 0 0 1 1 1 √ 11. 2x cos(πx2 ) dx = sin(πx2 ) = −1/( 2π) 1/2 π 1/2 2 x=2y 2 2 x2 y3 3 3 1 y3 1 8 12. e dy = y 2 ey dy = e = e −1 0 2 x=−y 2 0 2 0 2
  • 36. January 27, 2005 11:55 L24-CH15 Sheet number 36 Page number 690 black 690 Chapter 15 1 2 π x sin x 13. ex ey dx dy 14. dy dx 0 2y 0 0 x 15. y 16. p /2 1 r = a(1 + cos u) y = sin x y = tan (x/2) r=a x p /6 6 0 8 y 1/3 8 8 2 1 1 17. 2 x2 sin y 2 dx dy = y sin y 2 dy = − cos y 2 = (1 − cos 64) ≈ 0.20271 0 0 3 0 3 0 3 π/2 2 18. (4 − r2 )r dr dθ = 2π 0 0 2xy 19. sin 2θ = 2 sin θ cos θ = , and r = 2a sin θ is the circle x2 + (y − a)2 = a2 , so x2 + y 2 √ a a+ a2 −x2 a 2xy √ dy dx = x ln a + a2 − x2 − ln a − a2 − x2 dx = a2 0 a− a2 −x2 x2 + y 2 0 π/2 2 π/2 20. 4r2 (cos θ sin θ) r dr dθ = −4 cos 2θ =4 π/4 0 π/4 2 2−y/2 2 2 y y 1/3 y2 3 y 4/3 3 21. dx dy = 2− − dy = 2y − − = 0 (y/2)1/3 0 2 2 4 2 2 0 2 π/6 cos 3θ π/6 22. A = 6 r dr dθ = 3 cos2 3θ = π/4 0 0 0 2π 2 16 2π 2 23. r2 cos2 θ r dz dr dθ = cos2 θ dθ r3 (16 − r4 ) dr = 32π 0 0 r4 0 0 π/2 π/2 1 π/2 1 π π 24. 2 ρ2 sin φ dρ dφ dθ = 1 − sin φ dφ 0 0 0 1+ρ 4 2 0 π π π/2 π π = 1− (− cos φ) = 1− 4 2 0 4 2 2π π/3 a 2π π/3 a 25. (a) (ρ2 sin2 φ)ρ2 sin φ dρ dφ dθ = ρ4 sin3 φ dρ dφ dθ 0 0 0 0 0 0 √ √ √ √ 2π 3a/2 a2 −r 2 2π 3a/2 a2 −r 2 (b) √ r2 dz rdr dθ = √ r3 dz dr dθ 0 0 r/ 3 0 0 r/ 3 √ √ √ 3a/2 (3a2 /4)−x2 a2 −x2 −y 2 (c) √ √ √ √ (x2 + y 2 ) dz dy dx − 3a/2 − (3a2 /4)−x2 x2 +y 2 / 3
  • 37. January 27, 2005 11:55 L24-CH15 Sheet number 37 Page number 691 black Review Exercises, Chapter 15 691 √ 4 4x−x2 4x π/2 4 cos θ 4r cos θ 26. (a) √ dz dy dx (b) r dz dr dθ 0 − 4x−x2 x2 +y 2 −π/2 0 r2 √ √ 2π a/ 3 a a/ 3 √ πa3 27. V = √ r dz dr dθ = 2π r(a − 3r) dr = 0 0 3r 0 9 28. The intersection of the two surfaces projects onto the yz-plane as 2y 2 + z 2 = 1, so √ √ 2 2 1/ 2 1−2y 1−y V =4 dx dz dy 0 0 y 2 +z 2 √ √ √ √ 1/ 2 1−2y 2 1/ 2 2 2π =4 (1 − 2y − z ) dz dy = 4 2 2 (1 − 2y 2 )3/2 dy = 0 0 0 3 4 √ 29. ru × rv = 2u2 + 2v 2 + 4, 2π 2 √ 8π √ S= 2u2 + 2v 2 + 4 dA = 2 r2 + 2 r dr dθ = (3 3 − 1) 0 0 3 u2 +v 2 ≤4 √ 2 3u 2 30. ru × rv = 1 + u2 , S = 1 + u2 dv du = 3u 1 + u2 du = 53/2 − 1 0 0 0 31. (ru × rv ) u=1 = −2, −4, 1 , tangent plane 2x + 4y − z = 5 v=2 32. u = −3, v = 0, (ru × rv ) u=−3 = −18, 0, −3 , tangent plane 6x + z = −9 v=0 4 2+y 2 /8 4 y2 32 33. A = dx dy = 2− dy = ; y = 0 by symmetry; ¯ −4 y 2 /4 −4 8 3 4 2+y 2 /8 4 1 3 4 256 3 256 8 8 x dx dy = 2 + y2 − y dy = , x= ¯ = ; centroid ,0 −4 y 2 /4 −4 4 128 15 32 15 5 5 34. A = πab/2, x = 0 by symmetry, ¯ √ 2 2 a b 1−x /a 1 a 2 4b y dy dx = b (1 − x2 /a2 )dx = 2ab2 /3, centroid 0, −a 0 2 −a 3π 1 2 35. V = πa h, x = y = 0 by symmetry, ¯ ¯ 3 2π a h−rh/a a 2 r rz dz dr dθ = π rh2 1 − dr = πa2 h2 /12, centroid (0, 0, h/4) 0 0 0 0 a 2 4 4−y 2 4 2 1 256 36. V = dz dy dx = (4 − y)dy dx = 8 − 4x2 + x4 dx = , −2 x2 0 −2 x2 −2 2 15 2 4 4−y 2 4 2 1 6 32 1024 y dz dy dx = (4y − y 2 ) dy dx = x − 2x4 + dx = −2 x2 0 −2 x2 −2 3 3 35 2 4 4−y 2 4 2 1 x6 32 2048 z dz dy dx = (4 − y)2 dy dx = − + 2x4 − 8x2 + dx = −2 x2 0 −2 x2 2 −2 6 3 105 12 8 x = 0 by symmetry, centroid ¯ 0, , 7 7
  • 38. January 27, 2005 11:55 L24-CH15 Sheet number 38 Page number 692 black 692 Chapter 15 π 2π a 4 3 ¯ 3 3 3 a4 3 37. V = πa , d = ρdV = ρ3 sin φ dρ dθ dφ = 2π(2) = a 3 4πa3 4πa3 0 0 0 4πa3 4 4 ρ≤a 2 2 1 3 3 1 1 3 1 38. x = u + v and y = − u + v, hence |J(u, v)| = + = , and 10 10 10 10 10 10 10 x − 3y 1 3 4 u 1 3 1 4 1 2 8 2 dA = 2 du dv = dv u du = 8= (3x + y) 10 1 0 v 10 1 v2 0 10 3 15 R 1 1 39. (a) Add u and w to get x = ln(u + w) − ln 2; subtract w from u to get y = u − w, substitute 2 2 1 1 1 1 these values into v = y + 2z to get z = − u + v + w. Hence xu = , xv = 0, xw = 4 2 4 u+w 1 1 1 1 1 1 ∂(x, y, z) 1 ; yu = , yv = 0, yz = − ; zu = − , zv = , zw = , and thus = u+w 2 2 4 2 4 ∂(u, v, w) 2(u + w) 3 2 4 1 (b) V = = dw dv du 1 1 0 2(u + w) G 1 823543 = (7 ln 7 − 5 ln 5 − 3 ln 3)/2 = ln ≈ 1.139172308 2 84375