SlideShare a Scribd company logo
18:15 Opening word (Javier Santana)
18:25 ClickHouse introduction (Alexander Zaitsev, Altinity)
19:00 ClickHouse 2019 new features (Alexey Milovidov, Yandex)
19:40 Coffee break
20:00 From legacy to ClickHouse (Iago Enriquez, Idealista)
20:25 1027 predictive models in 10 seconds (David Pardo Villaverde, Corunet)
21:55 Shipping Data from Postgres to Clickhouse (Murat Kabilov, Adjust)
21:20 More Q&A and closing remarks
21:30 Networking, beer etc.
What Is ClickHouse?
© http://mattturck.com/
ClickHouse DBMS is
Column Store
MPP
Realtime
SQL
Open Source
http://clickhouse.yandex
• Developed by Yandex for Yandex.Metrica
• Yandex (NASDAQ: YNDX) – “Russian Google” (50% market share in
search, 50+ b2b and b2c products)
• Yandex.Metrica – world 2nd largest web analytics platform
• Open Source since June 2016 (Apache 2.0 license)
• 200+ companies using in production today
• Several hundred experimenting, doing POC etc.
• Dozens of contributors to the source code
Why Yet Another DBMS?
SQLFlexible
ClickHouse
•Fast!
•Flexible!
•Free!
•Fun!
How Fast?
:) select count(*) from dw.ad8_fact_event;
SELECT count(*)
FROM dw.ad8_fact_event
┌───────count()─┐
│ 1261705085657 │
└───────────────┘
1 rows in set. Elapsed: 3.552 sec. Processed 1.26 trillion rows, 1.26 TB (355.22 billion
rows/s., 355.22 GB/s.)
Altinity Ltd. www.altinity.com
1+ trillion rows table
:) select sum(price_cpm) from dw.ad8_fact_event where access_day=today()-1 and event_key=-2;
SELECT sum(price_cpm)
FROM dw.ad8_fact_event
WHERE (access_day = (today() - 1)) AND (event_key = -2)
┌────sum(price_cpm)─┐
│ 87579.09035192338 │
└───────────────────┘
1 rows in set. Elapsed: 0.168 sec. Processed 161.89 million rows, 2.91 GB (961.83 million
rows/s., 17.31 GB/s.)
Altinity Ltd. www.altinity.com
1+ trillion rows table
WikiStat data, 28B rows.
https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-mariadb-columnstore-vs-clickhouse-vs-apache-spark/
Query 1 Query 2 Query 3 Query 4 Setup
0.009 0.027 0.287 0.428 BrytlytDB 2.0 & 2-node p2.16xlarge cluster
0.034 0.061 0.178 0.498 MapD & 2-node p2.8xlarge cluster
0.051 0.146 0.047 0.794 kdb+/q & 4 Intel Xeon Phi 7210 CPUs
0.241 0.826 1.209 1.781 ClickHouse, 3 x c5d.9xlarge cluster
0.762 2.472 4.131 6.041 BrytlytDB 1.0 & 2-node p2.16xlarge cluster
1.034 3.058 5.354 12.748 ClickHouse, Intel Core i5 4670K
1.56 1.25 2.25 2.97 Redshift, 6-node ds2.8xlarge cluster
2 2 1 3 BigQuery
2.362 3.559 4.019 20.412 Spark 2.4 & 21 x m3.xlarge HDFS cluster
6.41 6.19 6.09 6.63 Amazon Athena
8.1 18.18 n/a n/a Elasticsearch (heavily tuned)
14.389 32.148 33.448 67.312 Vertica, Intel Core i5 4670K
22 25 27 65 Spark 2.3.0 & single i3.8xlarge w/ HDFS
35 39 64 81 Presto, 5-node m3.xlarge cluster w/ HDFS
152 175 235 368 PostgreSQL 9.5 & cstore_fdw
“1.1 Billion Taxi Rides Benchmarks” http://tech.marksblogg.com/benchmarks.html
“This is the first time a free CPU-based database has managed to out-perform a GPU-based database in my
benchmarks.” Mark Litwintschik
Time Series Benchmarks
• https://github.com/timescale/tsbs
• Benchmark suite to automate testing
• Loads 103M rows, 10 metrics per row
• Runs 15 queries, 1000 runs each in 8 parallel threads
• Supports TimescaleDB, InfluxDB, Cassandra, MongoDB and
ClickHouse (Altinity PR is submitted)
0
100
200
300
400
500
600
700
800
900
ClickHouse TimescaleDB InfluxDB
Load time (s)
1.20
26
0.46
0.00
5.00
10.00
15.00
20.00
25.00
30.00
ClickHouse TimescaleDB InfluxDB
Data Size on disk (GB)
0
10
20
30
40
50
60
70
80
“Light” queries, time in ms
ClickHouse
TimescaleDB
InfluxDB
0
10
20
30
40
50
60
70
80
90
“Heavy” queries, time in sec
ClickHouse
TimescaleDB
InfluxDB
How Flexible?
ClickHouse runs at
• Bare metal (any Linux)
• Public clouds: Amazon, Azure, Google, Alibaba
• Private clouds
• Docker, Kubernetes
ClickHouse solves business problems at:
• Mobile App and Web analytics
• AdTech
• Retail and E-Commerce
• Operational Logs analytics
• Telecom/Monitoring
• Financial Markets analytics
• Security Audit
• BlockChain transactions analysis
ClickHouse Migrations
Size does not matter
Yandex: 500+ servers, 25B rec/day
LifeStreet: 60 servers, 100B rec/day
CloudFlare: 76 servers, 200B rec/day
Bloomberg: 102 servers, 1000B rec/day
Toutiao: 1000 servers
How fun ☺
life←{↑1 ω∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂ω}
with (select groupArray(C) from C) as Ca
select id,
groupArray(S) Sa, groupArray(V) Va, groupArray(D) Da, groupArray(P) Pa,
arrayMap(c -> arrayFirstIndex(s -> s > c, Sa)-1, Ca) Ka,
arrayMap((c,k) -> Va[k] + (Va[k+1] - Va[k])/(Sa[k+1] - Sa[k])*(c-
Sa[k]),Ca,Ka) Ta,
arrayMap(s -> arrayFirstIndex(c -> c>s, Ca)>0 ? arrayFirstIndex(c ->
c>s, Ca)-1 : toInt32(length(Ca)), Sa) Ja,
arrayMap(i -> Ta[i], Ja) Ra,
arrayMap((v,r) -> v - r, Va, Ra) ARa,
arraySum((x,y,z) -> x*y*z, ARa, Da, Pa) result
from T group by id
What’s new in 2019
… Alexey Milovidov will disclose latest coolest features in 15 minutes
More user friendly than ever!
• GDPR compliance – thanks to UPDATE/DELETE
• Easier BI integration – thanks to SQL compatibility changes and
improvements in ODBC driver
• Easier cluster operation – thanks to clickhouse-copier, distributed DDL and
upcoming Altinity ClickHouse operator for Kubernetes
• Easier integration with other systems. Thanks to:
• HTTP/TCP protocols
• Table functions to access external data
• Kafka storage engine
• Logs integration with Logstash, ClickTail and other tools
• Integration wth MySQL, PostgreSQL
Integrates with MySQL
• mysql() table function
• MySQL table engine
• MySQL external dictionaries
• ProxySQL
• Binary log replication with clickhouse-mysql
mysql() table function
select * from mysql('host:port', database, 'table', 'user', 'password');
https://www.altinity.com/blog/2018/2/12/aggregate-mysql-data-at-high-speed-with-clickhouse
• Easiest and fastest way to get data from MySQL
• Load to CH table and run queries much faster
MySQL table engine
CREATE TABLE …
Engine = MySQL('host:port', 'database', 'table', 'user',
'password'[, replace_query, 'on_duplicate_clause']);
• SELECTs and INSERTs!
• No caching, data is queried from th remote server
https://clickhouse.yandex/docs/en/operations/table_engines/mysql/
MySQL external dictionaries
• Makes data from mysql database accessible in ClickHouse queries
• Stores in memory
• Updates when the source data changes
SELECT dictGet(‘dim_geo’, ‘country_name’, geo_key)
country_name,sum(imps)
FROM T
GROUP BY country_name;
Binary log replication from MySQL
to ClickHouse
MySQL
clickhouse-mysql
Queries
Source Data
See details at:
https://www.altinity.com/blog/2018/6/30/realtime-mysql-clickhouse-replication-in-practice
Integrates with PostgreSQL
• odbc() table function
• ODBC engine
• ODBC dictionaries
• PostgreSQL foreign data wrapper – clickhouse_fwd by Percona
• pg2ch -- binary log replication, Murat Kibilov will present later today
hello-kubernetes.yaml:
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
name: "hello-kubernetes"
spec:
configuration:
clusters:
- name: "sharded"
layout:
type: Standard
shardsCount: 3
$ kubectl -n test apply -f docs/examples/hello-kubernetes.yaml
clickhouseinstallation.clickhouse.altinity.com/hello-kubernetes created
$ kubectl -n test get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
chi-a9cffb-347e-0-0 ClusterIP None <none>
8123/TCP,9000/TCP,9009/TCP 7s
chi-a9cffb-347e-1-0 ClusterIP None <none>
8123/TCP,9000/TCP,9009/TCP 7s
chi-a9cffb-347e-2-0 ClusterIP None <none>
8123/TCP,9000/TCP,9009/TCP 7s
clickhouse-example-02 LoadBalancer 10.98.156.78 <pending>
8123:30703/TCP,9000:30348/TCP 7s
$ docker run -it yandex/clickhouse-client clickhouse-client -h 10.98.156.78
ClickHouse client version 19.1.14.
Connecting to 10.98.156.78:9000.
Connected to ClickHouse server version 19.1.14 revision 54413.
chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :)
chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :) create table
test_distr as system.one Engine = Distributed('sharded', system, one);
CREATE TABLE test_distr AS system.one
ENGINE = Distributed('sharded', system, one)
Ok.
0 rows in set. Elapsed: 0.016 sec.
chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :) select * from
test_distr;
SELECT *
FROM test_distr
┌─dummy─┐
│ 0 │
└───────┘
┌─dummy─┐
│ 0 │
└───────┘
┌─dummy─┐
│ 0 │
└───────┘
3 rows in set. Elapsed: 0.054 sec.
…coming soon
• Managing persistent volumes to be used for ClickHouse data
• Configuring pod deployment (pod templates, affinity rules and so on)
• Creating replicated tables
• Managing users/profiles configuration
• Exporting ClickHouse metrics to Prometheus
• Handling ClickHouse version upgrades
… and more
ClickHouse Today
• Mature Analytic DBMS. Proven by many companies
• Almost 3+ years in Open Source
• Constantly improves
• Solid community
• Emerging eco-system
• Support from Altinity
Q&A
Contact me:
alz@altinity.com
skype: alex.zaitsev
telegram: @alexanderzaitsev
Altinity
Ad

More Related Content

What's hot (20)

ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
Altinity Ltd
 
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert HodgesWebinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Altinity Ltd
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
Altinity Ltd
 
Better than you think: Handling JSON data in ClickHouse
Better than you think: Handling JSON data in ClickHouseBetter than you think: Handling JSON data in ClickHouse
Better than you think: Handling JSON data in ClickHouse
Altinity Ltd
 
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdfDeep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Altinity Ltd
 
All about Zookeeper and ClickHouse Keeper.pdf
All about Zookeeper and ClickHouse Keeper.pdfAll about Zookeeper and ClickHouse Keeper.pdf
All about Zookeeper and ClickHouse Keeper.pdf
Altinity Ltd
 
High Performance, High Reliability Data Loading on ClickHouse
High Performance, High Reliability Data Loading on ClickHouseHigh Performance, High Reliability Data Loading on ClickHouse
High Performance, High Reliability Data Loading on ClickHouse
Altinity Ltd
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
Altinity Ltd
 
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
A Fast Intro to Fast Query with ClickHouse, by Robert HodgesA Fast Intro to Fast Query with ClickHouse, by Robert Hodges
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
Altinity Ltd
 
ClickHouse Keeper
ClickHouse KeeperClickHouse Keeper
ClickHouse Keeper
Altinity Ltd
 
ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...
Altinity Ltd
 
Building an open data platform with apache iceberg
Building an open data platform with apache icebergBuilding an open data platform with apache iceberg
Building an open data platform with apache iceberg
Alluxio, Inc.
 
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEOTricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
A Day in the Life of a ClickHouse Query Webinar Slides
A Day in the Life of a ClickHouse Query Webinar Slides A Day in the Life of a ClickHouse Query Webinar Slides
A Day in the Life of a ClickHouse Query Webinar Slides
Altinity Ltd
 
Facebook Presto presentation
Facebook Presto presentationFacebook Presto presentation
Facebook Presto presentation
Cyanny LIANG
 
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Altinity Ltd
 
ClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
ClickHouse Mark Cache, by Mik Kocikowski, CloudflareClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
ClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
Altinity Ltd
 
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 
ELK Stack
ELK StackELK Stack
ELK Stack
Phuc Nguyen
 
ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
ClickHouse and the Magic of Materialized Views, By Robert Hodges and Altinity...
Altinity Ltd
 
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert HodgesWebinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Webinar: Secrets of ClickHouse Query Performance, by Robert Hodges
Altinity Ltd
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
Altinity Ltd
 
Better than you think: Handling JSON data in ClickHouse
Better than you think: Handling JSON data in ClickHouseBetter than you think: Handling JSON data in ClickHouse
Better than you think: Handling JSON data in ClickHouse
Altinity Ltd
 
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdfDeep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
Altinity Ltd
 
All about Zookeeper and ClickHouse Keeper.pdf
All about Zookeeper and ClickHouse Keeper.pdfAll about Zookeeper and ClickHouse Keeper.pdf
All about Zookeeper and ClickHouse Keeper.pdf
Altinity Ltd
 
High Performance, High Reliability Data Loading on ClickHouse
High Performance, High Reliability Data Loading on ClickHouseHigh Performance, High Reliability Data Loading on ClickHouse
High Performance, High Reliability Data Loading on ClickHouse
Altinity Ltd
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
Altinity Ltd
 
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
A Fast Intro to Fast Query with ClickHouse, by Robert HodgesA Fast Intro to Fast Query with ClickHouse, by Robert Hodges
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
Altinity Ltd
 
ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...ClickHouse materialized views - a secret weapon for high performance analytic...
ClickHouse materialized views - a secret weapon for high performance analytic...
Altinity Ltd
 
Building an open data platform with apache iceberg
Building an open data platform with apache icebergBuilding an open data platform with apache iceberg
Building an open data platform with apache iceberg
Alluxio, Inc.
 
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEOTricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
A Day in the Life of a ClickHouse Query Webinar Slides
A Day in the Life of a ClickHouse Query Webinar Slides A Day in the Life of a ClickHouse Query Webinar Slides
A Day in the Life of a ClickHouse Query Webinar Slides
Altinity Ltd
 
Facebook Presto presentation
Facebook Presto presentationFacebook Presto presentation
Facebook Presto presentation
Cyanny LIANG
 
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Introduction to the Mysteries of ClickHouse Replication, By Robert Hodges and...
Altinity Ltd
 
ClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
ClickHouse Mark Cache, by Mik Kocikowski, CloudflareClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
ClickHouse Mark Cache, by Mik Kocikowski, Cloudflare
Altinity Ltd
 
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 

Similar to ClickHouse Introduction by Alexander Zaitsev, Altinity CTO (20)

ClickHouse 2018. How to stop waiting for your queries to complete and start ...
ClickHouse 2018.  How to stop waiting for your queries to complete and start ...ClickHouse 2018.  How to stop waiting for your queries to complete and start ...
ClickHouse 2018. How to stop waiting for your queries to complete and start ...
Altinity Ltd
 
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
ClickHouse Analytical DBMS. Introduction and usage, by Alexander ZaitsevClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
Altinity Ltd
 
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Altinity Ltd
 
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTOClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
Altinity Ltd
 
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade OffDatabases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Timescale
 
MySQL 开发
MySQL 开发MySQL 开发
MySQL 开发
YUCHENG HU
 
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
DataStax
 
What is MariaDB Server 10.3?
What is MariaDB Server 10.3?What is MariaDB Server 10.3?
What is MariaDB Server 10.3?
Colin Charles
 
Using ScyllaDB for Extreme Scale Workloads
Using ScyllaDB for Extreme Scale WorkloadsUsing ScyllaDB for Extreme Scale Workloads
Using ScyllaDB for Extreme Scale Workloads
MarisaDelao3
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Using Apache Spark and MySQL for Data Analysis
Using Apache Spark and MySQL for Data AnalysisUsing Apache Spark and MySQL for Data Analysis
Using Apache Spark and MySQL for Data Analysis
Sveta Smirnova
 
Introduction to Apache Cassandra
Introduction to Apache CassandraIntroduction to Apache Cassandra
Introduction to Apache Cassandra
Robert Stupp
 
Letgo Data Platform: A global overview
Letgo Data Platform: A global overviewLetgo Data Platform: A global overview
Letgo Data Platform: A global overview
Ricardo Fanjul Fandiño
 
Quick Wins
Quick WinsQuick Wins
Quick Wins
HighLoad2009
 
Image Recognition on Streaming Data
Image Recognition  on Streaming DataImage Recognition  on Streaming Data
Image Recognition on Streaming Data
SingleStore
 
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb
 
DAC4B 2015 - Polybase
DAC4B 2015 - PolybaseDAC4B 2015 - Polybase
DAC4B 2015 - Polybase
Łukasz Grala
 
Webinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Webinar slides: Adding Fast Analytics to MySQL Applications with ClickhouseWebinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Webinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Altinity Ltd
 
Presentation
PresentationPresentation
Presentation
Dimitris Stripelis
 
ClickHouse 2018. How to stop waiting for your queries to complete and start ...
ClickHouse 2018.  How to stop waiting for your queries to complete and start ...ClickHouse 2018.  How to stop waiting for your queries to complete and start ...
ClickHouse 2018. How to stop waiting for your queries to complete and start ...
Altinity Ltd
 
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
ClickHouse Analytical DBMS. Introduction and usage, by Alexander ZaitsevClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
Altinity Ltd
 
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
Altinity Ltd
 
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTOClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
Altinity Ltd
 
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade OffDatabases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Databases Have Forgotten About Single Node Performance, A Wrongheaded Trade Off
Timescale
 
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
C* for Deep Learning (Andrew Jefferson, Tracktable) | Cassandra Summit 2016
DataStax
 
What is MariaDB Server 10.3?
What is MariaDB Server 10.3?What is MariaDB Server 10.3?
What is MariaDB Server 10.3?
Colin Charles
 
Using ScyllaDB for Extreme Scale Workloads
Using ScyllaDB for Extreme Scale WorkloadsUsing ScyllaDB for Extreme Scale Workloads
Using ScyllaDB for Extreme Scale Workloads
MarisaDelao3
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Using Apache Spark and MySQL for Data Analysis
Using Apache Spark and MySQL for Data AnalysisUsing Apache Spark and MySQL for Data Analysis
Using Apache Spark and MySQL for Data Analysis
Sveta Smirnova
 
Introduction to Apache Cassandra
Introduction to Apache CassandraIntroduction to Apache Cassandra
Introduction to Apache Cassandra
Robert Stupp
 
Image Recognition on Streaming Data
Image Recognition  on Streaming DataImage Recognition  on Streaming Data
Image Recognition on Streaming Data
SingleStore
 
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb
 
DAC4B 2015 - Polybase
DAC4B 2015 - PolybaseDAC4B 2015 - Polybase
DAC4B 2015 - Polybase
Łukasz Grala
 
Webinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Webinar slides: Adding Fast Analytics to MySQL Applications with ClickhouseWebinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Webinar slides: Adding Fast Analytics to MySQL Applications with Clickhouse
Altinity Ltd
 
Ad

More from Altinity Ltd (20)

Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptxBuilding an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Altinity Ltd
 
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Altinity Ltd
 
Building an Analytic Extension to MySQL with ClickHouse and Open Source
Building an Analytic Extension to MySQL with ClickHouse and Open SourceBuilding an Analytic Extension to MySQL with ClickHouse and Open Source
Building an Analytic Extension to MySQL with ClickHouse and Open Source
Altinity Ltd
 
Fun with ClickHouse Window Functions-2021-08-19.pdf
Fun with ClickHouse Window Functions-2021-08-19.pdfFun with ClickHouse Window Functions-2021-08-19.pdf
Fun with ClickHouse Window Functions-2021-08-19.pdf
Altinity Ltd
 
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdfCloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Altinity Ltd
 
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Altinity Ltd
 
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Altinity Ltd
 
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdfOwn your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Altinity Ltd
 
ClickHouse ReplacingMergeTree in Telecom Apps
ClickHouse ReplacingMergeTree in Telecom AppsClickHouse ReplacingMergeTree in Telecom Apps
ClickHouse ReplacingMergeTree in Telecom Apps
Altinity Ltd
 
Adventures with the ClickHouse ReplacingMergeTree Engine
Adventures with the ClickHouse ReplacingMergeTree EngineAdventures with the ClickHouse ReplacingMergeTree Engine
Adventures with the ClickHouse ReplacingMergeTree Engine
Altinity Ltd
 
Building a Real-Time Analytics Application with Apache Pulsar and Apache Pinot
Building a Real-Time Analytics Application with  Apache Pulsar and Apache PinotBuilding a Real-Time Analytics Application with  Apache Pulsar and Apache Pinot
Building a Real-Time Analytics Application with Apache Pulsar and Apache Pinot
Altinity Ltd
 
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdfAltinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Ltd
 
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
Altinity Ltd
 
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdfOSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
Altinity Ltd
 
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
Altinity Ltd
 
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
Altinity Ltd
 
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
Altinity Ltd
 
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
Altinity Ltd
 
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
Altinity Ltd
 
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdfOSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
Altinity Ltd
 
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptxBuilding an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Altinity Ltd
 
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Cloud Native ClickHouse at Scale--Using the Altinity Kubernetes Operator-2022...
Altinity Ltd
 
Building an Analytic Extension to MySQL with ClickHouse and Open Source
Building an Analytic Extension to MySQL with ClickHouse and Open SourceBuilding an Analytic Extension to MySQL with ClickHouse and Open Source
Building an Analytic Extension to MySQL with ClickHouse and Open Source
Altinity Ltd
 
Fun with ClickHouse Window Functions-2021-08-19.pdf
Fun with ClickHouse Window Functions-2021-08-19.pdfFun with ClickHouse Window Functions-2021-08-19.pdf
Fun with ClickHouse Window Functions-2021-08-19.pdf
Altinity Ltd
 
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdfCloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Cloud Native Data Warehouses - Intro to ClickHouse on Kubernetes-2021-07.pdf
Altinity Ltd
 
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Building High Performance Apps with Altinity Stable Builds for ClickHouse | A...
Altinity Ltd
 
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Altinity Ltd
 
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdfOwn your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Own your ClickHouse data with Altinity.Cloud Anywhere-2023-01-17.pdf
Altinity Ltd
 
ClickHouse ReplacingMergeTree in Telecom Apps
ClickHouse ReplacingMergeTree in Telecom AppsClickHouse ReplacingMergeTree in Telecom Apps
ClickHouse ReplacingMergeTree in Telecom Apps
Altinity Ltd
 
Adventures with the ClickHouse ReplacingMergeTree Engine
Adventures with the ClickHouse ReplacingMergeTree EngineAdventures with the ClickHouse ReplacingMergeTree Engine
Adventures with the ClickHouse ReplacingMergeTree Engine
Altinity Ltd
 
Building a Real-Time Analytics Application with Apache Pulsar and Apache Pinot
Building a Real-Time Analytics Application with  Apache Pulsar and Apache PinotBuilding a Real-Time Analytics Application with  Apache Pulsar and Apache Pinot
Building a Real-Time Analytics Application with Apache Pulsar and Apache Pinot
Altinity Ltd
 
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdfAltinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Webinar: Introduction to Altinity.Cloud-Platform for Real-Time Data.pdf
Altinity Ltd
 
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
OSA Con 2022 - What Data Engineering Can Learn from Frontend Engineering - Pe...
Altinity Ltd
 
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdfOSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
OSA Con 2022 - Welcome to OSA CON Version 2022 - Robert Hodges - Altinity.pdf
Altinity Ltd
 
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
Altinity Ltd
 
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
OSA Con 2022 - Tips and Tricks to Keep Your Queries under 100ms with ClickHou...
Altinity Ltd
 
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
OSA Con 2022 - The Open Source Analytic Universe, Version 2022 - Robert Hodge...
Altinity Ltd
 
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
OSA Con 2022 - Switching Jaeger Distributed Tracing to ClickHouse to Enable A...
Altinity Ltd
 
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
OSA Con 2022 - Streaming Data Made Easy - Tim Spann & David Kjerrumgaard - St...
Altinity Ltd
 
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdfOSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
OSA Con 2022 - State of Open Source Databases - Peter Zaitsev - Percona.pdf
Altinity Ltd
 
Ad

Recently uploaded (20)

Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 

ClickHouse Introduction by Alexander Zaitsev, Altinity CTO

  • 1. 18:15 Opening word (Javier Santana) 18:25 ClickHouse introduction (Alexander Zaitsev, Altinity) 19:00 ClickHouse 2019 new features (Alexey Milovidov, Yandex) 19:40 Coffee break 20:00 From legacy to ClickHouse (Iago Enriquez, Idealista) 20:25 1027 predictive models in 10 seconds (David Pardo Villaverde, Corunet) 21:55 Shipping Data from Postgres to Clickhouse (Murat Kabilov, Adjust) 21:20 More Q&A and closing remarks 21:30 Networking, beer etc.
  • 4. ClickHouse DBMS is Column Store MPP Realtime SQL Open Source
  • 5. http://clickhouse.yandex • Developed by Yandex for Yandex.Metrica • Yandex (NASDAQ: YNDX) – “Russian Google” (50% market share in search, 50+ b2b and b2c products) • Yandex.Metrica – world 2nd largest web analytics platform • Open Source since June 2016 (Apache 2.0 license) • 200+ companies using in production today • Several hundred experimenting, doing POC etc. • Dozens of contributors to the source code
  • 10. :) select count(*) from dw.ad8_fact_event; SELECT count(*) FROM dw.ad8_fact_event ┌───────count()─┐ │ 1261705085657 │ └───────────────┘ 1 rows in set. Elapsed: 3.552 sec. Processed 1.26 trillion rows, 1.26 TB (355.22 billion rows/s., 355.22 GB/s.) Altinity Ltd. www.altinity.com 1+ trillion rows table
  • 11. :) select sum(price_cpm) from dw.ad8_fact_event where access_day=today()-1 and event_key=-2; SELECT sum(price_cpm) FROM dw.ad8_fact_event WHERE (access_day = (today() - 1)) AND (event_key = -2) ┌────sum(price_cpm)─┐ │ 87579.09035192338 │ └───────────────────┘ 1 rows in set. Elapsed: 0.168 sec. Processed 161.89 million rows, 2.91 GB (961.83 million rows/s., 17.31 GB/s.) Altinity Ltd. www.altinity.com 1+ trillion rows table
  • 12. WikiStat data, 28B rows. https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-mariadb-columnstore-vs-clickhouse-vs-apache-spark/
  • 13. Query 1 Query 2 Query 3 Query 4 Setup 0.009 0.027 0.287 0.428 BrytlytDB 2.0 & 2-node p2.16xlarge cluster 0.034 0.061 0.178 0.498 MapD & 2-node p2.8xlarge cluster 0.051 0.146 0.047 0.794 kdb+/q & 4 Intel Xeon Phi 7210 CPUs 0.241 0.826 1.209 1.781 ClickHouse, 3 x c5d.9xlarge cluster 0.762 2.472 4.131 6.041 BrytlytDB 1.0 & 2-node p2.16xlarge cluster 1.034 3.058 5.354 12.748 ClickHouse, Intel Core i5 4670K 1.56 1.25 2.25 2.97 Redshift, 6-node ds2.8xlarge cluster 2 2 1 3 BigQuery 2.362 3.559 4.019 20.412 Spark 2.4 & 21 x m3.xlarge HDFS cluster 6.41 6.19 6.09 6.63 Amazon Athena 8.1 18.18 n/a n/a Elasticsearch (heavily tuned) 14.389 32.148 33.448 67.312 Vertica, Intel Core i5 4670K 22 25 27 65 Spark 2.3.0 & single i3.8xlarge w/ HDFS 35 39 64 81 Presto, 5-node m3.xlarge cluster w/ HDFS 152 175 235 368 PostgreSQL 9.5 & cstore_fdw “1.1 Billion Taxi Rides Benchmarks” http://tech.marksblogg.com/benchmarks.html “This is the first time a free CPU-based database has managed to out-perform a GPU-based database in my benchmarks.” Mark Litwintschik
  • 14. Time Series Benchmarks • https://github.com/timescale/tsbs • Benchmark suite to automate testing • Loads 103M rows, 10 metrics per row • Runs 15 queries, 1000 runs each in 8 parallel threads • Supports TimescaleDB, InfluxDB, Cassandra, MongoDB and ClickHouse (Altinity PR is submitted)
  • 17. 0 10 20 30 40 50 60 70 80 “Light” queries, time in ms ClickHouse TimescaleDB InfluxDB
  • 18. 0 10 20 30 40 50 60 70 80 90 “Heavy” queries, time in sec ClickHouse TimescaleDB InfluxDB
  • 20. ClickHouse runs at • Bare metal (any Linux) • Public clouds: Amazon, Azure, Google, Alibaba • Private clouds • Docker, Kubernetes
  • 21. ClickHouse solves business problems at: • Mobile App and Web analytics • AdTech • Retail and E-Commerce • Operational Logs analytics • Telecom/Monitoring • Financial Markets analytics • Security Audit • BlockChain transactions analysis
  • 23. Size does not matter Yandex: 500+ servers, 25B rec/day LifeStreet: 60 servers, 100B rec/day CloudFlare: 76 servers, 200B rec/day Bloomberg: 102 servers, 1000B rec/day Toutiao: 1000 servers
  • 24. How fun ☺ life←{↑1 ω∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂ω}
  • 25. with (select groupArray(C) from C) as Ca select id, groupArray(S) Sa, groupArray(V) Va, groupArray(D) Da, groupArray(P) Pa, arrayMap(c -> arrayFirstIndex(s -> s > c, Sa)-1, Ca) Ka, arrayMap((c,k) -> Va[k] + (Va[k+1] - Va[k])/(Sa[k+1] - Sa[k])*(c- Sa[k]),Ca,Ka) Ta, arrayMap(s -> arrayFirstIndex(c -> c>s, Ca)>0 ? arrayFirstIndex(c -> c>s, Ca)-1 : toInt32(length(Ca)), Sa) Ja, arrayMap(i -> Ta[i], Ja) Ra, arrayMap((v,r) -> v - r, Va, Ra) ARa, arraySum((x,y,z) -> x*y*z, ARa, Da, Pa) result from T group by id
  • 26. What’s new in 2019 … Alexey Milovidov will disclose latest coolest features in 15 minutes
  • 27. More user friendly than ever! • GDPR compliance – thanks to UPDATE/DELETE • Easier BI integration – thanks to SQL compatibility changes and improvements in ODBC driver • Easier cluster operation – thanks to clickhouse-copier, distributed DDL and upcoming Altinity ClickHouse operator for Kubernetes • Easier integration with other systems. Thanks to: • HTTP/TCP protocols • Table functions to access external data • Kafka storage engine • Logs integration with Logstash, ClickTail and other tools • Integration wth MySQL, PostgreSQL
  • 28. Integrates with MySQL • mysql() table function • MySQL table engine • MySQL external dictionaries • ProxySQL • Binary log replication with clickhouse-mysql
  • 29. mysql() table function select * from mysql('host:port', database, 'table', 'user', 'password'); https://www.altinity.com/blog/2018/2/12/aggregate-mysql-data-at-high-speed-with-clickhouse • Easiest and fastest way to get data from MySQL • Load to CH table and run queries much faster
  • 30. MySQL table engine CREATE TABLE … Engine = MySQL('host:port', 'database', 'table', 'user', 'password'[, replace_query, 'on_duplicate_clause']); • SELECTs and INSERTs! • No caching, data is queried from th remote server https://clickhouse.yandex/docs/en/operations/table_engines/mysql/
  • 31. MySQL external dictionaries • Makes data from mysql database accessible in ClickHouse queries • Stores in memory • Updates when the source data changes SELECT dictGet(‘dim_geo’, ‘country_name’, geo_key) country_name,sum(imps) FROM T GROUP BY country_name;
  • 32. Binary log replication from MySQL to ClickHouse MySQL clickhouse-mysql Queries Source Data See details at: https://www.altinity.com/blog/2018/6/30/realtime-mysql-clickhouse-replication-in-practice
  • 33. Integrates with PostgreSQL • odbc() table function • ODBC engine • ODBC dictionaries • PostgreSQL foreign data wrapper – clickhouse_fwd by Percona • pg2ch -- binary log replication, Murat Kibilov will present later today
  • 34. hello-kubernetes.yaml: apiVersion: "clickhouse.altinity.com/v1" kind: "ClickHouseInstallation" metadata: name: "hello-kubernetes" spec: configuration: clusters: - name: "sharded" layout: type: Standard shardsCount: 3
  • 35. $ kubectl -n test apply -f docs/examples/hello-kubernetes.yaml clickhouseinstallation.clickhouse.altinity.com/hello-kubernetes created $ kubectl -n test get services NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE chi-a9cffb-347e-0-0 ClusterIP None <none> 8123/TCP,9000/TCP,9009/TCP 7s chi-a9cffb-347e-1-0 ClusterIP None <none> 8123/TCP,9000/TCP,9009/TCP 7s chi-a9cffb-347e-2-0 ClusterIP None <none> 8123/TCP,9000/TCP,9009/TCP 7s clickhouse-example-02 LoadBalancer 10.98.156.78 <pending> 8123:30703/TCP,9000:30348/TCP 7s
  • 36. $ docker run -it yandex/clickhouse-client clickhouse-client -h 10.98.156.78 ClickHouse client version 19.1.14. Connecting to 10.98.156.78:9000. Connected to ClickHouse server version 19.1.14 revision 54413. chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :)
  • 37. chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :) create table test_distr as system.one Engine = Distributed('sharded', system, one); CREATE TABLE test_distr AS system.one ENGINE = Distributed('sharded', system, one) Ok. 0 rows in set. Elapsed: 0.016 sec.
  • 38. chi-a9cffb-347e-1-0-0.chi-a9cffb-347e-1-0.test.svc.cluster.local :) select * from test_distr; SELECT * FROM test_distr ┌─dummy─┐ │ 0 │ └───────┘ ┌─dummy─┐ │ 0 │ └───────┘ ┌─dummy─┐ │ 0 │ └───────┘ 3 rows in set. Elapsed: 0.054 sec.
  • 39. …coming soon • Managing persistent volumes to be used for ClickHouse data • Configuring pod deployment (pod templates, affinity rules and so on) • Creating replicated tables • Managing users/profiles configuration • Exporting ClickHouse metrics to Prometheus • Handling ClickHouse version upgrades … and more
  • 40. ClickHouse Today • Mature Analytic DBMS. Proven by many companies • Almost 3+ years in Open Source • Constantly improves • Solid community • Emerging eco-system • Support from Altinity