Cloud-Native Architecture
MSA(Micro Service Architecture)
MDA(Micro Data Architecture)
MIA(MIcro Inference Architecture)
MSA-Service Mesh
MDA-Data Mesh
MIA-AI Inference Mesh
Kubernetes
Container
Kubeflow
Volcano
Apache Ynikorn
ChatGPT
AGI(Artificial General Intelligence)
ASI(Artificial Specialized Intelligence)
초-전환시대
초-연결시대
SQream GPU DBMS
Cloud와 Cloud Native의 목표는.. 왜? 어떻게? 뭐가 좋아지나...
1. (왜) 가속화된 초-전환, 초-연결 IT 환경변화에 대비하기 위해서
2. (어떻게-H/W) IT H/W 부분은 IaaS 서비스화하여
점유된, Over Subscription된 H/W(Server, Network, Storage)들 모아서 Pool화하고, 가상화기술을 통해 Tenant로 자원들을 분리해 서비스화해 제공하고
필요시 적시에 Pool의 가상H/W를 제공하고, 상황에 따라 확장・축소(Scale in/out, up/down)하면서, 축소된 자원을 다른 요청들을 위해 빠르게 재-할당하는 유연성을 제공하고
3. (어떻게-S/W) S/W 부문도
PaaS, SaaS 적극 활용으로 App.개발 시간을 단축하고
App.분야인 기존 MACRO Service Architecture형 Monolith Architecture(Web-WAS-DB)를 작게 쪼개서 변화에 빠르게 적응할 수 있는 MSA(Micro Service Architecture)로 변경하여 Service Mesh형으로 관리하고
Data분야도 Data Warehouse, DataLake(Bigdata), LakeHouse등 기존 MACRO Data Architecture를 MSA형식으로 MDA(Micro Data Architecture)로 전환 후 Data Mesh형태로 관리하고,
AI로 동적프로그램 생성하여 App.개발시간 단축하고, AI분야도 초-거대 AI구현(MACRO)보다는 작은|특화된 Deep Learning Network(Model)들로 작게 쪼개서 MIA(Micro Inference Architecture)로 비지니스 환경에 적용하고 Inference Mesh형태로 관리하는 시스템으로 전환하고
4. (어떻게-조직) 조직구조도 CI/CD형 DevOps환경, 데이타,트랜잭션중심업무중심, 기술중심 문제해결중심, 직능중심조직직무중심조직으로 전환하면
5. (좋아지는 것) 초-전환, 초-연결 환경에 빠르고, 지속적으로 적응할 수 IT as a Product 환경을 구현하는 것