SlideShare a Scribd company logo
Running Cloudera Impala on PostgreSQL

By Chengzhong Liu
liuchengzhong@miaozhen.com
2013.12
Story coming from…
• Data gravity
• Why big data
• Why SQL on big data
Today agenda
•
•
•
•
•
•

Big data in Miaozhen 秒针系统
Overview of Cloudera Impala
Hacking practice in Cloudera Impala
Performance
Conclusions
Q&A
What happened in miaozhen
• 3 billion Ads impression per day
• 20TB data scan for report generation every morning
• 24 servers cluster

• Besides this
–
–
–
–

TV Monitor
Mobile Monitor
Site Monitor
…
Before Hadoop
• Scrat
– PostgreSQL 9.1 cluster
– Write a simple proxy
– <2s for 2TB data scan

• Mobile Monitor
– Hadoop-like distribute computing system
– Rabbit MQ + 3 computing servers
– Write a Map-Reduce in C++
– Handles 30 millions to 500 millions Ads impression
Problem & Chance
• Database cluster
• SQL on Hadoop
• Miscellaneous data
• Requirements
– Most data is rational
– SQL interface
SQL on Hadoop
•
•
•
•
•

Google Dremel
Apache Drill
Cloudera Impala
Facebook Presto
EMC Greenplum/Pivotal

Latency matters

Pig

Impala/Drill
/Pivotal/Presto

Map Reduce

HDFS

Hive
What’s this
• A kind of MPP engine
• In memory processing
• Small to big join
– Broadcast join

• Small result size
Why Cloudera Impala
• The team move fast
– UDF coming out
– Better join strategy on the way

• Good code base
– Modularize
– Easy to add sub classes

• Really fast
– Llvm code generation
• 80s/95s – uv test

– Distributed aggregation Tree
– In-situ data processing (inside storage)
Typical Arch.
SQL Interface

Meta Store

Query
Planner

Query
Planner

Query
Planner

Coordinat
or

Coordinat
or

Coordinat
or

Exec
Engine

Exec
Engine

Exec
Engine
Our target
• A MPP database
– Build on PostgreSQL9.1
– Scale well
– Speed

• A mixed data source MPP query engine
– Join two tables in different sources
– In fact…
Hacking… from where
• Add, not change
– Scan Node type
– DB Meta info

• Put changes in configuration
– Thrift Protocol update
• TDBHostInfo
• TDBScanNode
Front end
• Meta store update
– Link data to the table name
– Table location management

• Front end
– Compute table location
Back end
• Coordinator
– pg host

• New scan node type
– db scan node
• Pg scan node
• Psql library using cursor
SQL Plan
• select count(distinct id)
from table
– MR like process

HDFS/PG scan
Aggr. : group by id

Exchange node
Aggr. : group by id
Aggr. : count(id)

Exchange node
Aggr.: sum(count(id)
Env.
• Ads impression logs
– 150 millions, 100KB/line

• 3 servers
–
–
–
–

24 cores
32 G mem
2T * 12 HD
100Mbps LAN

• Query
– Select count(id) from t group by campaign
– Select count(distinct id) from t group by campaign
– Select * from t where id = ‘xxxxxxxx’
Performance
• Group by speed / core
• 20 M /s
700
600
500
400

impala
hive

300

pg+impala

200
100
0
1

2

3
With index
Codegen on/off
• select count(distinct id)
from t group by c

100
90
80
70

• select distinct id
from t

60
50

en_codegen

40

dis_codegen

30

•

20
select id from t
10
group by id
0
having
uv_test
count(case when c = '1' then 1 else null end) > 0
and
count(case when c= 2' then 1 else null end) > 0
limit 10;

distinct

duplicated
Multi-users
Conclusion
• Source quality
– Readable
– Google C++ style
– Robust

• MPP solution based on PG
– Proved perf.
– Easy to scale

• Mixed engine usage
– HDFS and DB
What’s next
•
•
•
•
•

Yarn integrating
UDF
Join with Big table
BI roadmap
Fail over
Rerf.
• Cloudera Impala online doc. & src
• http://files.meetup.com/1727991/Impala%20and
%20BigQuery.ppt
• http://www.cubrid.org/blog/dev-platform/meetimpala-open-source-real-time-sql-querying-onhadoop/
• http://berlinbuzzwords.de/sites/berlinbuzzwords.
de/files/slides/Impala%20tech%20talk.pdf
• @datascientist, @dongxicheng, @flyingsk, @zhh
Thanks!
Q&A
Ad

More Related Content

What's hot (20)

Introduction to Impala
Introduction to ImpalaIntroduction to Impala
Introduction to Impala
markgrover
 
October 2014 HUG : Hive On Spark
October 2014 HUG : Hive On SparkOctober 2014 HUG : Hive On Spark
October 2014 HUG : Hive On Spark
Yahoo Developer Network
 
SQOOP - RDBMS to Hadoop
SQOOP - RDBMS to HadoopSQOOP - RDBMS to Hadoop
SQOOP - RDBMS to Hadoop
Sofian Hadiwijaya
 
Hadoop Ecosystem
Hadoop EcosystemHadoop Ecosystem
Hadoop Ecosystem
Lior Sidi
 
Qubole @ AWS Meetup Bangalore - July 2015
Qubole @ AWS Meetup Bangalore - July 2015Qubole @ AWS Meetup Bangalore - July 2015
Qubole @ AWS Meetup Bangalore - July 2015
Joydeep Sen Sarma
 
Apache Spark & Hadoop
Apache Spark & HadoopApache Spark & Hadoop
Apache Spark & Hadoop
MapR Technologies
 
Hadoop Hive Talk At IIT-Delhi
Hadoop Hive Talk At IIT-DelhiHadoop Hive Talk At IIT-Delhi
Hadoop Hive Talk At IIT-Delhi
Joydeep Sen Sarma
 
Using Familiar BI Tools and Hadoop to Analyze Enterprise Networks
Using Familiar BI Tools and Hadoop to Analyze Enterprise NetworksUsing Familiar BI Tools and Hadoop to Analyze Enterprise Networks
Using Familiar BI Tools and Hadoop to Analyze Enterprise Networks
DataWorks Summit
 
Kudu - Fast Analytics on Fast Data
Kudu - Fast Analytics on Fast DataKudu - Fast Analytics on Fast Data
Kudu - Fast Analytics on Fast Data
Ryan Bosshart
 
Introduction to AWS Big Data
Introduction to AWS Big Data Introduction to AWS Big Data
Introduction to AWS Big Data
Omid Vahdaty
 
Apache drill
Apache drillApache drill
Apache drill
MapR Technologies
 
Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017
Vinoth Chandar
 
HBaseCon 2012 | HBase for the Worlds Libraries - OCLC
HBaseCon 2012 | HBase for the Worlds Libraries - OCLCHBaseCon 2012 | HBase for the Worlds Libraries - OCLC
HBaseCon 2012 | HBase for the Worlds Libraries - OCLC
Cloudera, Inc.
 
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
HBaseCon 2015: Apache Kylin - Extreme OLAP  Engine for HadoopHBaseCon 2015: Apache Kylin - Extreme OLAP  Engine for Hadoop
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
HBaseCon
 
Nextag talk
Nextag talkNextag talk
Nextag talk
Joydeep Sen Sarma
 
Introduction to the Hadoop EcoSystem
Introduction to the Hadoop EcoSystemIntroduction to the Hadoop EcoSystem
Introduction to the Hadoop EcoSystem
Shivaji Dutta
 
Maintaining Low Latency While Maximizing Throughput on a Single Cluster
Maintaining Low Latency While Maximizing Throughput on a Single ClusterMaintaining Low Latency While Maximizing Throughput on a Single Cluster
Maintaining Low Latency While Maximizing Throughput on a Single Cluster
MapR Technologies
 
Exponea - Kafka and Hadoop as components of architecture
Exponea  - Kafka and Hadoop as components of architectureExponea  - Kafka and Hadoop as components of architecture
Exponea - Kafka and Hadoop as components of architecture
MartinStrycek
 
Intro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application MeetupIntro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application Meetup
Mike Percy
 
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Data Con LA
 
Introduction to Impala
Introduction to ImpalaIntroduction to Impala
Introduction to Impala
markgrover
 
Hadoop Ecosystem
Hadoop EcosystemHadoop Ecosystem
Hadoop Ecosystem
Lior Sidi
 
Qubole @ AWS Meetup Bangalore - July 2015
Qubole @ AWS Meetup Bangalore - July 2015Qubole @ AWS Meetup Bangalore - July 2015
Qubole @ AWS Meetup Bangalore - July 2015
Joydeep Sen Sarma
 
Hadoop Hive Talk At IIT-Delhi
Hadoop Hive Talk At IIT-DelhiHadoop Hive Talk At IIT-Delhi
Hadoop Hive Talk At IIT-Delhi
Joydeep Sen Sarma
 
Using Familiar BI Tools and Hadoop to Analyze Enterprise Networks
Using Familiar BI Tools and Hadoop to Analyze Enterprise NetworksUsing Familiar BI Tools and Hadoop to Analyze Enterprise Networks
Using Familiar BI Tools and Hadoop to Analyze Enterprise Networks
DataWorks Summit
 
Kudu - Fast Analytics on Fast Data
Kudu - Fast Analytics on Fast DataKudu - Fast Analytics on Fast Data
Kudu - Fast Analytics on Fast Data
Ryan Bosshart
 
Introduction to AWS Big Data
Introduction to AWS Big Data Introduction to AWS Big Data
Introduction to AWS Big Data
Omid Vahdaty
 
Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017Hoodie - DataEngConf 2017
Hoodie - DataEngConf 2017
Vinoth Chandar
 
HBaseCon 2012 | HBase for the Worlds Libraries - OCLC
HBaseCon 2012 | HBase for the Worlds Libraries - OCLCHBaseCon 2012 | HBase for the Worlds Libraries - OCLC
HBaseCon 2012 | HBase for the Worlds Libraries - OCLC
Cloudera, Inc.
 
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
HBaseCon 2015: Apache Kylin - Extreme OLAP  Engine for HadoopHBaseCon 2015: Apache Kylin - Extreme OLAP  Engine for Hadoop
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
HBaseCon
 
Introduction to the Hadoop EcoSystem
Introduction to the Hadoop EcoSystemIntroduction to the Hadoop EcoSystem
Introduction to the Hadoop EcoSystem
Shivaji Dutta
 
Maintaining Low Latency While Maximizing Throughput on a Single Cluster
Maintaining Low Latency While Maximizing Throughput on a Single ClusterMaintaining Low Latency While Maximizing Throughput on a Single Cluster
Maintaining Low Latency While Maximizing Throughput on a Single Cluster
MapR Technologies
 
Exponea - Kafka and Hadoop as components of architecture
Exponea  - Kafka and Hadoop as components of architectureExponea  - Kafka and Hadoop as components of architecture
Exponea - Kafka and Hadoop as components of architecture
MartinStrycek
 
Intro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application MeetupIntro to Apache Kudu (short) - Big Data Application Meetup
Intro to Apache Kudu (short) - Big Data Application Meetup
Mike Percy
 
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Big Data Day LA 2016/ NoSQL track - Apache Kudu: Fast Analytics on Fast Data,...
Data Con LA
 

Viewers also liked (17)

Impala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for HadoopImpala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for Hadoop
Cloudera, Inc.
 
Protecting Your IP with Perforce Helix and Interset
Protecting Your IP with Perforce Helix and IntersetProtecting Your IP with Perforce Helix and Interset
Protecting Your IP with Perforce Helix and Interset
Perforce
 
Database aggregation using metadata
Database aggregation using metadataDatabase aggregation using metadata
Database aggregation using metadata
Dr Sandeep Kumar Poonia
 
Cloudera Impalaをサービスに組み込むときに苦労した話
Cloudera Impalaをサービスに組み込むときに苦労した話Cloudera Impalaをサービスに組み込むときに苦労した話
Cloudera Impalaをサービスに組み込むときに苦労した話
Yukinori Suda
 
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebminingImpala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Sho Shimauchi
 
GoでKVSを書けるのか
GoでKVSを書けるのかGoでKVSを書けるのか
GoでKVSを書けるのか
Moriyoshi Koizumi
 
Cloudera Impala
Cloudera ImpalaCloudera Impala
Cloudera Impala
Scott Leberknight
 
The moroccan ethnic groups of Morocco
The moroccan ethnic groups of MoroccoThe moroccan ethnic groups of Morocco
The moroccan ethnic groups of Morocco
Mohsine Mahraj
 
Elephant Roads: a tour of Postgres forks
Elephant Roads: a tour of Postgres forksElephant Roads: a tour of Postgres forks
Elephant Roads: a tour of Postgres forks
Command Prompt., Inc
 
#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計
Cloudera Japan
 
Side by Side with Elasticsearch & Solr, Part 2
Side by Side with Elasticsearch & Solr, Part 2Side by Side with Elasticsearch & Solr, Part 2
Side by Side with Elasticsearch & Solr, Part 2
Sematext Group, Inc.
 
R-CISC Summit 2016 Borderless Threat Intelligence
R-CISC Summit 2016 Borderless Threat IntelligenceR-CISC Summit 2016 Borderless Threat Intelligence
R-CISC Summit 2016 Borderless Threat Intelligence
Jason Trost
 
HBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon 2015: Running ML Infrastructure on HBaseHBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon
 
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
Uptime Technologies LLC (JP)
 
Presto - Hadoop Conference Japan 2014
Presto - Hadoop Conference Japan 2014Presto - Hadoop Conference Japan 2014
Presto - Hadoop Conference Japan 2014
Sadayuki Furuhashi
 
HBase Storage Internals
HBase Storage InternalsHBase Storage Internals
HBase Storage Internals
DataWorks Summit
 
Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance
DataWorks Summit/Hadoop Summit
 
Impala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for HadoopImpala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for Hadoop
Cloudera, Inc.
 
Protecting Your IP with Perforce Helix and Interset
Protecting Your IP with Perforce Helix and IntersetProtecting Your IP with Perforce Helix and Interset
Protecting Your IP with Perforce Helix and Interset
Perforce
 
Cloudera Impalaをサービスに組み込むときに苦労した話
Cloudera Impalaをサービスに組み込むときに苦労した話Cloudera Impalaをサービスに組み込むときに苦労した話
Cloudera Impalaをサービスに組み込むときに苦労した話
Yukinori Suda
 
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebminingImpala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Impala データサイエンティストのための 高速大規模分散基盤 #tokyowebmining
Sho Shimauchi
 
The moroccan ethnic groups of Morocco
The moroccan ethnic groups of MoroccoThe moroccan ethnic groups of Morocco
The moroccan ethnic groups of Morocco
Mohsine Mahraj
 
Elephant Roads: a tour of Postgres forks
Elephant Roads: a tour of Postgres forksElephant Roads: a tour of Postgres forks
Elephant Roads: a tour of Postgres forks
Command Prompt., Inc
 
#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計
Cloudera Japan
 
Side by Side with Elasticsearch & Solr, Part 2
Side by Side with Elasticsearch & Solr, Part 2Side by Side with Elasticsearch & Solr, Part 2
Side by Side with Elasticsearch & Solr, Part 2
Sematext Group, Inc.
 
R-CISC Summit 2016 Borderless Threat Intelligence
R-CISC Summit 2016 Borderless Threat IntelligenceR-CISC Summit 2016 Borderless Threat Intelligence
R-CISC Summit 2016 Borderless Threat Intelligence
Jason Trost
 
HBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon 2015: Running ML Infrastructure on HBaseHBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon 2015: Running ML Infrastructure on HBase
HBaseCon
 
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
PostgreSQLアーキテクチャ入門(PostgreSQL Conference 2012)
Uptime Technologies LLC (JP)
 
Presto - Hadoop Conference Japan 2014
Presto - Hadoop Conference Japan 2014Presto - Hadoop Conference Japan 2014
Presto - Hadoop Conference Japan 2014
Sadayuki Furuhashi
 
Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance Debunking the Myths of HDFS Erasure Coding Performance
Debunking the Myths of HDFS Erasure Coding Performance
DataWorks Summit/Hadoop Summit
 
Ad

Similar to Cloudera Impala + PostgreSQL (20)

LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
DataStax Academy
 
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar PatturajInside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
ScyllaDB
 
DC Migration and Hadoop Scale For Big Billion Days
DC Migration and Hadoop Scale For Big Billion DaysDC Migration and Hadoop Scale For Big Billion Days
DC Migration and Hadoop Scale For Big Billion Days
Rahul Agarwal
 
MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
Webinar: SQL for Machine Data?
Webinar: SQL for Machine Data?Webinar: SQL for Machine Data?
Webinar: SQL for Machine Data?
Crate.io
 
Low-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Low-Latency Analytics with NoSQL – Introduction to Storm and CassandraLow-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Low-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Caserta
 
Overview of data analytics service: Treasure Data Service
Overview of data analytics service: Treasure Data ServiceOverview of data analytics service: Treasure Data Service
Overview of data analytics service: Treasure Data Service
SATOSHI TAGOMORI
 
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
Łukasz Grala
 
Agility and Scalability with MongoDB
Agility and Scalability with MongoDBAgility and Scalability with MongoDB
Agility and Scalability with MongoDB
MongoDB
 
Real-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Real-Time Streaming: Move IMS Data to Your Cloud Data WarehouseReal-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Real-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Precisely
 
Rapids: Data Science on GPUs
Rapids: Data Science on GPUsRapids: Data Science on GPUs
Rapids: Data Science on GPUs
inside-BigData.com
 
NVIDIA Rapids presentation
NVIDIA Rapids presentationNVIDIA Rapids presentation
NVIDIA Rapids presentation
testSri1
 
MySQL performance monitoring using Statsd and Graphite
MySQL performance monitoring using Statsd and GraphiteMySQL performance monitoring using Statsd and Graphite
MySQL performance monitoring using Statsd and Graphite
DB-Art
 
Tweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский ДмитрийTweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский Дмитрий
GeeksLab Odessa
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Solr Power FTW: Powering NoSQL the World Over
Solr Power FTW: Powering NoSQL the World OverSolr Power FTW: Powering NoSQL the World Over
Solr Power FTW: Powering NoSQL the World Over
Alex Pinkin
 
Scalable IoT platform
Scalable IoT platformScalable IoT platform
Scalable IoT platform
Swapnil Bawaskar
 
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
DataStax Academy
 
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar PatturajInside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
Inside Freshworks' Migration from Cassandra to ScyllaDB by Premkumar Patturaj
ScyllaDB
 
DC Migration and Hadoop Scale For Big Billion Days
DC Migration and Hadoop Scale For Big Billion DaysDC Migration and Hadoop Scale For Big Billion Days
DC Migration and Hadoop Scale For Big Billion Days
Rahul Agarwal
 
MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
Webinar: SQL for Machine Data?
Webinar: SQL for Machine Data?Webinar: SQL for Machine Data?
Webinar: SQL for Machine Data?
Crate.io
 
Low-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Low-Latency Analytics with NoSQL – Introduction to Storm and CassandraLow-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Low-Latency Analytics with NoSQL – Introduction to Storm and Cassandra
Caserta
 
Overview of data analytics service: Treasure Data Service
Overview of data analytics service: Treasure Data ServiceOverview of data analytics service: Treasure Data Service
Overview of data analytics service: Treasure Data Service
SATOSHI TAGOMORI
 
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
WyspaIT 2016 - Azure Stream Analytics i Azure Machine Learning w analizie str...
Łukasz Grala
 
Agility and Scalability with MongoDB
Agility and Scalability with MongoDBAgility and Scalability with MongoDB
Agility and Scalability with MongoDB
MongoDB
 
Real-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Real-Time Streaming: Move IMS Data to Your Cloud Data WarehouseReal-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Real-Time Streaming: Move IMS Data to Your Cloud Data Warehouse
Precisely
 
NVIDIA Rapids presentation
NVIDIA Rapids presentationNVIDIA Rapids presentation
NVIDIA Rapids presentation
testSri1
 
MySQL performance monitoring using Statsd and Graphite
MySQL performance monitoring using Statsd and GraphiteMySQL performance monitoring using Statsd and Graphite
MySQL performance monitoring using Statsd and Graphite
DB-Art
 
Tweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский ДмитрийTweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский Дмитрий
GeeksLab Odessa
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Solr Power FTW: Powering NoSQL the World Over
Solr Power FTW: Powering NoSQL the World OverSolr Power FTW: Powering NoSQL the World Over
Solr Power FTW: Powering NoSQL the World Over
Alex Pinkin
 
Ad

Recently uploaded (20)

Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 

Cloudera Impala + PostgreSQL

  • 1. Running Cloudera Impala on PostgreSQL By Chengzhong Liu [email protected] 2013.12
  • 2. Story coming from… • Data gravity • Why big data • Why SQL on big data
  • 3. Today agenda • • • • • • Big data in Miaozhen 秒针系统 Overview of Cloudera Impala Hacking practice in Cloudera Impala Performance Conclusions Q&A
  • 4. What happened in miaozhen • 3 billion Ads impression per day • 20TB data scan for report generation every morning • 24 servers cluster • Besides this – – – – TV Monitor Mobile Monitor Site Monitor …
  • 5. Before Hadoop • Scrat – PostgreSQL 9.1 cluster – Write a simple proxy – <2s for 2TB data scan • Mobile Monitor – Hadoop-like distribute computing system – Rabbit MQ + 3 computing servers – Write a Map-Reduce in C++ – Handles 30 millions to 500 millions Ads impression
  • 6. Problem & Chance • Database cluster • SQL on Hadoop • Miscellaneous data • Requirements – Most data is rational – SQL interface
  • 7. SQL on Hadoop • • • • • Google Dremel Apache Drill Cloudera Impala Facebook Presto EMC Greenplum/Pivotal Latency matters Pig Impala/Drill /Pivotal/Presto Map Reduce HDFS Hive
  • 8. What’s this • A kind of MPP engine • In memory processing • Small to big join – Broadcast join • Small result size
  • 9. Why Cloudera Impala • The team move fast – UDF coming out – Better join strategy on the way • Good code base – Modularize – Easy to add sub classes • Really fast – Llvm code generation • 80s/95s – uv test – Distributed aggregation Tree – In-situ data processing (inside storage)
  • 10. Typical Arch. SQL Interface Meta Store Query Planner Query Planner Query Planner Coordinat or Coordinat or Coordinat or Exec Engine Exec Engine Exec Engine
  • 11. Our target • A MPP database – Build on PostgreSQL9.1 – Scale well – Speed • A mixed data source MPP query engine – Join two tables in different sources – In fact…
  • 12. Hacking… from where • Add, not change – Scan Node type – DB Meta info • Put changes in configuration – Thrift Protocol update • TDBHostInfo • TDBScanNode
  • 13. Front end • Meta store update – Link data to the table name – Table location management • Front end – Compute table location
  • 14. Back end • Coordinator – pg host • New scan node type – db scan node • Pg scan node • Psql library using cursor
  • 15. SQL Plan • select count(distinct id) from table – MR like process HDFS/PG scan Aggr. : group by id Exchange node Aggr. : group by id Aggr. : count(id) Exchange node Aggr.: sum(count(id)
  • 16. Env. • Ads impression logs – 150 millions, 100KB/line • 3 servers – – – – 24 cores 32 G mem 2T * 12 HD 100Mbps LAN • Query – Select count(id) from t group by campaign – Select count(distinct id) from t group by campaign – Select * from t where id = ‘xxxxxxxx’
  • 17. Performance • Group by speed / core • 20 M /s 700 600 500 400 impala hive 300 pg+impala 200 100 0 1 2 3
  • 19. Codegen on/off • select count(distinct id) from t group by c 100 90 80 70 • select distinct id from t 60 50 en_codegen 40 dis_codegen 30 • 20 select id from t 10 group by id 0 having uv_test count(case when c = '1' then 1 else null end) > 0 and count(case when c= 2' then 1 else null end) > 0 limit 10; distinct duplicated
  • 21. Conclusion • Source quality – Readable – Google C++ style – Robust • MPP solution based on PG – Proved perf. – Easy to scale • Mixed engine usage – HDFS and DB
  • 22. What’s next • • • • • Yarn integrating UDF Join with Big table BI roadmap Fail over
  • 23. Rerf. • Cloudera Impala online doc. & src • http://files.meetup.com/1727991/Impala%20and %20BigQuery.ppt • http://www.cubrid.org/blog/dev-platform/meetimpala-open-source-real-time-sql-querying-onhadoop/ • http://berlinbuzzwords.de/sites/berlinbuzzwords. de/files/slides/Impala%20tech%20talk.pdf • @datascientist, @dongxicheng, @flyingsk, @zhh