SlideShare a Scribd company logo
CQRS and Event
Sourcing Applications
with Cassandra_
Matthias Niehoff
#CassandraSummit 2015
1
! The Use Case
! Event Sourcing
! CQRS
! Cassandra for Storage
! Spark for Processing
! Benefits & Pitfalls
! Q&A
Agenda_
2
The Use Case
3
24x7 Proxy_
4
LegacySystems

(Not24x7)
“InternetReady“
Applications
(24x7available)
24x7 Proxy
•Caches data
•Provides data
•Stores changes
•Provides changes
•No business logic/validation
•Solution needs to be highly scalable 

(up to 100.000 reads/s, 10.000 writes/s)
•Read and write access needs to be low latency
•Read/write ratio is 10:1 or higher
•Solution needs to deal with up to 500.000.000
customers
Assumptions_
5
Event Sourcing
6
Traditional Pattern: Saving Application State_
7
Store
ID
Address
Article
Name
StockSize updateInventory()
getInventory()
sells
A series of sales and replenishments for
• a tablet
• Starting with 60, sell 20, replenish 10
• a stove
• Starting with 25, sell 5, no replenishments
What is different with Event Sourcing?_
8
Saving only application state
What is the Difference?_
9
:ArticleInventory
Fancy Tablet
50
:ArticleInventory
Gas Stove
20
Saving events instead of state
What is the Difference?_
10
:ArticleInventory
Fancy Tablet
39
15-08-14T19:..
:ArticleInventory
Gas Stove
20
15-08-14T19:..
:ArticleInventory
Fancy Tablet
45
15-08-14T19:..
:ArticleInventory
Gas Stove
20
15-08-14T19:..
:ArticleInventory
Fancy Tablet
50
15-08-14T19:..
:ArticleInventory
Gas Stove
20
15-08-14T19:..
•Log of all stock changes
•Complete rebuild of the state
•Temporal query
•Event replay and rollback
Benefits of Storing Events_
11
CQRS
12
Default Application Architecture_
13
UserInterface
DomainModel
ApplicationServices
DB
CQRS Application Architecture_
14
UserInterface
Query
Services
Command
Services
DomainModel
DB
•The pattern is simple
•Going further
• Split up the domain model
• Independent scaling of models
• Not using a query model at all
• Different databases for models
A Pattern Changing Your Mindset_
15
Event Sourcing & CQRS_
16
Command
Services
Command
Model
ReadLayer
Query
Services
Query
Services
Query
Services Asynchronous
DB
Event Store
Query
Stores
ProcessorEvent
Processor
DB
DB
DB
Storage with Cassandra
17
•Not only an event sink
• Compaction
• Selective replay
•No single point of failure
•Horizontal scale & Geo Replication
•Write ahead of unmodified data
•Plays well with further processing
•Open source & a huge community
•Easy operations
Why Cassandra…
18
For accessing all entities of a given type
Event Store_
19
CREATE TABLE event_source_by_type (
entity_type TEXT,
bucket INT,
entity_key TEXT,
insert_time TIMESTAMP,
update_time TIMESTAMP,
payload TEXT,
PRIMARY KEY((entity_type,bucket),insert_time,entity_key)
) 

WITH CLUSTERING ORDER BY (created_at DESC,entity_key ASC);
e.g. as JSON, XML, protobuf, Avro
prevent huge partitions
CREATE TABLE event_source_by_key (
entity_type TEXT,
entity_key TEXT,
insert_time TIMESTAMP,
update_time TIMESTAMP,
payload TEXT,
PRIMARY KEY((entity_type,entity_key),created_at)
) 

WITH CLUSTERING ORDER BY (created_at DESC);
For accessing an entity directly
Optional: Second Table_
20
e.g. as JSON, XML or protobuf
•Create tables that fit your queries!
•E.g. „Get articles in category ‚computer‘“
Query Stores_
21
CREATE TABLE articles_by_category (
category TEXT PRIMARY KEY,
article_id UUID,
article_info TEXT
);
may need bucketing
could also be a
JSON document
Query Stores_
22
„I need ad-hoc queries“
„I need specific queries with
a lot of different filters“
Query Stores_
23
Processing with Spark
24
•Command model triggers event processor
•Event processor updates query views
From Event Store to Query Store_
25
Command
Model
Event
Processor DB
DB
DB
Event
Processor
Event
Processor
Event Processing in Detail_
26
Command
Model DB
DB
DB
•Easy scale out
•Easy deployment
•Intuitive Scala & Java API
•Fault tolerant
•Out-of-the-box Kafka adapter
•Integrates well with Cassandra
Why Spark?
27
•Spark Streaming application
•Consumes only topics of interest
•Joins the stream of events with the current view
• Use primary key of entity for correlation
• Use joinWithCassandraTable
Spark Job in Detail_
28
1. Create a table for the query view
2. Create a Spark job filling your table
3. Deploy the Spark job
4. Init reprocess of the event DB
• same transformation logic as in normal processing
• source can be different
5. Mark view as initialized
If you need a new query view_
29
Query
DB
Event
DB
Benefits &
Pitfalls
30
•Scalability
• On storage & processing: just add nodes
• Efficient queries due to separation
•Collaboration
• Every client gets its own data access
• Easy to support new queries
Benefits_
31
•More complexity than simple CRUD
•Side effects on event replay
•Eventual consistency in query views
•Concurrent writes
•Performance of replay
Pitfalls_
32
Lost Updates
•Due to parallel processing
• Two events A and B as sequential input
• A is processed after B
•Solution
• Partition Spark RDD by entity key
• Use a lambda architecture
Pitfalls_
33
speed
Data
Stream
Serving
Layer
batch
•Event Store Compaction
• Compact store to improve processing time
• Only store latest entry of a entity key
• e.g. a Spark batch job / Cassandra TTL
•Snapshot / Master State
• Constantly build a complete state of all data
• Can be used
• To speed up initialization
• As a store for a search engine
Pitfalls_
34
The Use Case
Solved with ES & CQRS
35
24x7 Proxy
24x7 Proxy_
36
LegacyCoreSystems

(Not24x7)
“InternetReady“Applications
(24x7available)
37
Questions?
Thank You!
Matthias Niehoff,
IT-Consultant
codecentric AG
Zeppelinstraße 2
76185 Karlsruhe, Germany
www.codecentric.de
blog.codecentric.de
matthiasniehoff
38
Ad

More Related Content

What's hot (20)

Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
Elastic Stack Introduction
Elastic Stack IntroductionElastic Stack Introduction
Elastic Stack Introduction
Vikram Shinde
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)
Julian Hyde
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
Stream processing using Kafka
Stream processing using KafkaStream processing using Kafka
Stream processing using Kafka
Knoldus Inc.
 
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
confluent
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
Flexible and Real-Time Stream Processing with Apache Flink
Flexible and Real-Time Stream Processing with Apache FlinkFlexible and Real-Time Stream Processing with Apache Flink
Flexible and Real-Time Stream Processing with Apache Flink
DataWorks Summit
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Construisez votre première application MongoDB
Construisez votre première application MongoDBConstruisez votre première application MongoDB
Construisez votre première application MongoDB
MongoDB
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
Maarten Smeets
 
Percona XtraDB Cluster ( Ensure high Availability )
Percona XtraDB Cluster ( Ensure high Availability )Percona XtraDB Cluster ( Ensure high Availability )
Percona XtraDB Cluster ( Ensure high Availability )
Mydbops
 
Hadoop REST API Security with Apache Knox Gateway
Hadoop REST API Security with Apache Knox GatewayHadoop REST API Security with Apache Knox Gateway
Hadoop REST API Security with Apache Knox Gateway
DataWorks Summit
 
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
mumrah
 
ELK Stack
ELK StackELK Stack
ELK Stack
Eberhard Wolff
 
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
Elastic Stack Introduction
Elastic Stack IntroductionElastic Stack Introduction
Elastic Stack Introduction
Vikram Shinde
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)
Julian Hyde
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
Stream processing using Kafka
Stream processing using KafkaStream processing using Kafka
Stream processing using Kafka
Knoldus Inc.
 
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
confluent
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
Flexible and Real-Time Stream Processing with Apache Flink
Flexible and Real-Time Stream Processing with Apache FlinkFlexible and Real-Time Stream Processing with Apache Flink
Flexible and Real-Time Stream Processing with Apache Flink
DataWorks Summit
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Construisez votre première application MongoDB
Construisez votre première application MongoDBConstruisez votre première application MongoDB
Construisez votre première application MongoDB
MongoDB
 
Percona XtraDB Cluster ( Ensure high Availability )
Percona XtraDB Cluster ( Ensure high Availability )Percona XtraDB Cluster ( Ensure high Availability )
Percona XtraDB Cluster ( Ensure high Availability )
Mydbops
 
Hadoop REST API Security with Apache Knox Gateway
Hadoop REST API Security with Apache Knox GatewayHadoop REST API Security with Apache Knox Gateway
Hadoop REST API Security with Apache Knox Gateway
DataWorks Summit
 
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013
mumrah
 

Viewers also liked (9)

Unit tests benefits
Unit tests benefitsUnit tests benefits
Unit tests benefits
Kate Semizhon
 
Microservice Architecture with CQRS and Event Sourcing
Microservice Architecture with CQRS and Event SourcingMicroservice Architecture with CQRS and Event Sourcing
Microservice Architecture with CQRS and Event Sourcing
Ben Wilcock
 
Event sourcing with Eventuate
Event sourcing with EventuateEvent sourcing with Eventuate
Event sourcing with Eventuate
Knoldus Inc.
 
Moving Beyond Lambda Architectures with Apache Kudu
Moving Beyond Lambda Architectures with Apache KuduMoving Beyond Lambda Architectures with Apache Kudu
Moving Beyond Lambda Architectures with Apache Kudu
Cloudera, Inc.
 
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQCQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
Miel Donkers
 
Developing event-driven microservices with event sourcing and CQRS (svcc, sv...
Developing event-driven microservices with event sourcing and CQRS  (svcc, sv...Developing event-driven microservices with event sourcing and CQRS  (svcc, sv...
Developing event-driven microservices with event sourcing and CQRS (svcc, sv...
Chris Richardson
 
Going Serverless with CQRS on AWS
Going Serverless with CQRS on AWSGoing Serverless with CQRS on AWS
Going Serverless with CQRS on AWS
Anton Udovychenko
 
Akka persistence == event sourcing in 30 minutes
Akka persistence == event sourcing in 30 minutesAkka persistence == event sourcing in 30 minutes
Akka persistence == event sourcing in 30 minutes
Konrad Malawski
 
CQRS and Event Sourcing, An Alternative Architecture for DDD
CQRS and Event Sourcing, An Alternative Architecture for DDDCQRS and Event Sourcing, An Alternative Architecture for DDD
CQRS and Event Sourcing, An Alternative Architecture for DDD
Dennis Doomen
 
Microservice Architecture with CQRS and Event Sourcing
Microservice Architecture with CQRS and Event SourcingMicroservice Architecture with CQRS and Event Sourcing
Microservice Architecture with CQRS and Event Sourcing
Ben Wilcock
 
Event sourcing with Eventuate
Event sourcing with EventuateEvent sourcing with Eventuate
Event sourcing with Eventuate
Knoldus Inc.
 
Moving Beyond Lambda Architectures with Apache Kudu
Moving Beyond Lambda Architectures with Apache KuduMoving Beyond Lambda Architectures with Apache Kudu
Moving Beyond Lambda Architectures with Apache Kudu
Cloudera, Inc.
 
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQCQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
CQRS and Event Sourcing with Akka, Cassandra and RabbitMQ
Miel Donkers
 
Developing event-driven microservices with event sourcing and CQRS (svcc, sv...
Developing event-driven microservices with event sourcing and CQRS  (svcc, sv...Developing event-driven microservices with event sourcing and CQRS  (svcc, sv...
Developing event-driven microservices with event sourcing and CQRS (svcc, sv...
Chris Richardson
 
Going Serverless with CQRS on AWS
Going Serverless with CQRS on AWSGoing Serverless with CQRS on AWS
Going Serverless with CQRS on AWS
Anton Udovychenko
 
Akka persistence == event sourcing in 30 minutes
Akka persistence == event sourcing in 30 minutesAkka persistence == event sourcing in 30 minutes
Akka persistence == event sourcing in 30 minutes
Konrad Malawski
 
CQRS and Event Sourcing, An Alternative Architecture for DDD
CQRS and Event Sourcing, An Alternative Architecture for DDDCQRS and Event Sourcing, An Alternative Architecture for DDD
CQRS and Event Sourcing, An Alternative Architecture for DDD
Dennis Doomen
 
Ad

Similar to codecentric AG: CQRS and Event Sourcing Applications with Cassandra (20)

Using cassandra as a distributed logging to store pb data
Using cassandra as a distributed logging to store pb dataUsing cassandra as a distributed logging to store pb data
Using cassandra as a distributed logging to store pb data
Ramesh Veeramani
 
Logisland "Event Mining at scale"
Logisland "Event Mining at scale"Logisland "Event Mining at scale"
Logisland "Event Mining at scale"
Thomas Bailet
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
How we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the wayHow we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the way
Grega Kespret
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Instaclustr webinar 2017 feb 08 japan
Instaclustr webinar 2017 feb 08   japanInstaclustr webinar 2017 feb 08   japan
Instaclustr webinar 2017 feb 08 japan
Hiromitsu Komatsu
 
Avoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Avoiding the Pit of Despair - Event Sourcing with Akka and CassandraAvoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Avoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Luke Tillman
 
High Throughput Analytics with Cassandra & Azure
High Throughput Analytics with Cassandra & AzureHigh Throughput Analytics with Cassandra & Azure
High Throughput Analytics with Cassandra & Azure
DataStax Academy
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
DataStax Academy
 
Building a Complex, Real-Time Data Management Application
Building a Complex, Real-Time Data Management ApplicationBuilding a Complex, Real-Time Data Management Application
Building a Complex, Real-Time Data Management Application
Jonathan Katz
 
real time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdatareal time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdata
ArasuVishnu
 
GECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon2017_High-volume data streaming in azure_ Aliaksandr LaishaGECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon_Org Team
 
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
DataStax
 
Micro-batching: High-performance writes
Micro-batching: High-performance writesMicro-batching: High-performance writes
Micro-batching: High-performance writes
Instaclustr
 
Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
Processing 50,000 events per second with Cassandra and Spark
Processing 50,000 events per second with Cassandra and SparkProcessing 50,000 events per second with Cassandra and Spark
Processing 50,000 events per second with Cassandra and Spark
Ben Slater
 
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
DataStax
 
Using cassandra as a distributed logging to store pb data
Using cassandra as a distributed logging to store pb dataUsing cassandra as a distributed logging to store pb data
Using cassandra as a distributed logging to store pb data
Ramesh Veeramani
 
Logisland "Event Mining at scale"
Logisland "Event Mining at scale"Logisland "Event Mining at scale"
Logisland "Event Mining at scale"
Thomas Bailet
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
How we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the wayHow we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the way
Grega Kespret
 
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander ZaitsevMigration to ClickHouse. Practical guide, by Alexander Zaitsev
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Altinity Ltd
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Instaclustr webinar 2017 feb 08 japan
Instaclustr webinar 2017 feb 08   japanInstaclustr webinar 2017 feb 08   japan
Instaclustr webinar 2017 feb 08 japan
Hiromitsu Komatsu
 
Avoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Avoiding the Pit of Despair - Event Sourcing with Akka and CassandraAvoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Avoiding the Pit of Despair - Event Sourcing with Akka and Cassandra
Luke Tillman
 
High Throughput Analytics with Cassandra & Azure
High Throughput Analytics with Cassandra & AzureHigh Throughput Analytics with Cassandra & Azure
High Throughput Analytics with Cassandra & Azure
DataStax Academy
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon RedshiftBest Practices for Supercharging Cloud Analytics on Amazon Redshift
Best Practices for Supercharging Cloud Analytics on Amazon Redshift
SnapLogic
 
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
C* Summit 2013: Optimizing the Public Cloud for Cost and Scalability with Cas...
DataStax Academy
 
Building a Complex, Real-Time Data Management Application
Building a Complex, Real-Time Data Management ApplicationBuilding a Complex, Real-Time Data Management Application
Building a Complex, Real-Time Data Management Application
Jonathan Katz
 
real time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdatareal time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdata
ArasuVishnu
 
GECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon2017_High-volume data streaming in azure_ Aliaksandr LaishaGECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon2017_High-volume data streaming in azure_ Aliaksandr Laisha
GECon_Org Team
 
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
DataStax
 
Micro-batching: High-performance writes
Micro-batching: High-performance writesMicro-batching: High-performance writes
Micro-batching: High-performance writes
Instaclustr
 
Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
Processing 50,000 events per second with Cassandra and Spark
Processing 50,000 events per second with Cassandra and SparkProcessing 50,000 events per second with Cassandra and Spark
Processing 50,000 events per second with Cassandra and Spark
Ben Slater
 
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
Processing 50,000 Events Per Second with Cassandra and Spark (Ben Slater, Ins...
DataStax
 
Ad

More from DataStax Academy (20)

Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Coursera Cassandra Driver
Coursera Cassandra DriverCoursera Cassandra Driver
Coursera Cassandra Driver
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Introduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache CassandraIntroduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache Cassandra
DataStax Academy
 
Cassandra Core Concepts
Cassandra Core ConceptsCassandra Core Concepts
Cassandra Core Concepts
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Bad Habits Die Hard
Bad Habits Die Hard Bad Habits Die Hard
Bad Habits Die Hard
DataStax Academy
 
Advanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache CassandraAdvanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache Cassandra
DataStax Academy
 
Advanced Cassandra
Advanced CassandraAdvanced Cassandra
Advanced Cassandra
DataStax Academy
 
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craftForrester CXNYC 2017 - Delivering great real-time cx is a true craft
Forrester CXNYC 2017 - Delivering great real-time cx is a true craft
DataStax Academy
 
Introduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph DatabaseIntroduction to DataStax Enterprise Graph Database
Introduction to DataStax Enterprise Graph Database
DataStax Academy
 
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache CassandraIntroduction to DataStax Enterprise Advanced Replication with Apache Cassandra
Introduction to DataStax Enterprise Advanced Replication with Apache Cassandra
DataStax Academy
 
Cassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart LabsCassandra on Docker @ Walmart Labs
Cassandra on Docker @ Walmart Labs
DataStax Academy
 
Cassandra 3.0 Data Modeling
Cassandra 3.0 Data ModelingCassandra 3.0 Data Modeling
Cassandra 3.0 Data Modeling
DataStax Academy
 
Cassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stackCassandra Adoption on Cisco UCS & Open stack
Cassandra Adoption on Cisco UCS & Open stack
DataStax Academy
 
Data Modeling for Apache Cassandra
Data Modeling for Apache CassandraData Modeling for Apache Cassandra
Data Modeling for Apache Cassandra
DataStax Academy
 
Production Ready Cassandra
Production Ready CassandraProduction Ready Cassandra
Production Ready Cassandra
DataStax Academy
 
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & PythonCassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
Cassandra @ Netflix: Monitoring C* at Scale, Gossip and Tickler & Python
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1Cassandra @ Sony: The good, the bad, and the ugly part 1
Cassandra @ Sony: The good, the bad, and the ugly part 1
DataStax Academy
 
Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2Cassandra @ Sony: The good, the bad, and the ugly part 2
Cassandra @ Sony: The good, the bad, and the ugly part 2
DataStax Academy
 
Standing Up Your First Cluster
Standing Up Your First ClusterStanding Up Your First Cluster
Standing Up Your First Cluster
DataStax Academy
 
Real Time Analytics with Dse
Real Time Analytics with DseReal Time Analytics with Dse
Real Time Analytics with Dse
DataStax Academy
 
Introduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache CassandraIntroduction to Data Modeling with Apache Cassandra
Introduction to Data Modeling with Apache Cassandra
DataStax Academy
 
Enabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax EnterpriseEnabling Search in your Cassandra Application with DataStax Enterprise
Enabling Search in your Cassandra Application with DataStax Enterprise
DataStax Academy
 
Advanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache CassandraAdvanced Data Modeling with Apache Cassandra
Advanced Data Modeling with Apache Cassandra
DataStax Academy
 

Recently uploaded (20)

AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 

codecentric AG: CQRS and Event Sourcing Applications with Cassandra

  • 1. CQRS and Event Sourcing Applications with Cassandra_ Matthias Niehoff #CassandraSummit 2015 1
  • 2. ! The Use Case ! Event Sourcing ! CQRS ! Cassandra for Storage ! Spark for Processing ! Benefits & Pitfalls ! Q&A Agenda_ 2
  • 4. 24x7 Proxy_ 4 LegacySystems
 (Not24x7) “InternetReady“ Applications (24x7available) 24x7 Proxy •Caches data •Provides data •Stores changes •Provides changes •No business logic/validation
  • 5. •Solution needs to be highly scalable 
 (up to 100.000 reads/s, 10.000 writes/s) •Read and write access needs to be low latency •Read/write ratio is 10:1 or higher •Solution needs to deal with up to 500.000.000 customers Assumptions_ 5
  • 7. Traditional Pattern: Saving Application State_ 7 Store ID Address Article Name StockSize updateInventory() getInventory() sells
  • 8. A series of sales and replenishments for • a tablet • Starting with 60, sell 20, replenish 10 • a stove • Starting with 25, sell 5, no replenishments What is different with Event Sourcing?_ 8
  • 9. Saving only application state What is the Difference?_ 9 :ArticleInventory Fancy Tablet 50 :ArticleInventory Gas Stove 20
  • 10. Saving events instead of state What is the Difference?_ 10 :ArticleInventory Fancy Tablet 39 15-08-14T19:.. :ArticleInventory Gas Stove 20 15-08-14T19:.. :ArticleInventory Fancy Tablet 45 15-08-14T19:.. :ArticleInventory Gas Stove 20 15-08-14T19:.. :ArticleInventory Fancy Tablet 50 15-08-14T19:.. :ArticleInventory Gas Stove 20 15-08-14T19:..
  • 11. •Log of all stock changes •Complete rebuild of the state •Temporal query •Event replay and rollback Benefits of Storing Events_ 11
  • 15. •The pattern is simple •Going further • Split up the domain model • Independent scaling of models • Not using a query model at all • Different databases for models A Pattern Changing Your Mindset_ 15
  • 16. Event Sourcing & CQRS_ 16 Command Services Command Model ReadLayer Query Services Query Services Query Services Asynchronous DB Event Store Query Stores ProcessorEvent Processor DB DB DB
  • 18. •Not only an event sink • Compaction • Selective replay •No single point of failure •Horizontal scale & Geo Replication •Write ahead of unmodified data •Plays well with further processing •Open source & a huge community •Easy operations Why Cassandra… 18
  • 19. For accessing all entities of a given type Event Store_ 19 CREATE TABLE event_source_by_type ( entity_type TEXT, bucket INT, entity_key TEXT, insert_time TIMESTAMP, update_time TIMESTAMP, payload TEXT, PRIMARY KEY((entity_type,bucket),insert_time,entity_key) ) 
 WITH CLUSTERING ORDER BY (created_at DESC,entity_key ASC); e.g. as JSON, XML, protobuf, Avro prevent huge partitions
  • 20. CREATE TABLE event_source_by_key ( entity_type TEXT, entity_key TEXT, insert_time TIMESTAMP, update_time TIMESTAMP, payload TEXT, PRIMARY KEY((entity_type,entity_key),created_at) ) 
 WITH CLUSTERING ORDER BY (created_at DESC); For accessing an entity directly Optional: Second Table_ 20 e.g. as JSON, XML or protobuf
  • 21. •Create tables that fit your queries! •E.g. „Get articles in category ‚computer‘“ Query Stores_ 21 CREATE TABLE articles_by_category ( category TEXT PRIMARY KEY, article_id UUID, article_info TEXT ); may need bucketing could also be a JSON document
  • 22. Query Stores_ 22 „I need ad-hoc queries“ „I need specific queries with a lot of different filters“
  • 25. •Command model triggers event processor •Event processor updates query views From Event Store to Query Store_ 25 Command Model Event Processor DB DB DB Event Processor Event Processor
  • 26. Event Processing in Detail_ 26 Command Model DB DB DB
  • 27. •Easy scale out •Easy deployment •Intuitive Scala & Java API •Fault tolerant •Out-of-the-box Kafka adapter •Integrates well with Cassandra Why Spark? 27
  • 28. •Spark Streaming application •Consumes only topics of interest •Joins the stream of events with the current view • Use primary key of entity for correlation • Use joinWithCassandraTable Spark Job in Detail_ 28
  • 29. 1. Create a table for the query view 2. Create a Spark job filling your table 3. Deploy the Spark job 4. Init reprocess of the event DB • same transformation logic as in normal processing • source can be different 5. Mark view as initialized If you need a new query view_ 29 Query DB Event DB
  • 31. •Scalability • On storage & processing: just add nodes • Efficient queries due to separation •Collaboration • Every client gets its own data access • Easy to support new queries Benefits_ 31
  • 32. •More complexity than simple CRUD •Side effects on event replay •Eventual consistency in query views •Concurrent writes •Performance of replay Pitfalls_ 32
  • 33. Lost Updates •Due to parallel processing • Two events A and B as sequential input • A is processed after B •Solution • Partition Spark RDD by entity key • Use a lambda architecture Pitfalls_ 33 speed Data Stream Serving Layer batch
  • 34. •Event Store Compaction • Compact store to improve processing time • Only store latest entry of a entity key • e.g. a Spark batch job / Cassandra TTL •Snapshot / Master State • Constantly build a complete state of all data • Can be used • To speed up initialization • As a store for a search engine Pitfalls_ 34
  • 35. The Use Case Solved with ES & CQRS 35
  • 38. Thank You! Matthias Niehoff, IT-Consultant codecentric AG Zeppelinstraße 2 76185 Karlsruhe, Germany www.codecentric.de blog.codecentric.de matthiasniehoff 38