This paper proposes modified chanvese model which can be implemented on image for segmentation. The structure of paper is based on Linear structure tensor (LST) as input to the variant model. Structure tensor is a matrix illustration of partial derivative information. In the proposed model, the original image is considered as information channel for computing structure tensor. Difference of Gaussian (DOG) is featuring improvement in which we can get less blurred image than original image. In this paper LST is modified by adding intensity information to enhance orientation information. Finally Active Contour Model (ACM) is used to segment the images. The proposed algorithm is tested on various images and also on some images which have intensity inhomogeneity and results are shown. Also, the results with other algorithms like chanvese, Bhattacharya, Gabor based chanvese and Novel structure tensor based model are compared. It is verified that accuracy of proposed model is the best. The biggest advantage of proposed model is clear edge enhancement.
International Journal of Engineering Research and Applications (IJERA) is an open access online peer reviewed international journal that publishes research and review articles in the fields of Computer Science, Neural Networks, Electrical Engineering, Software Engineering, Information Technology, Mechanical Engineering, Chemical Engineering, Plastic Engineering, Food Technology, Textile Engineering, Nano Technology & science, Power Electronics, Electronics & Communication Engineering, Computational mathematics, Image processing, Civil Engineering, Structural Engineering, Environmental Engineering, VLSI Testing & Low Power VLSI Design etc.
IJRET : International Journal of Research in Engineering and Technology is an international peer reviewed, online journal published by eSAT Publishing House for the enhancement of research in various disciplines of Engineering and Technology. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching and research in the fields of Engineering and Technology. We bring together Scientists, Academician, Field Engineers, Scholars and Students of related fields of Engineering and Technology.
This document presents a study on medial axis transformation (MAT) based skeletonization of image patterns using image processing techniques. It discusses how the MAT of an image can be extracted by first computing the Euclidean distance transform of the binary image. Local maxima in the distance transform image correspond to the MAT. Several performance evaluation metrics for analyzing skeletonized images are also introduced, such as connectivity number, thinness measurement and sensitivity. The technique is demonstrated on sample images and results show it can effectively extract the skeleton with good computational speed.
REMOVING OCCLUSION IN IMAGES USING SPARSE PROCESSING AND TEXTURE SYNTHESISIJCSEA Journal
The document presents a method for removing large occlusions from images using sparse processing and texture synthesis. It involves decomposing the image into structure and texture images using sparse representations. The occluded regions in the structure image are filled in using sparse reconstruction, which retains image structures. Texture synthesis is then performed on the texture image to fill in the occluded texture. Finally, the reconstructed structure and texture images are combined to produce the occlusion-free output image. The method is shown to effectively remove large occlusions while avoiding blurring and retaining both structures and textures. It outperforms other inpainting methods in terms of visual quality.
Performance of Efficient Closed-Form Solution to Comprehensive Frontier Exposureiosrjce
This document discusses boundary detection techniques for images. It proposes a generalized boundary detection method (Gb) that combines low-level and mid-level image representations in a single eigenvalue problem to detect boundaries. Gb achieves state-of-the-art results at low computational cost. Soft segmentation and contour grouping methods are also introduced to further improve boundary detection accuracy with minimal extra computation. The document presents outputs of Gb on sample images and concludes that Gb effectively detects boundaries in a principled manner by jointly resolving constraints from multiple image interpretation layers in closed form.
This document summarizes an automatic left ventricle segmentation technique using iterative thresholding and an active contour model adapted for short-axis cardiac MRI images. It begins with background on image segmentation and its applications. Then, it reviews related work on cardiac segmentation techniques and their limitations. The proposed method segments the endocardium using iterative thresholding and the epicardium using an active contour model. It estimates blood and myocardial intensities, applies region growing to segment the endocardium in each slice, and propagates the segmentation to remaining slices. Finally, it measures left ventricle volume and compares the results to manual segmentation.
Comparative Study and Analysis of Image Inpainting TechniquesIOSR Journals
Abstract: Image inpainting is a technique to fill missing region or reconstruct damage area from an image.It
removes an undesirable object from an image in visually plausible way.For filling the part of image, it use
information from the neighboring area. In this dissertation work, we present a Examplar based method for
filling in the missing information in an image, which takes structure synthesis and texture sysnthesis together.
In exemplar based approach it used local information from an image to patch propagation.We have also
implement Nonlocal Mean approach for exemplar based image inpainting.In Nonlocal mean approach it find
multiple samples of best exemplar patches for patch propagation and weight their contribution according to
their similarity to the neighborhood under evaluation. We have further extended this algorithm by considering
collaborative filtering method to synthesize and propagate with multiple samples of best exemplar patches. We
have to preformed experiment on many images and found that our algorithm successfully inpaint the target
region.We have tested the accuracy of our algorithm by finding parameter like PSNR and compared PSNR
value for all three different approaches.
Keywords: Texture Synthesis, Structure Synthesis, Patch Propagation ,imageinpainting ,nonlocal approach,
collabrative filtering.
Hybrid medical image compression method using quincunx wavelet and geometric ...journalBEEI
The purpose of this article is to find an efficient and optimal method of compression by reducing the file size while retaining the information for a good quality processing and to produce credible pathological reports, based on the extraction of the information characteristics contained in medical images. In this article, we proposed a novel medical image compression that combines geometric active contour model and quincunx wavelet transform. In this method it is necessary to localize the region of interest, where we tried to localize all the part that contain the pathological, using the level set for an optimal reduction, then we use the quincunx wavelet coupled with the set partitioning in hierarchical trees (SPIHT) algorithm. After testing several algorithms we noticed that the proposed method gives satisfactory results. The comparison of the experimental results is based on parameters of evaluation.
International Journal of Computational Engineering Research(IJCER)ijceronline
International Journal of Computational Engineering Research(IJCER) is an intentional online Journal in English monthly publishing journal. This Journal publish original research work that contributes significantly to further the scientific knowledge in engineering and Technology
DOMAIN SPECIFIC CBIR FOR HIGHLY TEXTURED IMAGEScseij
It is A Challenging Task To Build A Cbir System Which Primarily Works On Texture Values As There
Meaning And Semantics Needs A Special Care To Be Mapped With Human Based Languages. We Have
Consider Highly Textured Images Having Properties(Entropy, Homogeneity, Contrast, Cluster Shade, Auto
Correlation)And Have Mapped Using A Fuzzy Minmax Scale W.R.T. Their Degree(High, Low,
Medium)And Technical Interpetation.This Developed System Is Performing Well In Terms Of Precision
And Recall Value Showing That Semantic Gap Has Been Reduced For Highly Textured Images Based Cbir.
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...IOSR Journals
1) The document discusses extracting the medial axis transform (MAT) of an image pattern using the Euclidean distance transform. The image is first converted to binary, then the Euclidean distance transform is used to compute the distance of each non-zero pixel to the closest zero pixel.
2) The medial axis transform represents the core or skeleton of an image pattern. There are different algorithms for extracting the skeleton or medial axis, including sequential and parallel algorithms. The skeleton provides a simple representation that preserves topological and size characteristics of the original shape.
3) The document provides background on medial axis transforms and different skeletonization algorithms. It then describes preparing the binary image and applying the Euclidean distance transform to extract the MAT and skeleton
International Journal of Engineering Research and Development (IJERD)IJERD Editor
This paper proposes a new method for visual segmentation based on fixation points. The method segments the region of interest in two steps: (1) generating a probabilistic boundary edge map combining multiple visual cues, and (2) finding the optimal closed contour around the fixation point in the transformed polar edge map. The paper shows this fixation-based segmentation approach improves accuracy over previous methods, especially when incorporating motion and stereo cues. It also introduces a region merging algorithm to further refine segmentation results. Evaluation on video and stereo image datasets demonstrates mean F-measures of 0.95 and 0.96 respectively when combining cues, compared to 0.62 and 0.65 without.
An evaluation of two popular segmentation algorithms, the mean shift-based segmentation algorithm and a graph-based segmentation scheme. We also consider a hybrid method which combines the other two methods.
Medical image analysis and processing using a dual transformeSAT Journals
Abstract The demand for images in medical field has increased drastically over the years. The need for reducing the storage space has resulted in image compression. This paper presents a dual transform for medical image compression algorithm. The experimental results determines how the compression ratio (CR), peak signal to noise ratio (PSNR) and SNR (signal to noise ratio) of different compression algorithms responds to dual transform algorithm. Keywords: DCT, SPIHT, Haar Wavelet, Linear approximation transform, image compression, Singular Value Decomposition (SVD).
This document presents a dual transform method for medical image compression that uses both singular value decomposition (SVD) and Haar wavelet transform. It compares the proposed dual transform method to existing Haar wavelet-SPIHT and DCT-SPIHT compression methods on 3 medical images. The dual transform method achieved higher compression ratios and PSNR values at 0.4 bits per pixel compared to the other methods, indicating better preservation of image quality at higher compression. The dual transform is thus concluded to be suitable for compressing medical images where no deterioration of image quality is acceptable.
International Journal of Engineering Research and Applications (IJERA) is an open access online peer reviewed international journal that publishes research and review articles in the fields of Computer Science, Neural Networks, Electrical Engineering, Software Engineering, Information Technology, Mechanical Engineering, Chemical Engineering, Plastic Engineering, Food Technology, Textile Engineering, Nano Technology & science, Power Electronics, Electronics & Communication Engineering, Computational mathematics, Image processing, Civil Engineering, Structural Engineering, Environmental Engineering, VLSI Testing & Low Power VLSI Design etc.
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScsitconf
Segmentation of Synthetic Aperture Radar (SAR) images have a great use in observing the
global environment, and in analysing the target detection and recognition .But , segmentation
of (SAR) images is known as a very complex task, due to the existence of speckle noise.
Therefore, in this paper we present a fast SAR images segmentation based on between class
variance. Our choice for used (BCV) method, because it is one of the most effective thresholding
techniques for most real world images with regard to uniformity and shape measures. Our
experiments will be as a test to determine which technique is effective in thresholding
(extraction) the oil spill for numerous SAR images, and in the future these thresholding
techniques can be very useful in detection objects in other SAR images
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScscpconf
Segmentation of Synthetic Aperture Radar (SAR) images have a great use in observing the global environment, and in analysing the target detection and recognition .But , segmentation of (SAR) images is known as a very complex task, due to the existence of speckle noise. Therefore, in this paper we present a fast SAR images segmentation based on between class variance. Our choice for used (BCV) method, because it is one of the most effective thresholding techniques for most real world images with regard to uniformity and shape measures. Our experiments will be as a test to determine which technique is effective in thresholding (extraction) the oil spill for numerous SAR images, and in the future these thresholding
techniques can be very useful in detection objects in other SAR images
This document describes an interactive multi-label image segmentation algorithm called "GrowCut" based on cellular automata. The algorithm can segment N-dimensional images with multiple labels. With modest user input of labeled pixels, GrowCut automatically segments the rest of the image in an iterative process. It requires less user effort than other techniques for moderately difficult images. The algorithm has advantages such as efficiency, parallelizability, and extensibility to generate new segmentation methods.
A Hybrid Technique for the Automated Segmentation of Corpus Callosum in Midsa...IJERA Editor
The corpus callosum (CC) is the largest white-matter structure in human brain. In this paper, we take two techniques to observe the results of segmentation of Corpus Callosum. The first one is mean shift algorithm and morphological operation. The second one is k-means clustering. In this paper, it is performed in three steps. The first step is finding the corpus callosum area using adaptive mean shift algorithm or k-means clustering . In second step, the boundary of detected CC area is then used as the initial contour in the Geometric Active Contour (GAC) mode and final step to remove unknown noise using morphological operation and evolved to get the final segmentation result. The experimental results demonstrate that the mean shift algorithm and k-means clustering has provided a reliable segmentation performance.
SEGMENTATION USING ‘NEW’ TEXTURE FEATUREacijjournal
This document summarizes a research paper that proposes a new texture feature descriptor called "NEW" for image segmentation. The NEW descriptor labels neighboring pixels and forms eight-component binary vectors to represent texture. Fuzzy c-means clustering is then used to segment images into regions based on texture. Experimental results on texture images from the Brodatz dataset show the NEW descriptor can successfully segment images into the correct number of texture regions. Accuracy, precision, and recall metrics are used to evaluate the segmentation performance.
Automatic Image Segmentation Using Wavelet Transform Based On Normalized Gra...IJMER
Model-Based image segmentation plays an important role in image analysis and image
retrieval. To analyze the features of the image, model based segmentation algorithm will be more
efficient. This paper, proposed Automatic Image Segmentation using Wavelets (AISWT) based on
normalized graph cut method to make segmentation simpler. Discrete Wavelet Transform is considered
for segmentation which contains significant information of the input for the approximation band of image.
The Histogram based algorithm is used to obtain the number of regions and the initial parameters like
mean, variance and mixing factor
This document summarizes and analyzes image segmentation and edge detection techniques for medical images. It discusses several current segmentation methods like histogram-based, edge detection, region growing, level set, and graph partitioning methods. The document then proposes a new active contour model for image segmentation that uses both edge and region information to segment images with undefined boundaries. It also discusses solving computational difficulties of models using level set theory. In conclusion, the proposed segmentation algorithms are shown to outperform some well-known methods in accuracy and processing speed.
PERFORMANCE ANALYSIS OF CLUSTERING BASED IMAGE SEGMENTATION AND OPTIMIZATION ...cscpconf
Partitioning of an image into several constituent components is called image segmentation.
Myriad algorithms using different methods have been proposed for image segmentation. Many
clustering algorithms and optimization techniques are also being used for segmentation of
images. A major challenge in segmentation evaluation comes from the fundamental conflict
between generality and objectivity. As there is a glut of image segmentation techniques
available today, customer who is the real user of these techniques may get obfuscated. In this
paper to address the above described problem some image segmentation techniques are evaluated based on their consistency in different applications. Based on the parameters used quantification of different clustering algorithms is done.
A new hybrid method for the segmentation of the brain mrissipij
The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue
characterization, presenting an interest in the follow-up of various pathologies such as the multiple
sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The
extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is
proposed; finally the last section is organized around an experimental part allowing the study of the
behavior of our model on textured images. In the aim to validate our model, different segmentations were
down on pathological Brain MRI, the obtained results have been compared to the results obtained by
another models. This results show the effectiveness and the robustness of the suggested approach.
Image segmentation by modified map ml estimationsijesajournal
Though numerous algorithms exist to perform image segmentation there are several issues
related to execution time of these algorithm. Image Segmentation is nothing but label relabeling
problem under probability framework. To estimate the label configuration, an iterative
optimization scheme is implemented to alternately carry out the maximum a posteriori (MAP)
estimation and the maximum likelihood (ML) estimations. In this paper this technique is
modified in such a way so that it performs segmentation within stipulated time period. The
extensive experiments shows that the results obtained are comparable with existing algorithms.
This algorithm performs faster execution than the existing algorithm to give automatic
segmentation without any human intervention. Its result match image edges very closer to
human perception.
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...CSCJournals
This paper proposed the active contour based texture image segmentation scheme using the linear structure tensor and tensor oriented steerable Quadrature filter. Linear Structure tensor (LST) is a popular method for the unsupervised texture image segmentation where LST contains only horizontal and vertical orientation information but lake in other orientation information and also in the image intensity information on which active contour is dependent. Therefore in this paper, LST is modified by adding intensity information from tensor oriented structure tensor to enhance the orientation information. In the proposed model, these phases oriented features are utilized as an external force in the region based active contour model (ACM) to segment the texture images having intensity inhomogeneity and noisy images. To validate the results of the proposed model, quantitative analysis is also shown in terms of accuracy using a Berkeley image database.
Image segmentation techniques
More information on this research can be found in:
Hussein, Rania, Frederic D. McKenzie. “Identifying Ambiguous Prostate Gland Contours from Histology Using Capsule Shape Information and Least Squares Curve Fitting.” The International Journal of Computer Assisted Radiology and Surgery ( IJCARS), Volume 2 Numbers 3-4, pp. 143-150, December 2007.
Different Image Segmentation Techniques for Dental Image ExtractionIJERA Editor
Image segmentation is the process of partitioning a digital image into multiple segments and often used to locate objects and boundaries (lines, curves etc.). In this paper, we have proposed image segmentation techniques: Region based, Texture based, Edge based. These techniques have been implemented on dental radiographs and gained good results compare to conventional technique known as Thresholding based technique. The quantitative results show the superiority of the image segmentation technique over three proposed techniques and conventional technique.
ROLE OF HYBRID LEVEL SET IN FETAL CONTOUR EXTRACTIONsipij
Image processing technologies may be employed for quicker and accurate diagnosis in analysis and
feature extraction of medical images. Here, existing level set algorithm is modified and it is employed for
extracting contour of fetus in an image. In traditional approach, fetal parameters are extracted manually
from ultrasound images. An automatic technique is highly desirable to obtain fetal biometric measurements
due to some problems in traditional approach such as lack of consistency and accuracy. The proposed
approach utilizes global & local region information for fetal contour extraction from ultrasonic images.
The main goal of this research is to develop a new methodology to aid the analysis and feature extraction.
International Journal of Computational Engineering Research(IJCER)ijceronline
International Journal of Computational Engineering Research(IJCER) is an intentional online Journal in English monthly publishing journal. This Journal publish original research work that contributes significantly to further the scientific knowledge in engineering and Technology
DOMAIN SPECIFIC CBIR FOR HIGHLY TEXTURED IMAGEScseij
It is A Challenging Task To Build A Cbir System Which Primarily Works On Texture Values As There
Meaning And Semantics Needs A Special Care To Be Mapped With Human Based Languages. We Have
Consider Highly Textured Images Having Properties(Entropy, Homogeneity, Contrast, Cluster Shade, Auto
Correlation)And Have Mapped Using A Fuzzy Minmax Scale W.R.T. Their Degree(High, Low,
Medium)And Technical Interpetation.This Developed System Is Performing Well In Terms Of Precision
And Recall Value Showing That Semantic Gap Has Been Reduced For Highly Textured Images Based Cbir.
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...IOSR Journals
1) The document discusses extracting the medial axis transform (MAT) of an image pattern using the Euclidean distance transform. The image is first converted to binary, then the Euclidean distance transform is used to compute the distance of each non-zero pixel to the closest zero pixel.
2) The medial axis transform represents the core or skeleton of an image pattern. There are different algorithms for extracting the skeleton or medial axis, including sequential and parallel algorithms. The skeleton provides a simple representation that preserves topological and size characteristics of the original shape.
3) The document provides background on medial axis transforms and different skeletonization algorithms. It then describes preparing the binary image and applying the Euclidean distance transform to extract the MAT and skeleton
International Journal of Engineering Research and Development (IJERD)IJERD Editor
This paper proposes a new method for visual segmentation based on fixation points. The method segments the region of interest in two steps: (1) generating a probabilistic boundary edge map combining multiple visual cues, and (2) finding the optimal closed contour around the fixation point in the transformed polar edge map. The paper shows this fixation-based segmentation approach improves accuracy over previous methods, especially when incorporating motion and stereo cues. It also introduces a region merging algorithm to further refine segmentation results. Evaluation on video and stereo image datasets demonstrates mean F-measures of 0.95 and 0.96 respectively when combining cues, compared to 0.62 and 0.65 without.
An evaluation of two popular segmentation algorithms, the mean shift-based segmentation algorithm and a graph-based segmentation scheme. We also consider a hybrid method which combines the other two methods.
Medical image analysis and processing using a dual transformeSAT Journals
Abstract The demand for images in medical field has increased drastically over the years. The need for reducing the storage space has resulted in image compression. This paper presents a dual transform for medical image compression algorithm. The experimental results determines how the compression ratio (CR), peak signal to noise ratio (PSNR) and SNR (signal to noise ratio) of different compression algorithms responds to dual transform algorithm. Keywords: DCT, SPIHT, Haar Wavelet, Linear approximation transform, image compression, Singular Value Decomposition (SVD).
This document presents a dual transform method for medical image compression that uses both singular value decomposition (SVD) and Haar wavelet transform. It compares the proposed dual transform method to existing Haar wavelet-SPIHT and DCT-SPIHT compression methods on 3 medical images. The dual transform method achieved higher compression ratios and PSNR values at 0.4 bits per pixel compared to the other methods, indicating better preservation of image quality at higher compression. The dual transform is thus concluded to be suitable for compressing medical images where no deterioration of image quality is acceptable.
International Journal of Engineering Research and Applications (IJERA) is an open access online peer reviewed international journal that publishes research and review articles in the fields of Computer Science, Neural Networks, Electrical Engineering, Software Engineering, Information Technology, Mechanical Engineering, Chemical Engineering, Plastic Engineering, Food Technology, Textile Engineering, Nano Technology & science, Power Electronics, Electronics & Communication Engineering, Computational mathematics, Image processing, Civil Engineering, Structural Engineering, Environmental Engineering, VLSI Testing & Low Power VLSI Design etc.
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScsitconf
Segmentation of Synthetic Aperture Radar (SAR) images have a great use in observing the
global environment, and in analysing the target detection and recognition .But , segmentation
of (SAR) images is known as a very complex task, due to the existence of speckle noise.
Therefore, in this paper we present a fast SAR images segmentation based on between class
variance. Our choice for used (BCV) method, because it is one of the most effective thresholding
techniques for most real world images with regard to uniformity and shape measures. Our
experiments will be as a test to determine which technique is effective in thresholding
(extraction) the oil spill for numerous SAR images, and in the future these thresholding
techniques can be very useful in detection objects in other SAR images
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScscpconf
Segmentation of Synthetic Aperture Radar (SAR) images have a great use in observing the global environment, and in analysing the target detection and recognition .But , segmentation of (SAR) images is known as a very complex task, due to the existence of speckle noise. Therefore, in this paper we present a fast SAR images segmentation based on between class variance. Our choice for used (BCV) method, because it is one of the most effective thresholding techniques for most real world images with regard to uniformity and shape measures. Our experiments will be as a test to determine which technique is effective in thresholding (extraction) the oil spill for numerous SAR images, and in the future these thresholding
techniques can be very useful in detection objects in other SAR images
This document describes an interactive multi-label image segmentation algorithm called "GrowCut" based on cellular automata. The algorithm can segment N-dimensional images with multiple labels. With modest user input of labeled pixels, GrowCut automatically segments the rest of the image in an iterative process. It requires less user effort than other techniques for moderately difficult images. The algorithm has advantages such as efficiency, parallelizability, and extensibility to generate new segmentation methods.
A Hybrid Technique for the Automated Segmentation of Corpus Callosum in Midsa...IJERA Editor
The corpus callosum (CC) is the largest white-matter structure in human brain. In this paper, we take two techniques to observe the results of segmentation of Corpus Callosum. The first one is mean shift algorithm and morphological operation. The second one is k-means clustering. In this paper, it is performed in three steps. The first step is finding the corpus callosum area using adaptive mean shift algorithm or k-means clustering . In second step, the boundary of detected CC area is then used as the initial contour in the Geometric Active Contour (GAC) mode and final step to remove unknown noise using morphological operation and evolved to get the final segmentation result. The experimental results demonstrate that the mean shift algorithm and k-means clustering has provided a reliable segmentation performance.
SEGMENTATION USING ‘NEW’ TEXTURE FEATUREacijjournal
This document summarizes a research paper that proposes a new texture feature descriptor called "NEW" for image segmentation. The NEW descriptor labels neighboring pixels and forms eight-component binary vectors to represent texture. Fuzzy c-means clustering is then used to segment images into regions based on texture. Experimental results on texture images from the Brodatz dataset show the NEW descriptor can successfully segment images into the correct number of texture regions. Accuracy, precision, and recall metrics are used to evaluate the segmentation performance.
Automatic Image Segmentation Using Wavelet Transform Based On Normalized Gra...IJMER
Model-Based image segmentation plays an important role in image analysis and image
retrieval. To analyze the features of the image, model based segmentation algorithm will be more
efficient. This paper, proposed Automatic Image Segmentation using Wavelets (AISWT) based on
normalized graph cut method to make segmentation simpler. Discrete Wavelet Transform is considered
for segmentation which contains significant information of the input for the approximation band of image.
The Histogram based algorithm is used to obtain the number of regions and the initial parameters like
mean, variance and mixing factor
This document summarizes and analyzes image segmentation and edge detection techniques for medical images. It discusses several current segmentation methods like histogram-based, edge detection, region growing, level set, and graph partitioning methods. The document then proposes a new active contour model for image segmentation that uses both edge and region information to segment images with undefined boundaries. It also discusses solving computational difficulties of models using level set theory. In conclusion, the proposed segmentation algorithms are shown to outperform some well-known methods in accuracy and processing speed.
PERFORMANCE ANALYSIS OF CLUSTERING BASED IMAGE SEGMENTATION AND OPTIMIZATION ...cscpconf
Partitioning of an image into several constituent components is called image segmentation.
Myriad algorithms using different methods have been proposed for image segmentation. Many
clustering algorithms and optimization techniques are also being used for segmentation of
images. A major challenge in segmentation evaluation comes from the fundamental conflict
between generality and objectivity. As there is a glut of image segmentation techniques
available today, customer who is the real user of these techniques may get obfuscated. In this
paper to address the above described problem some image segmentation techniques are evaluated based on their consistency in different applications. Based on the parameters used quantification of different clustering algorithms is done.
A new hybrid method for the segmentation of the brain mrissipij
The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue
characterization, presenting an interest in the follow-up of various pathologies such as the multiple
sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The
extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is
proposed; finally the last section is organized around an experimental part allowing the study of the
behavior of our model on textured images. In the aim to validate our model, different segmentations were
down on pathological Brain MRI, the obtained results have been compared to the results obtained by
another models. This results show the effectiveness and the robustness of the suggested approach.
Image segmentation by modified map ml estimationsijesajournal
Though numerous algorithms exist to perform image segmentation there are several issues
related to execution time of these algorithm. Image Segmentation is nothing but label relabeling
problem under probability framework. To estimate the label configuration, an iterative
optimization scheme is implemented to alternately carry out the maximum a posteriori (MAP)
estimation and the maximum likelihood (ML) estimations. In this paper this technique is
modified in such a way so that it performs segmentation within stipulated time period. The
extensive experiments shows that the results obtained are comparable with existing algorithms.
This algorithm performs faster execution than the existing algorithm to give automatic
segmentation without any human intervention. Its result match image edges very closer to
human perception.
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...CSCJournals
This paper proposed the active contour based texture image segmentation scheme using the linear structure tensor and tensor oriented steerable Quadrature filter. Linear Structure tensor (LST) is a popular method for the unsupervised texture image segmentation where LST contains only horizontal and vertical orientation information but lake in other orientation information and also in the image intensity information on which active contour is dependent. Therefore in this paper, LST is modified by adding intensity information from tensor oriented structure tensor to enhance the orientation information. In the proposed model, these phases oriented features are utilized as an external force in the region based active contour model (ACM) to segment the texture images having intensity inhomogeneity and noisy images. To validate the results of the proposed model, quantitative analysis is also shown in terms of accuracy using a Berkeley image database.
Image segmentation techniques
More information on this research can be found in:
Hussein, Rania, Frederic D. McKenzie. “Identifying Ambiguous Prostate Gland Contours from Histology Using Capsule Shape Information and Least Squares Curve Fitting.” The International Journal of Computer Assisted Radiology and Surgery ( IJCARS), Volume 2 Numbers 3-4, pp. 143-150, December 2007.
Different Image Segmentation Techniques for Dental Image ExtractionIJERA Editor
Image segmentation is the process of partitioning a digital image into multiple segments and often used to locate objects and boundaries (lines, curves etc.). In this paper, we have proposed image segmentation techniques: Region based, Texture based, Edge based. These techniques have been implemented on dental radiographs and gained good results compare to conventional technique known as Thresholding based technique. The quantitative results show the superiority of the image segmentation technique over three proposed techniques and conventional technique.
ROLE OF HYBRID LEVEL SET IN FETAL CONTOUR EXTRACTIONsipij
Image processing technologies may be employed for quicker and accurate diagnosis in analysis and
feature extraction of medical images. Here, existing level set algorithm is modified and it is employed for
extracting contour of fetus in an image. In traditional approach, fetal parameters are extracted manually
from ultrasound images. An automatic technique is highly desirable to obtain fetal biometric measurements
due to some problems in traditional approach such as lack of consistency and accuracy. The proposed
approach utilizes global & local region information for fetal contour extraction from ultrasonic images.
The main goal of this research is to develop a new methodology to aid the analysis and feature extraction.
ROLE OF HYBRID LEVEL SET IN FETAL CONTOUR EXTRACTIONsipij
Image processing technologies may be employed for quicker and accurate diagnosis in analysis and
feature extraction of medical images. Here, existing level set algorithm is modified and it is employed for
extracting contour of fetus in an image. In traditional approach, fetal parameters are extracted manually
from ultrasound images. An automatic technique is highly desirable to obtain fetal biometric measurements
due to some problems in traditional approach such as lack of consistency and accuracy. The proposed
approach utilizes global & local region information for fetal contour extraction from ultrasonic images.
The main goal of this research is to develop a new methodology to aid the analysis and feature extraction.
Role of Hybrid Level Set in Fetal Contour Extractionsipij
Image processing technologies may be employed for quicker and accurate diagnosis in analysis and
feature extraction of medical images. Here, existing level set algorithm is modified and it is employed for
extracting contour of fetus in an image. In traditional approach, fetal parameters are extracted manually
from ultrasound images. An automatic technique is highly desirable to obtain fetal biometric measurements
due to some problems in traditional approach such as lack of consistency and accuracy. The proposed
approach utilizes global & local region information for fetal contour extraction from ultrasonic images.
The main goal of this research is to develop a new methodology to aid the analysis and feature extraction.
ROLE OF HYBRID LEVEL SET IN FETAL CONTOUR EXTRACTIONsipij
Image processing technologies may be employed for quicker and accurate diagnosis in analysis and
feature extraction of medical images. Here, existing level set algorithm is modified and it is employed for
extracting contour of fetus in an image. In traditional approach, fetal parameters are extracted manually
from ultrasound images. An automatic technique is highly desirable to obtain fetal biometric measurements
due to some problems in traditional approach such as lack of consistency and accuracy. The proposed
approach utilizes global & local region information for fetal contour extraction from ultrasonic images.
The main goal of this research is to develop a new methodology to aid the analysis and feature extraction.
A NOVEL IMAGE SEGMENTATION ENHANCEMENT TECHNIQUE BASED ON ACTIVE CONTOUR AND...acijjournal
This document summarizes a novel image segmentation technique based on active contours and topological alignments. The technique aims to improve boundary detection by incorporating the advantages of both active contours and topological alignments. It presents a two-step algorithm: 1) Initial segmentation is performed using topological alignments to improve cell tracking results. 2) The output is transformed into the input for an active contour model, which evolves toward cell boundaries for analysis of cell mobility. Tests on 70 grayscale cell images showed the technique achieved better segmentation and boundary detection compared to active contours alone, including for low contrast images and cases of under/over-segmentation.
This document describes a narrow band region approach for 2D and 3D image segmentation using deformable curves and surfaces. Specifically, it develops a region energy term involving a fixed-width band around the evolving curve or surface. This energy achieves a balance between local gradient features and global region statistics. The region energy is formulated to allow efficient computation on explicit parametric models and implicit level set models. Two different region terms are introduced, each suited to different configurations of the target object and its surroundings. The document derives the mathematical framework for computing the region energies and their gradients to allow minimization via gradient descent. It then discusses numerical implementations and provides experiments segmenting medical and natural images.
A novel predicate for active region merging in automatic image segmentationeSAT Publishing House
IJRET : International Journal of Research in Engineering and Technology is an international peer reviewed, online journal published by eSAT Publishing House for the enhancement of research in various disciplines of Engineering and Technology. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching and research in the fields of Engineering and Technology. We bring together Scientists, Academician, Field Engineers, Scholars and Students of related fields of Engineering and Technology.
A novel predicate for active region merging in automatic image segmentationeSAT Journals
Abstract Image segmentation is an elementary task in computer vision and image processing. This paper deals with the automatic image segmentation in a region merging method. Two essential problems in a region merging algorithm: order of merging and the stopping criterion. These two problems are solved by a novel predicate which is described by the sequential probability ratio test and the minimal cost criterion. In this paper we propose an Active Region merging algorithm which utilizes the information acquired from perceiving edges in color images in L*a*b* color space. By means of color gradient recognition method, pixels with no edges are clustered and considered alone to recognize some preliminary portion of the input image. The color information along with a region growth map consisting of completely grown regions are used to perform an Active region merging method to combine regions with similar characteristics. Experiments on real natural images are performed to demonstrate the performance of the proposed Active region merging method. Index Terms: Adaptive threshold generation, CIE L*a*b* color gradient, region merging, Sequential Probability Ratio Test (SPRT).
A brief review of segmentation methods for medical imageseSAT Journals
Abstract For medical diagnosis and laboratory study applications we cannot directly use image that are acquired and detect the disorder because it is not efficient and unrealistic. These images need processing and extracting portions from them that can be used for further study or diagnosis. The main goal of this paper is to give overview about segmentation methods that are used for medical images for detecting the edges and based on this detection the disease prediction and diagnosis is done. There are a lot of tools available for this purpose such as STAPLE and FreeSurfer whole brain segmentation tool etc. Some of these methods are semi-automatic i.e. they require human intervention for their completion and some of them are automatic. The methods are totally divided into four types namely, edge based segmentation, region based segmentation, data clustering and matching. The aim of segmenting medical images is that to detect the ROI and diagnose for a disease based on the detected part. Segmentation is partitioning a image into meaningful regions based upon a specific application. Generally segmentation can be based on the measurements like gray level, color, texture, motion, depth or intensity. Segmentation is necessary in two situations, namely, set-off segmentation i.e. when the object to be segmented is interesting in itself and can be used separately for further studies, and secondly concealing segmentation i.e. suppose there are some noise or vision blockers in the image, so this segmentation aims at deleting the disturbing elements in an image. This paper focuses only on the working of different methods that are used for segmentation whether they segment well or poor. Index Terms: Image Registration, Image Segmentation, Reinforcement Learning,
IJRET : International Journal of Research in Engineering and Technology is an international peer reviewed, online journal published by eSAT Publishing House for the enhancement of research in various disciplines of Engineering and Technology. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching and research in the fields of Engineering and Technology. We bring together Scientists, Academician, Field Engineers, Scholars and Students of related fields of Engineering and Technology
Image segmentation Based on Chan-Vese Active Contours using Finite Difference...ijsrd.com
There are a lot of image segmentation techniques that try to differentiate between backgrounds and object pixels but many of them fail to discriminate between different objects that are close to each other, e.g. low contrast between foreground and background regions increase the difficulty for segmenting images. So we introduced the Chan-Vese active contours model for image segmentation to detect the objects in given image, which is built based on techniques of curve evolution and level set method. The Chan-Vese model is a special case of Mumford-Shah functional for segmentation and level sets. It differs from other active contour models in that it is not edge dependent, therefore it is more capable of detecting objects whose boundaries may not be defined by a gradient. Finally, we developed code in Matlab 7.8 for solving resulting Partial differential equation numerically by the finite differences schemes on pixel-by-pixel domain.
Image Segmentation Using Pairwise Correlation ClusteringIJERA Editor
A pairwise hypergraph based image segmentation framework is formulated in a supervised manner for various images. The image segmentation is to infer the edge label over the pairwise hypergraph by maximizing the normalized cuts. Correlation clustering which is a graph partitioning algorithm, was shown to be effective in a number of applications such as identification, clustering of documents and image segmentation.The partitioning result is derived from a algorithm to partition a pairwise graph into disjoint groups of coherent nodes. In the pairwise correlation clustering, the pairwise graph which is used in the correlation clustering is generalized to a superpixel graph where a node corresponds to a superpixel and a link between adjacent superpixels corresponds to an edge. This pairwise correlation clustering also considers the feature vector which extracts several visual cues from a superpixel, including brightness, color, texture, and shape. Significant progress in clustering has been achieved by algorithms that are based on pairwise affinities between the datasets. The experimental results are shown by calculating the typical cut and inference in an undirected graphical model and datasets.
This document summarizes an image segmentation algorithm called Modified MAP-ML Estimations. It begins with an abstract describing the algorithm and its benefits of faster execution time compared to existing algorithms. It then reviews related work in image segmentation techniques and their limitations. The document describes the probabilistic model used in the algorithm, which formulates segmentation as a labeling problem. It explains the MAP estimation approach used to estimate label configurations, defining energy functions minimized through graph cuts. ML estimation is then used to update the region feature estimates in an iterative process. In summary, this algorithm modifies an existing MAP-ML approach to achieve comparable segmentation results to other algorithms, but in a faster execution time without human intervention.
IMAGE SEGMENTATION BY MODIFIED MAP-ML ESTIMATIONScscpconf
This document summarizes an image segmentation algorithm called Modified MAP-ML Estimations. It begins with an abstract describing the algorithm and its benefits of faster execution time compared to existing algorithms. It then reviews related work in image segmentation techniques and their limitations. The document describes the probabilistic model used in the algorithm, which formulates segmentation as a labeling problem. It explains the MAP estimation approach used to estimate label configurations, and the ML estimation used to estimate region properties. The algorithm iterates between these two estimations to perform segmentation.
This document discusses different techniques for image segmentation. It begins by defining image segmentation as dividing an image into regions based on similarity and differences between adjacent regions. The main approaches discussed are discontinuity-based segmentation, which looks for sudden changes in pixel intensity (edges), and similarity-based segmentation, which groups similar pixels into regions. The document then examines various methods for detecting edges, linking edges, thresholding, and region-based segmentation using techniques like region growing and splitting/merging.
This document provides an introduction to image segmentation. It discusses how image segmentation partitions an image into meaningful regions based on measurements like greyscale, color, texture, depth, or motion. Segmentation is often an initial step in image understanding and has applications in identifying objects, guiding robots, and video compression. The document describes thresholding and clustering as two common segmentation techniques and provides examples of segmentation based on greyscale, texture, motion, depth, and optical flow. It also discusses region-growing, edge-based, and active contour model approaches to segmentation.
IRJET- Image Segmentation Techniques: A ReviewIRJET Journal
1. The document discusses and reviews various techniques for image segmentation, including edge detection, threshold-based, region-based, and neural network-based methods.
2. Edge detection separates images by detecting changes in pixel intensity or color to find edges and boundaries. Threshold-based methods segment images based on pixel intensity levels compared to a threshold. Region-based methods partition images into homogeneous regions of connected pixels. Neural network-based methods can perform automated segmentation through supervised or unsupervised machine learning.
3. Prior research has evaluated these techniques, finding that edge detection works best with clear edges but struggles with noise or smooth boundaries, and thresholding methods can miss details but are simple to implement. Region-based and neural network
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...IJECEIAES
Medical image analysis has witnessed significant advancements with deep learning techniques. In the domain of brain tumor segmentation, the ability to
precisely delineate tumor boundaries from magnetic resonance imaging (MRI)
scans holds profound implications for diagnosis. This study presents an ensemble convolutional neural network (CNN) with transfer learning, integrating
the state-of-the-art Deeplabv3+ architecture with the ResNet18 backbone. The
model is rigorously trained and evaluated, exhibiting remarkable performance
metrics, including an impressive global accuracy of 99.286%, a high-class accuracy of 82.191%, a mean intersection over union (IoU) of 79.900%, a weighted
IoU of 98.620%, and a Boundary F1 (BF) score of 83.303%. Notably, a detailed comparative analysis with existing methods showcases the superiority of
our proposed model. These findings underscore the model’s competence in precise brain tumor localization, underscoring its potential to revolutionize medical
image analysis and enhance healthcare outcomes. This research paves the way
for future exploration and optimization of advanced CNN models in medical
imaging, emphasizing addressing false positives and resource efficiency.
Embedded machine learning-based road conditions and driving behavior monitoringIJECEIAES
Car accident rates have increased in recent years, resulting in losses in human lives, properties, and other financial costs. An embedded machine learning-based system is developed to address this critical issue. The system can monitor road conditions, detect driving patterns, and identify aggressive driving behaviors. The system is based on neural networks trained on a comprehensive dataset of driving events, driving styles, and road conditions. The system effectively detects potential risks and helps mitigate the frequency and impact of accidents. The primary goal is to ensure the safety of drivers and vehicles. Collecting data involved gathering information on three key road events: normal street and normal drive, speed bumps, circular yellow speed bumps, and three aggressive driving actions: sudden start, sudden stop, and sudden entry. The gathered data is processed and analyzed using a machine learning system designed for limited power and memory devices. The developed system resulted in 91.9% accuracy, 93.6% precision, and 92% recall. The achieved inference time on an Arduino Nano 33 BLE Sense with a 32-bit CPU running at 64 MHz is 34 ms and requires 2.6 kB peak RAM and 139.9 kB program flash memory, making it suitable for resource-constrained embedded systems.
Advanced control scheme of doubly fed induction generator for wind turbine us...IJECEIAES
This paper describes a speed control device for generating electrical energy on an electricity network based on the doubly fed induction generator (DFIG) used for wind power conversion systems. At first, a double-fed induction generator model was constructed. A control law is formulated to govern the flow of energy between the stator of a DFIG and the energy network using three types of controllers: proportional integral (PI), sliding mode controller (SMC) and second order sliding mode controller (SOSMC). Their different results in terms of power reference tracking, reaction to unexpected speed fluctuations, sensitivity to perturbations, and resilience against machine parameter alterations are compared. MATLAB/Simulink was used to conduct the simulations for the preceding study. Multiple simulations have shown very satisfying results, and the investigations demonstrate the efficacy and power-enhancing capabilities of the suggested control system.
Neural network optimizer of proportional-integral-differential controller par...IJECEIAES
Wide application of proportional-integral-differential (PID)-regulator in industry requires constant improvement of methods of its parameters adjustment. The paper deals with the issues of optimization of PID-regulator parameters with the use of neural network technology methods. A methodology for choosing the architecture (structure) of neural network optimizer is proposed, which consists in determining the number of layers, the number of neurons in each layer, as well as the form and type of activation function. Algorithms of neural network training based on the application of the method of minimizing the mismatch between the regulated value and the target value are developed. The method of back propagation of gradients is proposed to select the optimal training rate of neurons of the neural network. The neural network optimizer, which is a superstructure of the linear PID controller, allows increasing the regulation accuracy from 0.23 to 0.09, thus reducing the power consumption from 65% to 53%. The results of the conducted experiments allow us to conclude that the created neural superstructure may well become a prototype of an automatic voltage regulator (AVR)-type industrial controller for tuning the parameters of the PID controller.
An improved modulation technique suitable for a three level flying capacitor ...IJECEIAES
This research paper introduces an innovative modulation technique for controlling a 3-level flying capacitor multilevel inverter (FCMLI), aiming to streamline the modulation process in contrast to conventional methods. The proposed
simplified modulation technique paves the way for more straightforward and
efficient control of multilevel inverters, enabling their widespread adoption and
integration into modern power electronic systems. Through the amalgamation of
sinusoidal pulse width modulation (SPWM) with a high-frequency square wave
pulse, this controlling technique attains energy equilibrium across the coupling
capacitor. The modulation scheme incorporates a simplified switching pattern
and a decreased count of voltage references, thereby simplifying the control
algorithm.
A review on features and methods of potential fishing zoneIJECEIAES
This review focuses on the importance of identifying potential fishing zones in seawater for sustainable fishing practices. It explores features like sea surface temperature (SST) and sea surface height (SSH), along with classification methods such as classifiers. The features like SST, SSH, and different classifiers used to classify the data, have been figured out in this review study. This study underscores the importance of examining potential fishing zones using advanced analytical techniques. It thoroughly explores the methodologies employed by researchers, covering both past and current approaches. The examination centers on data characteristics and the application of classification algorithms for classification of potential fishing zones. Furthermore, the prediction of potential fishing zones relies significantly on the effectiveness of classification algorithms. Previous research has assessed the performance of models like support vector machines, naïve Bayes, and artificial neural networks (ANN). In the previous result, the results of support vector machine (SVM) were 97.6% more accurate than naive Bayes's 94.2% to classify test data for fisheries classification. By considering the recent works in this area, several recommendations for future works are presented to further improve the performance of the potential fishing zone models, which is important to the fisheries community.
Electrical signal interference minimization using appropriate core material f...IJECEIAES
As demand for smaller, quicker, and more powerful devices rises, Moore's law is strictly followed. The industry has worked hard to make little devices that boost productivity. The goal is to optimize device density. Scientists are reducing connection delays to improve circuit performance. This helped them understand three-dimensional integrated circuit (3D IC) concepts, which stack active devices and create vertical connections to diminish latency and lower interconnects. Electrical involvement is a big worry with 3D integrates circuits. Researchers have developed and tested through silicon via (TSV) and substrates to decrease electrical wave involvement. This study illustrates a novel noise coupling reduction method using several electrical involvement models. A 22% drop in electrical involvement from wave-carrying to victim TSVs introduces this new paradigm and improves system performance even at higher THz frequencies.
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...IJECEIAES
Climate change's impact on the planet forced the United Nations and governments to promote green energies and electric transportation. The deployments of photovoltaic (PV) and electric vehicle (EV) systems gained stronger momentum due to their numerous advantages over fossil fuel types. The advantages go beyond sustainability to reach financial support and stability. The work in this paper introduces the hybrid system between PV and EV to support industrial and commercial plants. This paper covers the theoretical framework of the proposed hybrid system including the required equation to complete the cost analysis when PV and EV are present. In addition, the proposed design diagram which sets the priorities and requirements of the system is presented. The proposed approach allows setup to advance their power stability, especially during power outages. The presented information supports researchers and plant owners to complete the necessary analysis while promoting the deployment of clean energy. The result of a case study that represents a dairy milk farmer supports the theoretical works and highlights its advanced benefits to existing plants. The short return on investment of the proposed approach supports the paper's novelty approach for the sustainable electrical system. In addition, the proposed system allows for an isolated power setup without the need for a transmission line which enhances the safety of the electrical network
Bibliometric analysis highlighting the role of women in addressing climate ch...IJECEIAES
Fossil fuel consumption increased quickly, contributing to climate change
that is evident in unusual flooding and draughts, and global warming. Over
the past ten years, women's involvement in society has grown dramatically,
and they succeeded in playing a noticeable role in reducing climate change.
A bibliometric analysis of data from the last ten years has been carried out to
examine the role of women in addressing the climate change. The analysis's
findings discussed the relevant to the sustainable development goals (SDGs),
particularly SDG 7 and SDG 13. The results considered contributions made
by women in the various sectors while taking geographic dispersion into
account. The bibliometric analysis delves into topics including women's
leadership in environmental groups, their involvement in policymaking, their
contributions to sustainable development projects, and the influence of
gender diversity on attempts to mitigate climate change. This study's results
highlight how women have influenced policies and actions related to climate
change, point out areas of research deficiency and recommendations on how
to increase role of the women in addressing the climate change and
achieving sustainability. To achieve more successful results, this initiative
aims to highlight the significance of gender equality and encourage
inclusivity in climate change decision-making processes.
Voltage and frequency control of microgrid in presence of micro-turbine inter...IJECEIAES
The active and reactive load changes have a significant impact on voltage
and frequency. In this paper, in order to stabilize the microgrid (MG) against
load variations in islanding mode, the active and reactive power of all
distributed generators (DGs), including energy storage (battery), diesel
generator, and micro-turbine, are controlled. The micro-turbine generator is
connected to MG through a three-phase to three-phase matrix converter, and
the droop control method is applied for controlling the voltage and
frequency of MG. In addition, a method is introduced for voltage and
frequency control of micro-turbines in the transition state from gridconnected mode to islanding mode. A novel switching strategy of the matrix
converter is used for converting the high-frequency output voltage of the
micro-turbine to the grid-side frequency of the utility system. Moreover,
using the switching strategy, the low-order harmonics in the output current
and voltage are not produced, and consequently, the size of the output filter
would be reduced. In fact, the suggested control strategy is load-independent
and has no frequency conversion restrictions. The proposed approach for
voltage and frequency regulation demonstrates exceptional performance and
favorable response across various load alteration scenarios. The suggested
strategy is examined in several scenarios in the MG test systems, and the
simulation results are addressed.
Enhancing battery system identification: nonlinear autoregressive modeling fo...IJECEIAES
Precisely characterizing Li-ion batteries is essential for optimizing their
performance, enhancing safety, and prolonging their lifespan across various
applications, such as electric vehicles and renewable energy systems. This
article introduces an innovative nonlinear methodology for system
identification of a Li-ion battery, employing a nonlinear autoregressive with
exogenous inputs (NARX) model. The proposed approach integrates the
benefits of nonlinear modeling with the adaptability of the NARX structure,
facilitating a more comprehensive representation of the intricate
electrochemical processes within the battery. Experimental data collected
from a Li-ion battery operating under diverse scenarios are employed to
validate the effectiveness of the proposed methodology. The identified
NARX model exhibits superior accuracy in predicting the battery's behavior
compared to traditional linear models. This study underscores the
importance of accounting for nonlinearities in battery modeling, providing
insights into the intricate relationships between state-of-charge, voltage, and
current under dynamic conditions.
Smart grid deployment: from a bibliometric analysis to a surveyIJECEIAES
Smart grids are one of the last decades' innovations in electrical energy.
They bring relevant advantages compared to the traditional grid and
significant interest from the research community. Assessing the field's
evolution is essential to propose guidelines for facing new and future smart
grid challenges. In addition, knowing the main technologies involved in the
deployment of smart grids (SGs) is important to highlight possible
shortcomings that can be mitigated by developing new tools. This paper
contributes to the research trends mentioned above by focusing on two
objectives. First, a bibliometric analysis is presented to give an overview of
the current research level about smart grid deployment. Second, a survey of
the main technological approaches used for smart grid implementation and
their contributions are highlighted. To that effect, we searched the Web of
Science (WoS), and the Scopus databases. We obtained 5,663 documents
from WoS and 7,215 from Scopus on smart grid implementation or
deployment. With the extraction limitation in the Scopus database, 5,872 of
the 7,215 documents were extracted using a multi-step process. These two
datasets have been analyzed using a bibliometric tool called bibliometrix.
The main outputs are presented with some recommendations for future
research.
Use of analytical hierarchy process for selecting and prioritizing islanding ...IJECEIAES
One of the problems that are associated to power systems is islanding
condition, which must be rapidly and properly detected to prevent any
negative consequences on the system's protection, stability, and security.
This paper offers a thorough overview of several islanding detection
strategies, which are divided into two categories: classic approaches,
including local and remote approaches, and modern techniques, including
techniques based on signal processing and computational intelligence.
Additionally, each approach is compared and assessed based on several
factors, including implementation costs, non-detected zones, declining
power quality, and response times using the analytical hierarchy process
(AHP). The multi-criteria decision-making analysis shows that the overall
weight of passive methods (24.7%), active methods (7.8%), hybrid methods
(5.6%), remote methods (14.5%), signal processing-based methods (26.6%),
and computational intelligent-based methods (20.8%) based on the
comparison of all criteria together. Thus, it can be seen from the total weight
that hybrid approaches are the least suitable to be chosen, while signal
processing-based methods are the most appropriate islanding detection
method to be selected and implemented in power system with respect to the
aforementioned factors. Using Expert Choice software, the proposed
hierarchy model is studied and examined.
Enhancing of single-stage grid-connected photovoltaic system using fuzzy logi...IJECEIAES
The power generated by photovoltaic (PV) systems is influenced by
environmental factors. This variability hampers the control and utilization of
solar cells' peak output. In this study, a single-stage grid-connected PV
system is designed to enhance power quality. Our approach employs fuzzy
logic in the direct power control (DPC) of a three-phase voltage source
inverter (VSI), enabling seamless integration of the PV connected to the
grid. Additionally, a fuzzy logic-based maximum power point tracking
(MPPT) controller is adopted, which outperforms traditional methods like
incremental conductance (INC) in enhancing solar cell efficiency and
minimizing the response time. Moreover, the inverter's real-time active and
reactive power is directly managed to achieve a unity power factor (UPF).
The system's performance is assessed through MATLAB/Simulink
implementation, showing marked improvement over conventional methods,
particularly in steady-state and varying weather conditions. For solar
irradiances of 500 and 1,000 W/m2
, the results show that the proposed
method reduces the total harmonic distortion (THD) of the injected current
to the grid by approximately 46% and 38% compared to conventional
methods, respectively. Furthermore, we compare the simulation results with
IEEE standards to evaluate the system's grid compatibility.
Enhancing photovoltaic system maximum power point tracking with fuzzy logic-b...IJECEIAES
Photovoltaic systems have emerged as a promising energy resource that
caters to the future needs of society, owing to their renewable, inexhaustible,
and cost-free nature. The power output of these systems relies on solar cell
radiation and temperature. In order to mitigate the dependence on
atmospheric conditions and enhance power tracking, a conventional
approach has been improved by integrating various methods. To optimize
the generation of electricity from solar systems, the maximum power point
tracking (MPPT) technique is employed. To overcome limitations such as
steady-state voltage oscillations and improve transient response, two
traditional MPPT methods, namely fuzzy logic controller (FLC) and perturb
and observe (P&O), have been modified. This research paper aims to
simulate and validate the step size of the proposed modified P&O and FLC
techniques within the MPPT algorithm using MATLAB/Simulink for
efficient power tracking in photovoltaic systems.
Adaptive synchronous sliding control for a robot manipulator based on neural ...IJECEIAES
Robot manipulators have become important equipment in production lines, medical fields, and transportation. Improving the quality of trajectory tracking for
robot hands is always an attractive topic in the research community. This is a
challenging problem because robot manipulators are complex nonlinear systems
and are often subject to fluctuations in loads and external disturbances. This
article proposes an adaptive synchronous sliding control scheme to improve trajectory tracking performance for a robot manipulator. The proposed controller
ensures that the positions of the joints track the desired trajectory, synchronize
the errors, and significantly reduces chattering. First, the synchronous tracking
errors and synchronous sliding surfaces are presented. Second, the synchronous
tracking error dynamics are determined. Third, a robust adaptive control law is
designed,the unknown components of the model are estimated online by the neural network, and the parameters of the switching elements are selected by fuzzy
logic. The built algorithm ensures that the tracking and approximation errors
are ultimately uniformly bounded (UUB). Finally, the effectiveness of the constructed algorithm is demonstrated through simulation and experimental results.
Simulation and experimental results show that the proposed controller is effective with small synchronous tracking errors, and the chattering phenomenon is
significantly reduced.
Remote field-programmable gate array laboratory for signal acquisition and de...IJECEIAES
A remote laboratory utilizing field-programmable gate array (FPGA) technologies enhances students’ learning experience anywhere and anytime in embedded system design. Existing remote laboratories prioritize hardware access and visual feedback for observing board behavior after programming, neglecting comprehensive debugging tools to resolve errors that require internal signal acquisition. This paper proposes a novel remote embeddedsystem design approach targeting FPGA technologies that are fully interactive via a web-based platform. Our solution provides FPGA board access and debugging capabilities beyond the visual feedback provided by existing remote laboratories. We implemented a lab module that allows users to seamlessly incorporate into their FPGA design. The module minimizes hardware resource utilization while enabling the acquisition of a large number of data samples from the signal during the experiments by adaptively compressing the signal prior to data transmission. The results demonstrate an average compression ratio of 2.90 across three benchmark signals, indicating efficient signal acquisition and effective debugging and analysis. This method allows users to acquire more data samples than conventional methods. The proposed lab allows students to remotely test and debug their designs, bridging the gap between theory and practice in embedded system design.
Detecting and resolving feature envy through automated machine learning and m...IJECEIAES
Efficiently identifying and resolving code smells enhances software project quality. This paper presents a novel solution, utilizing automated machine learning (AutoML) techniques, to detect code smells and apply move method refactoring. By evaluating code metrics before and after refactoring, we assessed its impact on coupling, complexity, and cohesion. Key contributions of this research include a unique dataset for code smell classification and the development of models using AutoGluon for optimal performance. Furthermore, the study identifies the top 20 influential features in classifying feature envy, a well-known code smell, stemming from excessive reliance on external classes. We also explored how move method refactoring addresses feature envy, revealing reduced coupling and complexity, and improved cohesion, ultimately enhancing code quality. In summary, this research offers an empirical, data-driven approach, integrating AutoML and move method refactoring to optimize software project quality. Insights gained shed light on the benefits of refactoring on code quality and the significance of specific features in detecting feature envy. Future research can expand to explore additional refactoring techniques and a broader range of code metrics, advancing software engineering practices and standards.
Smart monitoring technique for solar cell systems using internet of things ba...IJECEIAES
Rapidly and remotely monitoring and receiving the solar cell systems status parameters, solar irradiance, temperature, and humidity, are critical issues in enhancement their efficiency. Hence, in the present article an improved smart prototype of internet of things (IoT) technique based on embedded system through NodeMCU ESP8266 (ESP-12E) was carried out experimentally. Three different regions at Egypt; Luxor, Cairo, and El-Beheira cities were chosen to study their solar irradiance profile, temperature, and humidity by the proposed IoT system. The monitoring data of solar irradiance, temperature, and humidity were live visualized directly by Ubidots through hypertext transfer protocol (HTTP) protocol. The measured solar power radiation in Luxor, Cairo, and El-Beheira ranged between 216-1000, 245-958, and 187-692 W/m 2 respectively during the solar day. The accuracy and rapidity of obtaining monitoring results using the proposed IoT system made it a strong candidate for application in monitoring solar cell systems. On the other hand, the obtained solar power radiation results of the three considered regions strongly candidate Luxor and Cairo as suitable places to build up a solar cells system station rather than El-Beheira.
An efficient security framework for intrusion detection and prevention in int...IJECEIAES
Over the past few years, the internet of things (IoT) has advanced to connect billions of smart devices to improve quality of life. However, anomalies or malicious intrusions pose several security loopholes, leading to performance degradation and threat to data security in IoT operations. Thereby, IoT security systems must keep an eye on and restrict unwanted events from occurring in the IoT network. Recently, various technical solutions based on machine learning (ML) models have been derived towards identifying and restricting unwanted events in IoT. However, most ML-based approaches are prone to miss-classification due to inappropriate feature selection. Additionally, most ML approaches applied to intrusion detection and prevention consider supervised learning, which requires a large amount of labeled data to be trained. Consequently, such complex datasets are impossible to source in a large network like IoT. To address this problem, this proposed study introduces an efficient learning mechanism to strengthen the IoT security aspects. The proposed algorithm incorporates supervised and unsupervised approaches to improve the learning models for intrusion detection and mitigation. Compared with the related works, the experimental outcome shows that the model performs well in a benchmark dataset. It accomplishes an improved detection accuracy of approximately 99.21%.
This presentation outlines testing methods and equipment for evaluating gas-phase air filtration media using flat sheet samples, in accordance with ISO 10121 standards—specifically designed for assessing the performance of media used in general ventilation and indoor air quality applications.
This presentation provides a comprehensive overview of air filter testing equipment and solutions based on ISO 5011, the globally recognized standard for performance testing of air cleaning devices used in internal combustion engines and compressors.
Key content includes:
Optimize Indoor Air Quality with Our Latest HVAC Air Filter Equipment Catalogue
Discover our complete range of high-performance HVAC air filtration solutions in this comprehensive catalogue. Designed for industrial, commercial, and residential applications, our equipment ensures superior air quality, energy efficiency, and compliance with international standards.
📘 What You'll Find Inside:
Detailed product specifications
High-efficiency particulate and gas phase filters
Custom filtration solutions
Application-specific recommendations
Maintenance and installation guidelines
Whether you're an HVAC engineer, facilities manager, or procurement specialist, this catalogue provides everything you need to select the right air filtration system for your needs.
🛠️ Cleaner Air Starts Here — Explore Our Finalized Catalogue Now!
Digital Crime – Substantive Criminal Law – General Conditions – Offenses – In...ManiMaran230751
Digital Crime – Substantive Criminal Law – General Conditions – Offenses – Investigation Methods for
Collecting Digital Evidence – International Cooperation to Collect Digital Evidence.
This research presents a machine learning (ML) based model to estimate the axial strength of corroded RC columns reinforced with fiber-reinforced polymer (FRP) composites. Estimating the axial strength of corroded columns is complex due to the intricate interplay between corrosion and FRP reinforcement. To address this, a dataset of 102 samples from various literature sources was compiled. Subsequently, this dataset was employed to create and train the ML models. The parameters influencing axial strength included the geometry of the column, properties of the FRP material, degree of corrosion, and properties of the concrete. Considering the scarcity of reliable design guidelines for estimating the axial strength of RC columns considering corrosion effects, artificial neural network (ANN), Gaussian process regression (GPR), and support vector machine (SVM) techniques were employed. These techniques were used to predict the axial strength of corroded RC columns reinforced with FRP. When comparing the results of the proposed ML models with existing design guidelines, the ANN model demonstrated higher predictive accuracy. The ANN model achieved an R-value of 98.08% and an RMSE value of 132.69 kN which is the lowest among all other models. This model fills the existing gap in knowledge and provides a precise means of assessment. This model can be used in the scientific community by researchers and practitioners to predict the axial strength of FRP-strengthened corroded columns. In addition, the GPR and SVM models obtained an accuracy of 98.26% and 97.99%, respectively.
ISO 4020-6.1 – Filter Cleanliness Test Rig: Precision Testing for Fuel Filter Integrity
Explore the design, functionality, and standards compliance of our advanced Filter Cleanliness Test Rig developed according to ISO 4020-6.1. This rig is engineered to evaluate fuel filter cleanliness levels with high accuracy and repeatability—critical for ensuring the performance and durability of fuel systems.
🔬 Inside This Presentation:
Overview of ISO 4020-6.1 testing protocols
Rig components and schematic layout
Test methodology and data acquisition
Applications in automotive and industrial filtration
Key benefits: accuracy, reliability, compliance
Perfect for R&D engineers, quality assurance teams, and lab technicians focused on filtration performance and standard compliance.
🛠️ Ensure Filter Cleanliness — Validate with Confidence.
Kevin Corke Spouse Revealed A Deep Dive Into His Private Life.pdfMedicoz Clinic
Kevin Corke, a respected American journalist known for his work with Fox News, has always kept his personal life away from the spotlight. Despite his public presence, details about his spouse remain mostly private. Fans have long speculated about his marital status, but Corke chooses to maintain a clear boundary between his professional and personal life. While he occasionally shares glimpses of his family on social media, he has not publicly disclosed his wife’s identity. This deep dive into his private life reveals a man who values discretion, keeping his loved ones shielded from media attention.
MODULE 5 BUILDING PLANNING AND DESIGN SY BTECH ACOUSTICS SYSTEM IN BUILDINGDr. BASWESHWAR JIRWANKAR
: Introduction to Acoustics & Green Building -
Absorption of sound, various materials, Sabine’s formula, optimum reverberation time, conditions for good acoustics Sound insulation:
Acceptable noise levels, noise prevention at its source, transmission of noise, Noise control-general considerations
Green Building: Concept, Principles, Materials, Characteristics, Applications
Module4: Ventilation
Definition, necessity of ventilation, functional requirements, various system & selection criteria.
Air conditioning: Purpose, classification, principles, various systems
Thermal Insulation: General concept, Principles, Materials, Methods, Computation of Heat loss & heat gain in Buildings
UNIT-5-PPT Computer Control Power of Power SystemSridhar191373
Introduction
Conceptual Model of the EMS
EMS Functions and SCADA Applications.
Time decomposition of the power system operation.
Open Distributed system in EMS
OOPS
2. Int J Elec & Comp Eng ISSN: 2088-8708
Comparative analysis and implementation of structured edge active contour (Brijesh N Shah)
1843
in each region. So, it would not be useful on images which have intensity inhomogeneity [9, 10]. For dense
demonstration of texture Linear Structure Tensor can be used. Structure tensor can be calculated from spatial
derivatives of the image.
LST Structure tensor [11] are matrix representation of partial derivative information It has more
powerful descriptions of local patterns as opposed to the directional derivative through its coherence
measure.it is useful in many applications like corner detection. For a gray scale image the matrix field of
structure tensor is given by
2
0 2
x x yT
x y y
h h h
J h h
h h h
(1)
where , ,
and Matrix transpose
T
x y
h h h h
h h h
x y x y
T
For avoiding cancellation of opposite signed gradient, when direct integration is performed,
gradient is considered as form of its outer product. In order to make matrix field more immune to noise,
smoothing operation is performed by convolving matrix component with a Gaussian kernel K σ with
standard deviation σ.
* T
J K h h
(2)
Where, * indicate convolution operator. An LST model can be used for segmentation of texture images.
The texture [12, 13] type of images which have intensity inhomogeneity cannot be segmented by this model.
Therefore this paper suggest the solution of this problem with a combination of filter based tensor values
to LST.
The chan-vese model
The Chan-Vese model for active contour is a method through which we are able to segment
different types of images. The images which are not segmented by thresholding can also be segmented by
this model. This model is based on Mumford Shah functional for segmentation which is widely used in image
segmentation. This algorithm is also useful to segment the object which does not have clearly defined
boundaries. This algorithm is based on level sets [14-16].
The chan-vese model can give solution by minimizing following energy function
2
1 2 1 0 1
( )
2
2 0 2
( )
, , . ( ) ( , )
+ ( , )
CV
inside C
outside C
E c c C Length C u x y c
u x y c dxdy
(3)
Here, 1 2, and are constant, generally 1 2 1 . 1c and 2c are the intensity means of 0 inside C
and outsideC . In order to solve energy minimization problem, level set [17-19] methods is used, in which
level set function ϕ(x,y) is used in place of unknown curve. The problem of minimization can be solved by
taking Euler-Lagrange equation and also by updating level set function ϕ(x,y) by gradient descent method
2 2
1 0 1 2 0 2( ) ( ) ( )div u c u c
t
(4)
Here, 1c and 2c updates at each iteration by
3. ISSN: 2088-8708
Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 : 1842 - 1848
1844
0
1
0
2
( , ) ( ( , ))
( ) ,
( ( , ))
( , )(1 ( ( , )))
( )
(1 ( ( , )))
u x y H x y dxdy
c
H x y dxdy
u x y H x y dxdy
c
H x y dxdy
(5)
We have observed that chanvese model and Bhattacharya model are not useful for texture images,where as
Gabor based chanvese model works well for texture images but it is not useful for images which have
intensity inhomogeneity. Novel structure method only uses LST for edge enhancement.So that these
algorithm are not giving better accuracy of texture as well as images which have intensity inhomogeneity.
We need to develop some novel technique which give better accuracy of various type of images. Therefore,
the objective of the paper to segment the images having following challenges.
To segment objects from images with constraints of availability of texture region and intensity
inhomogeneity simultaneously.
To improve overall accuracy of active contour based segmentation algorithm by incorporating DOG and
LST information inactive contour formulation.
In proposed work ,we have developd hybrid model to improve accuracy of various type of images which is
explained in next section.
2. PROPOSED ALGORITHM
In the proposed method we are using Difference of Gaussians (DOG). The DOG can be explained as
below. DOG is basically featuring enhancement in which we can get less obscured (blurred) image from
the real image. Blurring using Gaussian kernel repress only high frequency spatial data. DOG is a BPF (band
pass filter) that repress all spatial frequency except handful of spatial frequencies that are falls in real gray
scale image. The principle advantage DOG offers is that it can provide better edge visibility. One more
advantage that DOG provides is the removal of noise compare to other algorithms. Also, it is very fast as far
as computational complexity is concerned.
The overall algorithm as follows: Determine DOG Kernal: To determine the kernel, the variance
plays the important role. If ratio between two of kernel is large, image blurring would be more. Therefore in
proposed model, the size of image is used to calculate the kernel variance.
1 1( , ) ( , )G I x y G x y (6)
( , ) ( , )k kG I x y G x y
(7)
Calculate Edges using DOG: DOG Kernels are used to calculate the edges of the image by convolving image
with DOG kernels as shown in (8):
1 k
(8)
Calculate local structure tensor: Medical images can be considered as region of similar texture [20].
Therefore to present its orientation, Structure tensor plays an important role. The structure tensor can be
obtained by calculating image edges. In the proposed model, the edge obtained using DOG are used in
the calculation of Linear Structure Tensor.
, ( ) ( ) ( )k kD x G x G x
(9)
2 2
, ,( ) ( 1)k kD x k G
(10)
Apply Active Contour model [21-23] over LST image: Later the LST based orientation Information is used
as an external force in ACM model. The equation (10) can be rewritten using LST as shown in (11).
4. Int J Elec & Comp Eng ISSN: 2088-8708
Comparative analysis and implementation of structured edge active contour (Brijesh N Shah)
1845
, ,
2 2( ) ( ( ) ) ( ( ) )1 1 2 2k kdiv D x c D x c
t
(11)
3. EXPERIMENT RESULTS AND ANALYSIS
For accuracy representation of proposed model, we can use Dice Similarity Coefficient (DSC),
which can be defined as follow:
DSC=2TP/(FP+2TP+FN)
Where, True Positive=Number of pixels that detected correctly.
False positive=Number of pixels detected as a member of segmented image but not in ground truth
image.
False negative-Number of pixels that are not detected but part of ground truth image. We have
immplemented this proposed algorithm for texture images, noisy images blur images and images which have
intensity inhomogeneity. These images were taken from berkely database [24]. Figures 1 to 6 shows that
proposed algorithm gives better edge visibility compared to novel structure tensor based Chanvese model [8].
We have compared the proposed model with chanvese model, Bhattacharya model, gabor based chanvese
model and Linear structure tensor based chanvese model for various types of images. It is proven that we got
the best accuracy compared to other existing models which is shown in Table 1.
(a) (b) (c)
Figure 1. (a) Original, (b) NSTCV segmented image, (c) proposed model
(a) (b) (c)
Figure 2. (a) Original, (b) NSTCV segmented image, (c) proposed model
(a) (b) (c)
Figure 3. (a) Original, (b) NSTCV segmented image, (c) proposed model
5. ISSN: 2088-8708
Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 : 1842 - 1848
1846
(a) (b) (c)
Figure 4. (a) Original, (b) NSTCV segmented image, (c) proposed model
(a) (b) (c)
Figure 5. (a) Original, (b) NSTCV segmented image, (c) proposed model
(a) (b) (c)
Figure 6. (a) Original, (b) NSTCV segmented image, (c) proposed model
Table 1 represents the accuracy of proposed Algorithm. We achieve average 99% accuracy of
segmentation. CV Model [25] fails to segment texture as well as images having intensity inhomogeneity.
Bhattacharya model [26] also not able to segment some images due to texture regions as well as noise within
the image. Gabor and LST based ACM are capable to segment images. However, proposed algorithm
outperforms these models and obtained 99% accuracy amongst all images by using DOG based edge
information in LST.
Table 1. Comparison of accuracy for various model [8, 25-27].
Image
Original
figure
Chan-Vese
Model
Bhattacharya
gradient flow
Model
Gabor based
chanvese model
Novel Structure tensor
chanvese model
Figure 1 (b) to Figure 6(b)
Proposed Model
Figure 1(c) to Figure 6(c)
1 99.43 Failed 99.20 98.43 99.98
2 96.18 94.07 95.71 96.18 99.73
3 Failed 96.29 95.46 98.01 99.99
4 Failed 90.18 99.10 99.20 99.97
5 99.48 Failed 99.51 99.46 99.87
6 96.64 94.69 93.85 96.64 99.26
4. CONCLUSION
There are various methods shown for comparision. Chanvese and bhattacharya model are not so
good when texture type of images are given as input. Gabor based chanvese model can solve the problem of
texture images but when intensity inhomogeneity is there ,it cannot give proper result. Novel structure
tensorchanvese model works well forimages with intensityinhomogeneity. A LST is a good descriptor and
6. Int J Elec & Comp Eng ISSN: 2088-8708
Comparative analysis and implementation of structured edge active contour (Brijesh N Shah)
1847
also mathematically easy to implement. But specifically for texture image Gaussian filter will create some
problems. In this paper LST has been modified for removing edge dislocationTexture smotthing can also
been done with this method. But the biggest advantage of proposed method is it uses DOG alongwith LST.
We can also see the accuracy of the proposed model is better than almost any other model in almost
all the cases. The advantage of DOG is that it is less prone to noise. This paper proposed structure tensor
using DOG kernel .The orientation information obtained from Linear Structure Tensor is used in active
contour model to obtain segmentation. We have shown that the proposed model works effectively for various
types of images. We also obtained better Edge enhancement using this method.
REFERENCES
[1] C. Li, C. Kao, J. Gore, and Z. Ding. “Implicit active contour driven by local binary fitting energy,” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1-7, 2007.
[2] V. Caselles, F. Catte, T. Coll, F. Dibos, “A geometric model for active contours in image processing,” Numer.
Math., Vol. 66, No.1, pp. 1–31, 1993.
[3] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: active contour models”, Int. J. Comput. Vision,
Vol. 1,No. 4,pp. 321–331, 1987.
[4] T. F. Chan, L. A. Vese, “Active contours without edges”, IEEE Trans. Image Process., Vol.10, No.2,
pp. 266–277, 2001.
[5] D. E. Maroulis, M. A. Savelonas, D. K. Iakovidis, S. A. Karkanis, N. Dimitropoulos, “Variable background active
contour model for computer-aided delineation of nodules in thyroid ultrasound images”, IEEE Trans. Inf. Technol.
Biomed., Vol.11, No. 5, pp. 537–543, 2007.
[6] B. Sandberg, T. Chan, and L. Vese, “A level-set and Gabor-based active contour algorithm
for segmenting textured images”, Technical Report 39, Mathematical Department, UCLA, Los Angeles, 2002.
[7] Xiao-Feng Wang De-Shuang Huang HuanXu, “An efficient local Chan–Vese model for image segmentation”,
Pattern Recognition, No.43, pp.603-618, 2010.
[8] HirenMewada,Rahul Patel & SuparvaPatniak, “A Novel Structure tensor Modulated Chan-Vese Model for texture
image segmentation”, The computer Journal, Vol.12, pp.1-17, 2014.
[9] S. Osher, J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi
formulations”, J. Comput. Phys.,Vol. 79, No. 1, pp. 12–49, 1988.
[10] D. Mumford, J. Shah, “Optimal approximation by piecewise smooth functions and associated variational
problems”, Commun. Pure Appl. Math., Vol. 42, pp. 577–685, 1989.
[11] T. Brox, J. Weickert, B. Burgeth, and P. MrAazek. “Nonlinear structure tensors”, Image and Vision Computing,
Vol.24, No.1, pp.41-55, 2006.
[12] Do, M. and Vetterli, M.,“Wavelet-based texture retrievalusing generalized Gaussian density and Kullback–Leibler
distance”, IEEE Trans. Image Process., Vol.11, pp.146–158, 2002.
[13] Hofmann, T., Puzicha, J. and Buhmann, J. M.,“ Unsupervised texture segmentation in a deterministic annealing
framework”.IEEE Trans. Pattern Anal. Mach. Intell., Vol.20, pp.803–818, 1998.
[14] A. Gelas, O. Bernard, D. Friboulet, R. Prost, “Compactly supported radial basis functions based collocation method
for level-set evolution in image segmentation”, IEEE Trans. Image Process., Vol. 16, No.7, pp. 1873–1887, 2007.
[15] Alpert, S., Galun, M., Brandt, A. and Basri, R. “ Image segmentation by probabilistic bottom-up aggregation and
cue integration”, IEEE Trans. Pattern Anal. Mach. Intell., Vol.34, pp.315-327, 2012.
[16] Dubuisson, S. ,“The Computation of Bhattacharyya Distance Between the Histograms without Histograms”,
2ndInt. Conf. on Image Processing Theory Tools and Applications, Paris, France,
pp. 373–378. IEEE France Section, July7-10, 2010.
[17] Feddern, C., Weickert, J. and Burgeth, B., “Level-Set Methods for Tensor-Valued Images. Proc”, 2nd IEEE
Workshop on Variational, Geometric and Level Set Methods in ComputerVision, France,
pp. 65–72, October10-12, 2003.
[18] Xiao, J., Xu, L., Yi, B. and Xie, W., “The Improvementof C-V Level Set Method for Image Segmentation”, Int.
Conf. on Computer Science and Software Engineering, China, pp. 1106–1109. IEEE Computer Society, December
12–14, 2008.
[19] Bigun, J. and Grandlund, G., “Optimal Orientation Detection of Linear Symmetry”, 2nd IEEE Workshop
onVariational, Geometric and Level Set Methods in ComputerVision, pp. 65–72. IEEE Computer Society, London,
UK, June 8–11, 1987.
[20] Conners, R. and Harlow, C. ,“A theoretical comparison oftexture algorithms”. IEEE Trans. Pattern Anal. Mach.
Intell., Vol. 2, pp. 204-222, 1980.
[21] Tatu, A. and Bansal, S.,“ A novel active contour model fortexture image segmentation”, CORR, abs/1306.6726,
2013.
[22] Michailovich, O., Rathi, Y. and Tannenbaum, A. ,“Imagesegmentation using active contours driven by the
Bhattacharyya gradient flow”,. IEEE Trans. Image Process., Vol.16, pp.2787–2801, 2007.
[23] Lee, S., Abott, A., Clark, N. and Araman, P., “Active Contours on Statistical Manifolds and Texture
Segmentation.Proc”, IEEE Int. Conf. on Image Processing, Italy, IEEE Signal Processing, pp. 828–831. September
11–14, 2005.
[24] Berkely image database https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
7. ISSN: 2088-8708
Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 : 1842 - 1848
1848
[25] A. Tsai, A. Yezzi, A. S. Willsky, “Curve evolution implementation of the Mumford–Shah functional for image
segmentation, de-noising, interpolation, and magnification”, IEEE Trans. Image Process.,
Vol. 10, No.8, pp. 1169–1186, 2001.
[26] Chen, M. and Strobl, J., “Multispectral textured image segmentation using a multi-resolution fuzzy Markov random
field model on variable scales in the wavelet domain”, Int. J. Remote Sens., Vol. 34, pp.4550–4569, 2013.
[27] T. Brox. “From pixels to regions: Partial differential equations in image analysis”, PhD Thesis, Mathematical
Image Analysis Group, Department of Mathematics and Computer Science Saarland University, Germany, 2005.
BIOGRAPHIES OF AUTHORS
Brijesh N Shah is a PhD Scholar with the Department of Electronics and Communication
Engineering at C S Patel Institute of Technology–Charotar University of Science and
Technology, Changa, Anand, Gujarat, India. He received Bachelor of Engineering degree in
Electronics and Communication Engineering from Saurashtra University and Master of
Engineering degree in Electronics and Communication Engineering from Dharmsinh Desai
University. He is currently working towards his Ph.D degree at Department of Electronics and
Communication Engineering, Charotar University of Science and Technology. His current
research interest lies in Image Processing
Dr. Jaymin K Bhalani is Professor with the Department of Electronics and Communication
Engineering at Babaria Institute of Technology–Varnama, Vadodara, Gujarat, India. His current
research interests are in Image Processing, Wireless Communication Systemsand Signal
Processing. He has published several papers in national/international conferences and
international journals. He received Master of Engineering degree in Electronics and
Communication Engineering with Specialization of Communication Systems Engineering from
Gujarat University, India. He received Ph.D. degree from MSU, Vadodara.