Recent advancement in sensor technology allows very high spatial resolution along with multiple spectral bands. There are many studies, which highlight that Object Based Image Analysis(OBIA) is more accurate than pixel-based classification for high resolution(< 2m) imagery. Image segmentation is a crucial step for OBIA and it is a very formidable task to estimate optimal parameters for segmentation as it does not have any unique solution. In this paper, we have studied different segmentation algorithms (both mono-scale and multi-scale) for different terrain categories and showed how the segmented output depends on upon various parameters. Later, we have introduced a novel method to estimate optimal segmentation parameters. The main objectives of this study are to highlight the effectiveness of presently available segmentation techniques on very high-resolution satellite data and to automate segmentation process. Pre-estimation of segmentation parameter is more practical and efficient in OBIA. Assessment of segmentation algorithms and estimation of segmentation parameters are examined based on the very high-resolution multi-spectral WorldView-3(0.3m, PAN sharpened) data.