SlideShare a Scribd company logo
Honorification DTT DTS Solution Reference
Composing (Im)politeness
in Dependent Type Semantics
Daisuke Bekki
Ochanomizu University, Faculty of Core Research / CREST, Japan Science and
Technology Agency (JST) / National Institute of Advanced Industrial Science and
Technology (AIST) / National Institute of Informatics (NII)
Politeness workshop@LENLS12
Ochanomizu University, November 15th (Sun), 2015.
http://www.slideshare.net/kaleidotheater/
1 / 104
Honorification DTT DTS Solution Reference
Honorification in Japanese
2 / 104
Honorification DTT DTS Solution Reference
Puzzle 1: Morphology and composition
Honorifics indicate that the speaker (is behaving as if she) honors,
or feels some distance from, one of the arguments of a verb (or the
addressee):
(1) Sensei -ga
teacher-Nom
irassyat -ta.
come-Hon-Pst
Descriptive: ‘The teacher came.’ + Expressive: ‘The
speaker honors the teacher.’
(2) Sensei -ga
teacher-Nom
ringo-o
apple-Acc
mesiagat -ta.
eat.Hon-Pst
Descriptive: ‘The teacher ate an apple.’ + Expressive:
‘The speaker honors the teacher.’
These examples were suppletive honorifics: terms lexically specified
as honorific which completely replace nonhonorific forms.
3 / 104
Honorification DTT DTS Solution Reference
Puzzle 1: Morphology and composition
It is also possible in Japanese to derive honorific forms via
systematic morphology from ordinary verbs; here, strategies for
honorification include use of the ‘passive’ form and the use of
‘pure’ honorific morphology.
(3) Sensei -ga
teacher-Nom
seito-o
student-Acc
home- rare -ta.
praise-Hon-Pst
Descriptive: ‘The teacher praised the student.’ +
Expressive: ‘The speaker honors the teacher.’
(4) Sensei -ga
teacher-Nom
seito-o
apple-Acc
o -home- ninat -ta.
Hon-praise-Hon-Pst
Descriptive: ‘The teacher praised the student.’ +
Expressive: ‘The speaker honors the teacher.’
4 / 104
Honorification DTT DTS Solution Reference
Puzzle 1: Morphology and composition
Japanese employs different morphology according to the
grammatical target of honorific meaning. One can find
subject-oriented honorifics, as in (5), and object honorifics, as in
(6).
(5) Sensei -ga
teacher-Nom
seito-o
student-Acc
o -tasuke- ninat -ta.
Hon-help-Hon-Pst
Descriptive: ‘The teacher helped the student.’ +
Expressive: ‘The speaker honors the teacher.’
(6) Seito-ga
student-Nom
sensei -o
teacher-Acc
o -tasuke- si -ta.
Hon-help-Hon-Pst
Descriptive: ‘The student helped the teacher.’ +
Expressive: ‘The speaker honors the teacher.’
As we will see, even simple examples like these can cause problems
for existing treatments of honorific composition.
5 / 104
Honorification DTT DTS Solution Reference
Puzzle 1: Morphology and composition
Following requirements should be satisfied:
Honorific contents require composition : Subject-oriented
and object-oriented honorifics
Honorific suffixes require higher-order composition : passive
suffix, honorific morphology ‘-o’, ‘-nasa(ru)’-suffix,
‘-su(ru)’-suffix, etc
6 / 104
Honorification DTT DTS Solution Reference
Puzzle 2: Honorific content projects
In 1970’s, honorification was considered as an instance of
syntactic agreement (Harada, 1976), which has been assumed
ever since (Gunji, 1987)(Siegel, 2000)(Boeckx and Niinuma,
2004)
The ’syntactic view’ is falsified by the following example
(Bekki et al., 2008):
(7) Dare -mo
nobody-Nom
o -mie- ni-nar -anakat-ta.
come-Hon-Neg-Pst
‘Nobody (in the contextually salient set) came-Hon.’
7 / 104
Honorification DTT DTS Solution Reference
Honorific content projects
(8) Sensei -ga
teacher-Nom
irassyat -ta
come-Hon-Pst
wakedehanai.
Neg
# Sensei -ga
teacher-Nom
ki- yagat -ta-nda.
come-AntiHon-Pst-Explanation
‘The teacher did not come-Hon. #The teacher
came-AntiHon.’
The honorific content projects over negation.
(9) Mosi
If
Sensei -ga
teacher-Nom
irassyat -tara
come-Hon-Pst
otya-o
tea-Acc
dasi-te
serve
kudasai.
please
# Sensei -ga
teacher-Nom
nomi- yagar -imasu.
drink-AntiHon-Nonpst
‘If the teacher comes-Hon, please serve a tea. #He will
drink-AntiHon it.’
The honorific content projects over implication. 8 / 104
Honorification DTT DTS Solution Reference
Puzzle 2: Honorific content projects
Based on the projective feature of honorification, Bekki et al.
(2008) claimed that honorific contents are presuppositions.
However, it turns out that honorific contents CANNOT be
filtered by a presupposition filter. (McCready, 2010)
(10) Mosi
If
wareware-ga
we-NOM
Yamada-si-o
Mr.Yamada-ACC
sonkeisi-tei-ru-nara,
honor-Asp-NonPst-cond
Yamada -si-o
Mr.Yamada-ACC
go -syotai- suru -daroo.
invite-Hon-would
#Jissai-wa
actually
sonkeisi-tei-nai-ga.
honor-Asp-Neg-Contrastive
‘If we honor Mr.Yamada, we would invite-Hon Mr.Yamada.
#But actually we do not honor Mr.Yamada.’
(cf. ’If John is married, his wife will come.’) 9 / 104
Honorification DTT DTS Solution Reference
Puzzule 1 + Puzzle 2 = ?
Honorific contents are expressive contents (not descriptive,
nor presuppositional)
What we need: a mechanism for composition of expressive
contents
Two-dimensional semantics? (Potts, 2005)(McCready,
2010)(Gutzmann, 2015)
Advantage: Projection, Immunity to presupposition filters, ...
Disadvantage: More than two-place honorific predicate
Disadvantage: The following case induces a binding problem!
(11) Dare -mo
nobody-Nom
o -mie- ni-nar -anakat-ta.
come-Hon-Neg-Pst
‘Nobody (in the contextually salient set) came-Hon.’
∀x(Descriptive:¬came(x) ∧ Expressive:honor(sp, x))
10 / 104
Honorification DTT DTS Solution Reference
Dependent Type Theory
11 / 104
Honorification DTT DTS Solution Reference
What is Dependent Type Semantics?
Dependent Type Semantics (DTS; Bekki (2013, 2014)):
DTS is a discourse theory, an alternative framework to DRT,
DPL, continuation semantics, etc.
DTS is a compositional/lexicalized theory that serves as a
semantic component of most categorial grammars.
DTS is based on dependent type theory (Martin-L¨of,
1984)(Coquand and Huet, 1988), following the line of
Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima
(2008) and Luo (2012).
DTS provides proof-theoretic semantics of natural language
(Dummett, 1975, 1976)(Prawitz, 1980)
12 / 104
Honorification DTT DTS Solution Reference
What is Dependent Type Semantics?
Dependent Type Semantics (DTS; Bekki (2013, 2014)):
DTS is a discourse theory, an alternative framework to DRT,
DPL, continuation semantics, etc.
DTS is a compositional/lexicalized theory that serves as a
semantic component of most categorial grammars.
DTS is based on dependent type theory (Martin-L¨of,
1984)(Coquand and Huet, 1988), following the line of
Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima
(2008) and Luo (2012).
DTS provides proof-theoretic semantics of natural language
(Dummett, 1975, 1976)(Prawitz, 1980)
12 / 104
Honorification DTT DTS Solution Reference
What is Dependent Type Semantics?
Dependent Type Semantics (DTS; Bekki (2013, 2014)):
DTS is a discourse theory, an alternative framework to DRT,
DPL, continuation semantics, etc.
DTS is a compositional/lexicalized theory that serves as a
semantic component of most categorial grammars.
DTS is based on dependent type theory (Martin-L¨of,
1984)(Coquand and Huet, 1988), following the line of
Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima
(2008) and Luo (2012).
DTS provides proof-theoretic semantics of natural language
(Dummett, 1975, 1976)(Prawitz, 1980)
12 / 104
Honorification DTT DTS Solution Reference
What is Dependent Type Semantics?
Dependent Type Semantics (DTS; Bekki (2013, 2014)):
DTS is a discourse theory, an alternative framework to DRT,
DPL, continuation semantics, etc.
DTS is a compositional/lexicalized theory that serves as a
semantic component of most categorial grammars.
DTS is based on dependent type theory (Martin-L¨of,
1984)(Coquand and Huet, 1988), following the line of
Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima
(2008) and Luo (2012).
DTS provides proof-theoretic semantics of natural language
(Dummett, 1975, 1976)(Prawitz, 1980)
12 / 104
Honorification DTT DTS Solution Reference
What is Dependent Type Semantics?
Dependent Type Semantics (DTS; Bekki (2013, 2014)):
DTS is a discourse theory, an alternative framework to DRT,
DPL, continuation semantics, etc.
DTS is a compositional/lexicalized theory that serves as a
semantic component of most categorial grammars.
DTS is based on dependent type theory (Martin-L¨of,
1984)(Coquand and Huet, 1988), following the line of
Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima
(2008) and Luo (2012).
DTS provides proof-theoretic semantics of natural language
(Dummett, 1975, 1976)(Prawitz, 1980)
12 / 104
Honorification DTT DTS Solution Reference
Three key concepts in DTS
1. Proof-theoretic semantics (vs. Model-theoretic semantics)
2. Curry-Howard Correspondence (between logic and type
theory)
3. Dependent types (vs. Simple types)
13 / 104
Honorification DTT DTS Solution Reference
A proof theory: Natural deduction rules
Implication Conjunction
Introduction
rules
Γ, A B
Γ A → B
(→I )
Γ A Γ B
Γ A ∧ B
(∧I )
Elimination
rules
Γ A → B Γ A
Γ B
(→E)
Γ A ∧ B
Γ A
(∧E)
Γ A ∧ B
Γ B
(∧E)
14 / 104
Honorification DTT DTS Solution Reference
Typing rules for simply-typed lambda calculus (STLC) with
binary products
Function type Product type
Type
construction
rules
Γ, x : A M : B
Γ λx.M
function
: A → B
(LAM )
Γ M : A Γ N : B
Γ (M, N)
pair
: A × B
(PROD)
Type
deconstruction
rules
Γ M : A → B Γ N : A
Γ MN : B
(APP)
Γ M : A × B
Γ π1(M) : A
(PROJ)
Γ M : A × B
Γ π2(M) : B
(PROJ)
15 / 104
Honorification DTT DTS Solution Reference
Typing rules for simply-typed lambda calculus (STLC) with
binary products
f : A → B, x : A f : A → B
(VAR)
f : A → B, x : A x : A
(VAR)
f : A → B, x : A fx : B
(APP)
f : A → B λx.fx : A → B
(LAM )
λf.λx.fx : (A → B) → (A → B)
(LAM )
The typing tree of a term is a record of rules used for typing.
The typing tree of a term (in STLC) can be recovered from
the structure of term. (cf. Milner (1978))
Fact 1
A term is an encoding of a typing tree.
16 / 104
Honorification DTT DTS Solution Reference
Curry-Howard Correspondence btw. function type and
implication
Typing rules in STLC Natural Deduction rules
Introduction
rules
Γ, x : A M : B
Γ λx.M
function
: A → B
(LAM )
Γ, A B
Γ A → B
(→I )
Elimination
rules
Γ M : A → B Γ N : A
Γ MN : B
(APP)
Γ A → B Γ A
Γ B
(→E)
Fact 2
Typing rules of STLC (almost exactly) correspond to natural
deduction rules in logic.
17 / 104
Honorification DTT DTS Solution Reference
Curry-Howard Correspondence btw. product type and
conjunction
Typing rules in STLC Natural Deduction rules
Introduction
rules
Γ M : A Γ N : B
Γ (M, N)
pair
: A × B
(PROD)
Γ A Γ B
Γ A ∧ B
(∧I )
Elimination
rules
Γ M : A × B
Γ π1(M) : A
(PROJ)
Γ A ∧ B
Γ A
(∧E)
Γ M : A × B
Γ π2(M) : B
(PROJ)
Γ A ∧ B
Γ B
(∧E)
Fact 2
Typing rules of STLC (almost exactly) correspond to natural
deduction rules in logic.
18 / 104
Honorification DTT DTS Solution Reference
Curry-Howard Correspondence
Fact 1
A term is an encoding of a typing tree.
+
Fact 2
Typing rules of STLC (almost exactly) correspond to natural
deduction rules in logic.
⇓
Fact 3
A term of type A is an encoding of a proof diagram of a
proposition A.
19 / 104
Honorification DTT DTS Solution Reference
Curry-Howard Correspondence btw. product type and
conjunction
Fact 3
A term of type A is also an encoding of a proof diagram of a
proposition A (under the view that proposition is type). In
particular:
Functions encode proofs of →.
Pairs encode proofs of ∧.
20 / 104
Honorification DTT DTS Solution Reference
Curry-Howard Correspondence btw. product type and
conjunction
The correspondence between the notions of logic and type theory :
Logic Type Theory
proposition type
proof term (or program)
axiom constant symbol
assumption variable
logical connective type constructor
implication functional type
conjunction product type
disjunction direct sum type
absurdity empty type
introduction constructor
elimination destructor
provability inhabitance
cut substitution
normalization reduction
21 / 104
Honorification DTT DTS Solution Reference
Three different queries on Judgements
Γ M : A · · · Type check (returns yes/no)
Γ M : ? · · · Type inference (returns a type)
Γ ? : A · · · Proof search (returns a term)
Γ A true · · · There is a term M such that Γ M : A
22 / 104
Honorification DTT DTS Solution Reference
Simple function type vs. Dependent function type
Function type → in STLC Dependent function type (Π) in DTT
Introduction
rules
Γ, x : A M : B
Γ λx.M
function
: A → B
(LAM )
Γ A : s Γ, x : A M : B
Γ λx.M : (x:A) → B
(ΠI )
Elimination
rules
Γ M : A → B Γ N : A
Γ MN : B
(APP)
Γ M : (x:A) → B Γ N : A
Γ MN : B
(ΠE)
Scope: (x:A) → B
23 / 104
Honorification DTT DTS Solution Reference
Simple product type vs. Dependent product type
Product type × in STLC Dependent product type (Σ) in DTT
Introduction
rules
Γ M : A Γ N : B
Γ (M, N)
pair
: A × B
(PROD) Γ M : A Γ N : B[M/x]
Γ (M, N) :
x:A
B
(ΣI )
Elimination
rules
Γ M : A × B
Γ π1(M) : A
(PROJ)
Γ M :
x:A
B
Γ π1(M) : A
(ΣE)
Γ M : A × B
Γ π2(M) : B
(PROJ)
Γ M :
x:A
B
Γ π2(M) : B[π1(M)/x]
(ΣE)
Scope:
x:A
B
24 / 104
Honorification DTT DTS Solution Reference
Dependent types and First-order logic
Dependent types Standard notation x ∈ fv (B) x ∈ fv (B)
(x:A) → B (Πx : A)B A → B (∀x : A)B
x:A
B
(Σx : A)B A ∧ B (∃x : A)B
25 / 104
Honorification DTT DTS Solution Reference
Examples
Types dependent on terms
List(n): lists of length n
append in DTT: List(m) × List(n) → List(m + n)
append in STLC: List × List → List
Linguist(x): proofs of x’s being a linguist.
Dependent product types
m:month
day(m)
: pairs of a month and its day
m:entity
linguist(m)
: pairs of an entity and its proof of being a
linguist (=“There is a linguist.”)
Dependent function types
u:
m:entity
linguist(m)
→ mortal(π1u): functions from pairs to
proofs of mortality (=“Every linguist is mortal.”)
26 / 104
Honorification DTT DTS Solution Reference
Dependent function type
Definition (Π-formation/introduction/elimination rules)
Γ A : s1 Γ, x : A B : s2
Γ (x:A) → B : s2
(ΠF) where s1, s2 ∈ {type, kind} .
Γ A : s Γ, x : A M : B
Γ λx.M : (x:A) → B
(ΠI ) where s ∈ {type, kind} , x /∈ fv (Γ) .
Γ M : (x:A) → B Γ N : A
Γ MN : B
(ΠE)
27 / 104
Honorification DTT DTS Solution Reference
Dependent function type
Definition (Negation)
¬A
def
≡ A → ⊥
Definition (¬-formation/introduction/elimination rules)
Γ A : type
Γ ¬A : type
(¬F)
Γ, x : A M : ⊥
Γ λx.M : ¬A
(¬I )
Γ M : ¬A Γ N : A
Γ MN : ⊥
(¬E)
28 / 104
Honorification DTT DTS Solution Reference
Dependent product type
Definition (Σ-formation/introduction/elimination rules)
DA
Γ A : s1 Γ, x : A B : s2
Γ
x:A
B
: s2
(ΣF) where s1, s2 ∈ {type, kind} .
Γ M : A Γ N : B[M/x]
Γ (M, N) :
x:A
B
(ΣI )
Γ M :
x:A
B
Γ π1(M) : A
(ΣE)
Γ M :
x:A
B
Γ π2(M) : B[π1(M)/x]
(ΣE)
29 / 104
Honorification DTT DTS Solution Reference
Natural numbers
Definition (N-formation/introduction/elimination rules)
Γ N : type
(NF)
Γ 0 : N
(NI )
Γ n : N
Γ s(n) : N
(NI )
Γ P : N → type Γ e : P(0) Γ, n : N f : P(s(n))
Γ, n : N natrec(n, e, f) : P(n)
(NE)
30 / 104
Honorification DTT DTS Solution Reference
Intensional equality type
Definition (id-formation/introduction/elimination rules)
Γ A : s Γ M : A Γ N : A
Γ M =A N : type
(IdF)
Γ A : type Γ M : A
Γ reflA(M) : M =A M
(IdI )
Γ C : (x:A) → (y:A) → (x =A y) → type
Γ, x : A N : Cxx(reflA(x))
Γ, e : M1 =A M2 idpeel(e, N) : CM1M2e
(IdE)
31 / 104
Honorification DTT DTS Solution Reference
E-type anaphora: Ranta (1994)
(12) A man entered. He whistled.






v:



u:
x:entity
man(x)
enter(π1u)



whistle( π1π1v )






Note:
x:A
B
is a type for pairs of A and B[x].
32 / 104
Honorification DTT DTS Solution Reference
Donkey anaphora: Sundholm (1986)
(13) Every farmer who owns a donkey beats it .







u:







x:entity




farmer(x)


v:
y:entity
donkey(y)
own(x, π1v)






















→ beat(π1u, π1π1π2π2u )
Note: (x:A) → B is a type for functions from A to B[x].
33 / 104
Honorification DTT DTS Solution Reference
Accessibility: Ranta (1994)
(14) Every man entered. * He whistled.




v: u:
x:entity
man(x)
→ enter(π1u)
whistle( ? )




In this case, the pronoun CANNOT pick up the entity (=the man
who entered) from v, since v is a function. This explains the
following cases uniformly, since both implication and negation are
instances of dependent functional types:
(15) a. If John owns a car, it must be a Porsche. *It is red.
b. John did not buy a car. *It is a Porsche.
This accounts for accessibility, based on the structure of a proof.
34 / 104
Honorification DTT DTS Solution Reference
Problem: Context retrieval
Ranta (1994), Krause (1995), D´avila-P´erez (1995), Krahmer
and Piwek (1999), Piwek and Krahmer (2000): Anaphora
resolution/presupposition binding as proof search of the form
Γ M : A
Context Γ consists of:
1. Knowledge of the hearer
2. Preceding discourse
3. Variables from c-commanding quantifiers
Problem of context retrieval for each anaphora/presupposition
trigger
Syntactic approaches: Ranta (1994)
Semantic approaches: Mineshima (2008, 2014), Bekki (2014)
Context retrieval by type checking
35 / 104
Honorification DTT DTS Solution Reference
Dependent Type Semantics
36 / 104
Honorification DTT DTS Solution Reference
Underspecified DTT
UDTT = DTT + underspecified terms (@)
A map ‘@-elimination’ − : UDTT proof diagrams → DTT
terms
Definition (@-rule)
DA
Γ A : type Γ DA true
Γ @iA : A
(@)
A UDTT proof diagram contains information to specify the
antecedent of @s in the diagram
@-elimination replaces every occurrence of @ by a proof term
specified in the UDTT diagram
37 / 104
Honorification DTT DTS Solution Reference
Organization of grammar
Sentences
⇓
CCG Parser
⇓
Underspecified SRs in UDTT
⇓
Discoruse relation (e.g. Progressive conjunction)
⇓
A underspecified SR of a discourse in UDTT
⇓
Type checking in UDTT (+ Proof search in a DTT fragment)
⇓
A proof diagram of the well-formedness of an SR in UDTT
⇓
@-elimination
⇓
A semantic representation in DTT
⇓
Inference in DTT
38 / 104
Honorification DTT DTS Solution Reference
Lexical items in DTS
PF CCG categories Semantic representations in DTS
if S/S/S λp.λq. (u:p) → q
everynom S/(SNP)/N λn.λp. u:
x:entity
nx
→ p(π1(u))
everyacc T (T /NP)/N λn.λp.λx. v:
y:entity
ny
→ p(π1(v))x
anom, somenom S/(SNP)/N λn.λp.

 u:
x:entity
nx
p(π1(u))


aacc, someacc T (T /NP)/N λn.λp.λx.

 v:
y:entity
ny
p(π1(v))x


farmer N λx.farmer(x)
donkey N λx.donkey(x)
who NN/(SNP) λp.λn.λx.(nx; px)
whom NN/(S/NP) λp.λn.λx.(nx; px)
owns SNP/NP λy.λx.own(x, y)
beats SNP/NP λy.λx.beat(x, y)
he NP π1@i
x:entity
male(x)
it NP π1@i
x:entity
¬human(x)
the NP/N λn.π1@i
x:entity
nx
39 / 104
Honorification DTT DTS Solution Reference
Syntactic calculus/semantic composition
A
S/(SNP)/N
: λn.λp.

 u:
x:entity
nx
p(π1u)


man
N
: λx.man(x)
S/(SNP)
: λp.

 u:
x:entity
man(x)
p(π1u)


>
entered
SNP
: λx.enter(x)
S
:

 u:
x:entity
man(x)
enter(π1u)


>
40 / 104
Honorification DTT DTS Solution Reference
Syntactic calculus/semantic composition
He
NP
: π1@
x:entity
man(x)
whistled
SNP
: λx.whistle(x)
S
: whistle π1@
x:entity
man(x)
<
41 / 104
Honorification DTT DTS Solution Reference
Progressive conjunction: Ranta (1994)
Definition (Progressive conjunction)
M; N
def
≡
u:M
N
where u /∈ fv (N)
(12) A man entered. He whistled.


x:entity
man(x)
enter(x)

 ; whistle( π1@
x:entity
man(x)
)
underspecified term
=







u:


x:entity
man(x)
enter(x)


whistle( π1@
x:entity
man(x)
)







42 / 104
Honorification DTT DTS Solution Reference
Presupposition projection as type checking
Felicity condition as Type Checking
K






u:


x:entity
man(x)
enter(x)


whistle @i
x:entity
man(x)






: type
⇓ Type checking in UDTT
K, u :


x:entity
man(x)
enter(x)

 @i
x:entity
man(x)
Type checking: reconstruction of context
Proof search: anaphora resolution/presupposition binding
43 / 104
Honorification DTT DTS Solution Reference
Type checking in Underspecified DTT
D1
K

 u:
x:entity
man(x)
enter(π1u)

 : type
K, v :

 u:
x:entity
man(x)
enter(π1u)


whistle
: entity
→ type
(VAR)
D2
K, v :

 u:
x:entity
man(x)
enter(π1u)

 x:entity
man(x)
: type K, v :

 u:
x:entity
man(x)
enter(π1u)

 x:entity
man(x)
true
K, v :

 u:
x:entity
man(x)
enter(π1u)

 @i
x:entity
man(x)
:
x:entity
man(x)
(@)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 π1@i
x:entity
man(x)
: entity
(ΣE)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 whistle π1@i
x:entity
man(x)
: type
(→E)
K






v:

 u:
x:entity
man(x)
enter(π1u)


whistle π1@i
x:entity
man(x)






: type
(ΣF),2
44 / 104
Honorification DTT DTS Solution Reference
Anaphora resolution is Proof search in DTT
D1
K

 u:
x:entity
man(x)
enter(π1u)

 : type
K, v :

 u:
x:entity
man(x)
enter(π1u)


whistle
: entity
→ type
(VAR)
D2
K, v :

 u:
x:entity
man(x)
enter(π1u)

 x:entity
man(x)
: type
K, v :

 u:
x:entity
man(x)
enter(π1u)

 v :

 u:
x:entity
man(x)
enter(π1u)


(VAR)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 π1v :
x:entity
man(x)
(ΣE)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 @i
x:entity
man(x)
:
x:entity
man(x)
(@)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 π1 @i
x:entity
man(x)
: entity
(ΣE)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 whistle π1 @i
x:entity
man(x)
: type
(→E)
K







v:

 u:
x:entity
man(x)
enter(π1u)


whistle π1 @i
x:entity
man(x)







: type
(ΣF),2
45 / 104
Honorification DTT DTS Solution Reference
@-elimination
D1
K

 u:
x:entity
man(x)
enter(π1u)

 : type
K, v :

 u:
x:entity
man(x)
enter(π1u)


whistle
: entity
→ type
(VAR)
D2
K, v :

 u:
x:entity
man(x)
enter(π1u)

 x:entity
man(x)
: type
K, v :

 u:
x:entity
man(x)
enter(π1u)

 v :

 u:
x:entity
man(x)
enter(π1u)


(VAR)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 π1v :
x:entity
man(x)
(ΣE)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 @i
x:entity
man(x)
:
x:entity
man(x)
(@)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 π1 @i
x:entity
man(x)
: entity
(ΣE)
K, v :

 u:
x:entity
man(x)
enter(π1u)

 whistle π1 @i
x:entity
man(x)
: type
(→E)
K







v:

 u:
x:entity
man(x)
enter(π1u)


whistle π1 @i
x:entity
man(x)







: type
(ΣF),2
=




v:

 u:
x:entity
man(x)
enter(π1u)


whistle(π1π1v)




46 / 104
Honorification DTT DTS Solution Reference
@-elimination
Definition (@-elimination rules (excerpt))
Γ A : s Γ M : DA
Γ (@iA) : A
(@) = M
DM
Γ M : (x:A) → B
DN
Γ N : A
Γ MN : B[N/x]
(ΠE)
= DM DN
47 / 104
Honorification DTT DTS Solution Reference
Verification of the theory
(16) a. [A man]i entered. Hei whistled. A man entered.
b. [A man]i entered. Hei whistled. A man whistled.
c. A man entered and whistled. [A man]i entered. Hei
whistled.
(17) a. K,




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))





 u:
x:entity
man(x)
enter(π1(u))


b. K,




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))





 u:
x:entity
man(x)
whistle(π1(u))


c. K,




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))








v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))




48 / 104
Honorification DTT DTS Solution Reference
Entailments Predicted
(17a) K,




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))





 u:
x:entity
man(x)
enter(π1(u))


K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1(π1(v)))



 t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1(π1(v)))




(VAR)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1(π1(v)))



 π1(t) :

 u:
x:entity
man(x)
enter(π1(u))


(ΣE)
49 / 104
Honorification DTT DTS Solution Reference
Entailments Predicted
(17b) K,




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))





 u:
x:entity
man(x)
whistle(π1(u))


K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))




(VAR)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 π1(t) :

 u:
x:entity
man(x)
enter(π1(u))


(ΣE)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 π1π1(t) :
x:entity
man(x)
(ΣE)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))




(VAR)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 π2(t) : whistle(π1π1(v))[π1(t)/v]
=β whistle(π1π1π1(t))
=β whistle(π1(u))[π1π1(t)/u]
(ΣE)
K, t :




v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))



 (π1π1(t), π2(t)) :

 u:
x:entity
man(x)
whistle(π1(u))


(ΣI )
50 / 104
Honorification DTT DTS Solution Reference
Entailments Predicted
(17c) K,




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))








v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))




K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))




(VAR)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 π1t :
x:entity
man(x)
(ΣE)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))




(VAR)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 π2t :
enter(π1π1t)
whistle(π1π1t)
(ΣE)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 π1π2t : enter(π1π1t)
=β enter(π1(u))[π1t/u]
(ΣE)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 (π1t, π1π2t) :

 u:
x:entity
man(x)
enter(π1(u))


(ΣI )
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))




(VAR)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))



 π2t :
enter(π1π1t)
whistle(π1π1t)
(ΣE)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))




π2π2t : whistle(π1π1t)
=β whistle(π1π1v)[(π1t, π1π2t)/v]
(ΣE)
K, t :




u:
x:entity
man(x)
enter(π1(u))
whistle(π1(u))








v:

 u:
x:entity
man(x)
enter(π1(u))


whistle(π1π1(v))




(ΣI )
51 / 104
Honorification DTT DTS Solution Reference
Presupposition projection
The
NP/N
: λn.π1@i
x:entity
nx
king of France
N
: λx.KoF(x)
NP
: π1@i
x:entity
KoF(x)
<
S/(SNP)
: λp.p π1@i
x:entity
KoF(x)
>T
is not
S(S/(SNP))/(SNP)
: λp.λq.¬(qp)
bald
SNP
: λx.bald(x)
S(S/(SNP))
: λq.¬(q(λx.bald(x)))
>
S
: ¬bald π1@i
x:entity
KoF(x)
<
52 / 104
Honorification DTT DTS Solution Reference
Presupposition projection
K bald : entity → type
(VAR)
K entity : type
(VAR)
K, x : entity KoF : entity → type
(VAR)
K, x : entity x : entity
(VAR)
K, x : entity KoF(x) : type
(→E)
K
x:entity
KoF(x)
: type
(ΣF)
K
x:entity
KoF(x)
true
K @
x:entity
KoF(x)
:
x:entity
KoF(x)
(@)
K π1@
x:entity
KoF(x)
: entity
(ΣE)
K bald π1@
x:entity
KoF(x)
: type
(→E)
K ¬bald π1@
x:entity
KoF(x)
: type
(¬F)
53 / 104
Honorification DTT DTS Solution Reference
Presupposition binding
If
S/S/S
: λp.λq. (u:p) → q
John
NP
: j
has
SNP/NP
: λy.λx.have(x, y)
a
T (T /NP)/N
: λn.λp.λx.

 v:
y:entity
ny
p(π1(v))x


wife
N
: λx.wife(x)
T (T /NP)
: λp.λx.

 v:
y:entity
wife(y)
p(π1(v))x


>
SNP
: λx.

 v:
y:entity
wife(y)
have(x, π1(v))


<
S
:

 v:
y:entity
wife(y)
have(j, π1(v))


<
S/S
: λq.

u:

 v:
y:entity
wife(y)
have(j, π1(v))



 → q
>
54 / 104
Honorification DTT DTS Solution Reference
If John has a wife, John’s wife is happy: Parsing
John
NP
: j
’s
NP/N NP
: λy.λn.π1@i


x:entity
nx
have(y, x)


NP/N
: λn.π1@i


x:entity
nx
have(j, x)


<
wife
N
: λx.wife(x)
NP
: π1@i


x:entity
wife(x)
have(j, x)


>
is
SNP/(SNP)
: id
happy
SNP
: λx.happy(x)
SNP
: λx.happy(x)
>
S
: happy

π1@i


x:entity
wife(x)
have(j, x)




<
55 / 104
Honorification DTT DTS Solution Reference
If John has a wife, John’s wife is happy: Parsing
If John has a wife
S/S
: λq.

u:

 v:
y:entity
wife(y)
have(j, π1(v))



 → q
John’s wife is happy
S
: happy

π1@i


x:entity
wife(x)
have(j, x)




S
:

u:

 v:
y:entity
wife(y)
have(j, π1(v))



 → happy

π1@i


x:entity
wife(x)
have(j, x)




>
56 / 104
Honorification DTT DTS Solution Reference
If John has a wife, John’s wife is happy: Type Cheking
D
 v:
y:entity
wife(y)
have(j, π1(v))

 : type
happy :
entity
→ type
(CON )
....

x:entity
wife(x)
have(j, x)

 : type
u :

 v:
y:entity
wife(y)
have(j, π1(v))


1
....

x:entity
wife(x)
have(j, x)

 true
@i


x:entity
wife(x)
have(j, x)

 :


x:entity
wife(x)
have(j, x)


(@)
π1@i


x:entity
wife(x)
have(j, x)

 : entity
(ΣE)
happy

π1@i


x:entity
wife(x)
have(j, x)



 : type
(→E)

u:

 v:
y:entity
wife(y)
have(j, π1(v))



 → happy

π1@i


x:entity
wife(x)
have(j, x)



 : type
(ΠF),1
57 / 104
Honorification DTT DTS Solution Reference
If John has a wife, John’s wife is happy: Proof Search
u :

 v:
y:entity
wife(y)
have(j, π1v)


1
π1u :
y:entity
wife(y)
(ΣE)
π1π1u : entity
(ΣE)
wife(x)
have(j, x)
[π1π1u/x]
⇓
wife(π1π1u)
have(j, π1π1u)
u :

 v:
y:entity
wife(y)
have(j, π1v)


1
π1u :
y:entity
wife(y)
(ΣE)
wife(y)[π1π1u/y]
⇓ wife(π1π1u)
π2π1u : wife(π1π1u)
(ΣE)
u :

 v:
y:entity
wife(y)
have(j, π1v)


1
have(j, π1v)[π1u/v]
⇓ have(j, π1π1u)
π2u : have(j, π1π1u)
(ΣE)
(π2π1u, π2u) :
wife(π1π1u)
have(j, π1π1u)
(ΣI )
(π1π1u, (π2π1u, π2u)) :


x:entity
wife(x)
have(j, x)


(ΣI )
58 / 104
Honorification DTT DTS Solution Reference
Solution
59 / 104
Honorification DTT DTS Solution Reference
Subject honorification: lexical
Analysis of Japanese honorification based on DTS (Watanabe,
McCready and Bekki, 2014): No problem arises for more than
two-place honorific predicates. Descriptive and expressive contents
use the different channels: types and proofs. But still integrated in
a single-dimensional semantic representation.
Sensei-ga
T /(T NPga)
: λp.p(sensei)
ringo-o
T /(T NPo)
: λp.p(apple)
mesiagat-ta
Sv::5::r
term|attr
NPgaNPo
: λy.λx.λc.
eat(x, y)
CI(honor(sp, x))
Sv::5::r
term|attr
NPga
: λx.λc.
eat(x, apple)
CI(honor(sp, x))
>
Sv::5::r
term|attr
: λc.
eat(sensei, apple)
CI(honor(sp, sensei))
>
60 / 104
Honorification DTT DTS Solution Reference
Subject honorification: verb stem + passive form
homera
Sv::5::r
vo::r
NPgaNPo
: λy.λx.λc.praise(x, y)
re
Sv::1
stem
NPga$(Svo::r NPga$)
: λp.λy.λx.λc.
pyxc
CI(honor(sp, x))
Sv::1
stem
NPgaNPo
: λy.λx.λc.
praise(x, y)
CI(honor(sp, x))
< ta
S1
term|attr
+t
S1
euph::t
: id
Sv::1
term|attr
+t
NPgaNPo
: λy.λx.λc.
praise(x, y)
CI(honor(sp, x))
<
61 / 104
Honorification DTT DTS Solution Reference
Subject honorification: o-verb stem
o-
Sn::da|no
stem
+hon
NPga$/(Scont
+O
NPga$)
: λp.λy.λx.λc.
pyxc
CI(honor(sp, x))
home
Sv::5::r
cont
+O
NPgaNPo
: λy.λx.λc.praise(x, y)
Sn::da|no
stem
+hon
NPgaNPo
: λy.λx.λc.
praise(x, y)
CI(honor(sp, x))
> nina-ru
Sv::5::r
term|attr
Sn::da
stem
+hon
: id
Sv::5::r
term|attr
NPgaNPo
: λy.λx.λc.
praise(x, y)
CI(honor(sp, x))
<B2
62 / 104
Honorification DTT DTS Solution Reference
Object honorification
Taro-ga
T /(T NPga)
: λp.p(taro)
sensei-o
T /(T NPo)
: λp.p(sensei)
o-tasuke
Sv::S
stem
NPgaNPo
: λy.λx.λc.


help(x, y)
CI(
honor(sp, y)
honor(x, y)
)


suru
Sv::S
term|attr
Sv::S
stem
: id
Sv::S
term|attr
NPgaNPo
: λy.λx.λc.


help(x, y)
CI(
honor(sp, y)
honor(x, y)
)


<B2
Sv::S
term|attr
NPga
: λx.λc.


help(x, sensei)
CI(
honor(sp, sensei)
honor(x, sensei)
)


>
Sv::S
term|attr
: λc.


help(taro, sensei)
CI(
honor(sp, sensei)
honor(taro, sensei)
)


>
63 / 104
Honorification DTT DTS Solution Reference
What is the CI-operator?
Defined by means of intentional equality type:
Definition
CIi(A)
def
≡ @iA =A @iA
Γ A : s
Anaphora resolution within A
....
Γ A : type
Proof search for A (=projection of A)
....
Γ M : A
Γ @iA : A
(@)
Γ @iA =A @iA : type
(IdF)
where fv (M) ⊆ fv (K) .
Not filtered by the linguistic antecedent!
64 / 104
Honorification DTT DTS Solution Reference
Honorific contents project over negation
Sensei-ga
NP
: teacher
irassyat-ta
SNP
: λx.
come(x)
CI(honor(sp, x))
S
:
come(teacher)
CI(honor(sp, teacher))
<
n
wakedehanai
SS
: λp.¬p
S
: ¬
come(teacher)
CI(honor(sp, teacher))
<
65 / 104
Honorification DTT DTS Solution Reference
Honorific contents project over negation
K come(teacher)
K honor(sp, teacher) : type K honor(sp, teacher) true
K CI(honor(sp, teacher))
(@)
K
come(teacher)
CI(honor(sp, teacher))
: type
(ΣF)
K ¬
come(teacher)
CI(honor(sp, teacher))
: type
(¬F)
66 / 104
Honorification DTT DTS Solution Reference
Honorific contents are not filtered
K honor(we, Y ) : type
K, u : honor(we, Y )
invite(we, Y ) : type
K, u : honor(we, Y )
honor(we, Y ) : type
K, u : honor(we, Y ) honor(we, Y ) true
K, u : honor(we, Y ) CI(honor(we, Y )) : type
(IdF)
K, u : honor(we, Y )
invite(we, Y )
CI(honor(we, Y ))
(ΣF)
K (u:honor(we, Y )) →
invite(we, Y )
CI(honor(we, Y ))
(ΠF)
Proof search for a proof term M such that fv (M) ⊆ fv (K)
→ a term of type honor(we, Y ) without u
67 / 104
Honorification DTT DTS Solution Reference
Binding problem
(18) Dare -mo
nobody-Nom
o -mie- ni-nar -anakat-ta.
come-Hon-Neg-Pst
‘Nobody (in the contextually salient set) came.’
∀x(Descriptive:¬came(x) ∧ Expressive:honor(sp, x))
68 / 104
Honorification DTT DTS Solution Reference
Binding problem
K
x:entity
human(x)
: type
K, u :
x:entity
human(x)
come(π1u) : type
K, u :
x:entity
human(x)
honor(sp, π1u) : type K, u :
x:entity
human(x)
honor(sp, π1u) true
K, u :
x:entity
human(x)
CI(honor(sp, π1u)) : type
(IdF)
K, u :
x:entity
human(x)
come(π1u)
CI(honor(sp, π1u))
: type
(ΣF)
K, u :
x:entity
human(x)
¬
come(π1u)
CI(honor(sp, π1u))
: type
(¬F)
K u:
x:entity
human(x)
→ ¬
come(π1u)
CI(honor(sp, π1u))
: type
(ΠF)
69 / 104
Honorification DTT DTS Solution Reference
Local accommodation
K
x:entity
human(x)
: type
K, u :
x:entity
human(x)
come(π1u) : type
K, u :
x:entity
human(x)
honor(sp, π1u) : type
K, u :
x:entity
human(x)
@i u:
x:entity
human(x)
→ honor(sp, π1u) u : honor(sp, x)
K, u :
x:entity
human(x)
CI(honor(sp, π1u)) : type
(IdF)
K, u :
x:entity
human(x)
come(π1u)
CI(honor(sp, π1u))
: type
(ΣF)
K, u :
x:entity
human(x)
¬
come(π1u)
CI(honor(sp, π1u))
: type
(¬F)
K u:
x:entity
human(x)
→ ¬
come(π1u)
CI(honor(sp, π1u))
: type
(ΠF)
A new variable of type u:
x:entity
human(x)
→ honor(sp, π1u)
will be added to K
“The speaker honors everyone”
This seems to be a bit strong, but if the restriction of the
universal quantification is contextually specified, it gives a
correct information to be “locally-accommodated.”
70 / 104
Honorification DTT DTS Solution Reference
Summary
Dependent type semantics: a proof-theoretic, compositional
alternative to DRT(s) and Dynamic Logic(s)
Two levels of information in single-dimensional
representations: types and terms, propositions and proofs,
formation rules and introduction/elimination rules
Gives a solution to compositionality of expressive contents,
including Japanese honorification
In DTS, calculations of presupposition projection and binding
reduce to type checking and proof search.
71 / 104
Honorification DTT DTS Solution Reference
Reference I
Bekki, D. (2013) “Dependent Type Semantics: An Introduction”,
In: the 2012 edition of the LIRa yearbook: a selection of papers.
University of Amsterdam.
Bekki, D. (2014) “Representing Anaphora with Dependent Types”,
In the Proceedings of N. Asher and S. V. Soloviev (eds.):
Logical Aspects of Computational Linguistics (8th international
conference, LACL2014, Toulouse, France, June 2014
Proceedings), LNCS 8535. Toulouse, pp.14–29, Springer,
Heiderburg.
Bekki, D., A. Kawazoe, K. Kataoka, and M. Saito. (2008)
“Semantics of Honorification”, In the Proceedings of NLP2008.
University of Tokyo, pp.681–684.
72 / 104
Honorification DTT DTS Solution Reference
Reference II
Boeckx, C. and F. Niinuma. (2004) “Conditions on Agreement in
Japanese”, Natural Language and Linguistic Theory 22,
pp.453–480.
Cooper, R. (2005) “Austinian truth, attitudes and type theory”,
Research on Language and Computation 3, pp.333–362.
Coquand, T. and G. Huet. (1988) “The Calculus of Constructions”,
Information and Computation 76(2-3), pp.95–120.
D´avila-P´erez, R. (1995) “Semantics and Parsing in Intuitionistic
Categorial Grammar”, Ph.d. thesis, University of Essex.
Dummett, M. (1975) “What is a Theory of Meaning?”, In: S.
Guttenplan (ed.): Mind and Language. Oxford, Oxford
University Press, pp.97–138.
73 / 104
Honorification DTT DTS Solution Reference
Reference III
Dummett, M. (1976) “What is a Theory of Meaning? (II)”, In:
Evans and McDowell (eds.): Truth and Meaning. Oxford,
Oxford University Press, pp.67–137.
Gunji, T. (1987) Japanese Phrase Structure Grammar: A
Unification-based Approach. Dordrecht, D. Reidel.
Gutzmann, D. (2015) Use-conditional meaning, Vol. 6 of Studies
in Semantics and Pragmatics, Oxford Studies in Semantics and
Pragmatics. Oxford, Oxford University Press.
Harada, S.-I. (1976) “Honorifics”, In: M. Shibatani (ed.): Syntax
and Semantics 5, Vol. 499-561. New York, Academic Press.
74 / 104
Honorification DTT DTS Solution Reference
Reference IV
Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as
Proof Construction”, In: H. Bunt and R. Muskens (eds.):
Computing Meanings: Current Issues in Computational
Semantics, Studies in Linguistics Philosophy Series. Dordrecht,
Kluwer Academic Publishers.
Krause, P. (1995) “Presupposition and Abduction in Type
Theory”, In the Proceedings of K. E., S. Manandhar, W. Nutt,
and J. Siekman (eds.): Edinburgh Conference on Computational
Logic and Natural Language Processing. Edinburgh: HCRC.
Luo, Z. (2012) “Formal Semantics in Modern Type Theories with
Coercive Subtyping”, Linguistics and Philosophy 35(6).
Martin-L¨of, P. (1984) Intuitionistic Type Theory, Vol. 17. Naples,
Italy: Bibliopolis. Sambin, Giovanni (ed.).
75 / 104
Honorification DTT DTS Solution Reference
Reference V
McCready, E. (2010) “Varieties of Conventional Implicature”,
Semantics and Pragmatics 3(8), pp.1–57.
Milner, R. (1978) “A Theory of Type Polymorphism in
Programming”, Journal of Computer and System Science
(JCSS) 17, pp.348–374.
Mineshima, K. (2008) “A presuppositional analysis of definite
descriptions in proof theory”, In: K. Satoh, A. Inokuchi, K.
Nagao, and T. Kawamura (eds.): New Frontiers in Artificial
Intelligence: JSAI 2007 Conference and Workshops, Revised
Selected Papers, Lecture Notes in Computer Science Vol. 4914.
Springer-Verlag, pp.214–227.
Mineshima, K. (2014) “Presupposition and Descriptions: A
Proof-Theoretical Approach”, In: Aspects of Inference in
Natural Language. Keio University, p.135.
76 / 104
Honorification DTT DTS Solution Reference
Reference VI
Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context:
Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R.
Nossum (eds.): Formal Aspects of Context, Applied Logic
Series. Dordrecht, Kluwer Academic Publishers.
Potts, C. (2005) The Logic of Conventional Implicatures. Oxford
University Press.
Prawitz, D. (1980) “Intuitionistic Logic: A Philosophical
Challenge”, In: G. von Wright (ed.): Logics and Philosophy.
The Hague, Martinus Nijhoff.
Ranta, A. (1994) Type-Theoretical Grammar. Oxford University
Press.
77 / 104
Honorification DTT DTS Solution Reference
Reference VII
Siegel, M. (2000) “Japanese Honorification in an HPSG
Framework”, In the Proceedings of PACLIC 14 : 14th Pacific
Asia Conference on Language, Information and Computation.
Waseda University International Conference Center, Tokyo,
Japan, pp.289–300, PACLIC 14 Organizing Committee.
Sundholm, G. (1986) “Proof theory and meaning”, In: D. Gabbay
and F. Guenthner (eds.): Handbook of Philosophical Logic, Vol.
III. Reidel, Kluwer, pp.471–506.
78 / 104
PTS DTT formal presentation Underspecified DTT
Proof-theoretic Semantics
79 / 104
PTS DTT formal presentation Underspecified DTT
Model-theoretic vs. proof-theoretic semantics
Model-theoretic semantics (of mathematics and natural language)
Primitive notions: truth , model
Interpretation is a function: formula × model → truth
Validity of inference is defined as a derived notion.
Meaning of a sentence: its truth-condition
Proof-theoretic semantics (of mathematics and natural language)
Primitive notion:
formation / introduction / elimination rules
Provability is a binary relation between a list of formula and
formula
Truth is defined as a derived notion.
Meaning of a sentence: its verification condition
80 / 104
PTS DTT formal presentation Underspecified DTT
Model-theoretic vs. proof-theoretic semantics
In classical and intuitionistic first-order logic, there are many pairs
of model theory and proof theory that satisfy the sound and
complete relation.
Γ A ⇐⇒ Γ A
In other words,
For every model M, if Γ M = 1 then A M = 1
⇐⇒ There is a proof from Γ to A
A pair of a model theory and a proof theory which is sound and
complete with each other do not make any difference with respect
to inferences. Given that (almost all) the data in semantics are
entailment relations between sentences, the two approaches are not
distinguishable as natural sciences.
81 / 104
PTS DTT formal presentation Underspecified DTT
A proof theory: General elimination rules
Implication Conjunction
Introduction
rules
Γ, A B
Γ A → B
(→I )
Γ A Γ B
Γ A ∧ B
(∧I )
Elimination
rules
Γ A → B Γ A
Γ B
(→E)
Γ A ∧ B
Γ A
(∧E)
Γ A ∧
Γ B
General
elimination
rules
Γ A B, Γ C
Γ, A → B C
(→GE)
Γ, A, B C
Γ, A ∧ B C
(∧GE)
82 / 104
PTS DTT formal presentation Underspecified DTT
General elimination rules
General elimination rules:
are equivalent to elimination rules
ca be automatically obtained from a set of introduction rules
ensure that the introduction rules are exhaustive
Thus
Introduction rules carry a primary meaning of the type:
verificational meaning
Elimination rules carry a secondary meaning of the type:
pragmatic meaning
83 / 104
PTS DTT formal presentation Underspecified DTT
Verification conditions: Example
(19) John jogs and Mary runs.
Verification of (19) requires the verifications of “John jogs” and
“Mary runs”.
(20) If x s a natural number, then either x is odd or even.
Verification of (20) requires the verification of “either x is odd or
even”, assuming the verification of “x s a natural number”.
84 / 104
PTS DTT formal presentation Underspecified DTT
DTT formal presentation
85 / 104
PTS DTT formal presentation Underspecified DTT
Type Theory
A definition of a type theory consists of following items:
1. Alphabets
2. Preterms
3. Free variables
4. Substitution
5. Reduction
6. Typing/inference rules
6.1 Formation rule(s)
6.2 Introduction rule(s)
6.3 Elimination rule(s)
86 / 104
PTS DTT formal presentation Underspecified DTT
Preterms
Definition (Preterms)
A collection of preterms (notation: Λ) for an alphabet (Var, Con)
is recursively defined by the following BNF grammar (where
x ∈ Var and c ∈ Con).
Λ ::= x | c | type | kind
| (x:Λ) → Λ | λx.Λ | ΛΛ
|
x:Λ
Λ
| (Λ, Λ) | π1(Λ) | π2(Λ)
| ⊥ | | ()
| Λ =Λ Λ | reflΛ(Λ) | idpeel(Λ, Λ)
Var
def
≡ {x, y, z, u, v, w, . . .}
Con
def
≡ {entity, man, donkey, enter, own, beats, . . .}
87 / 104
PTS DTT formal presentation Underspecified DTT
Free variables and substitution
fv (x)
def
≡ {x}
fv (c)
def
≡ ∅
fv (type)
def
≡ ∅
fv (kind)
def
≡ ∅
fv ((x:A) → B)
def
≡ fv (A) ∪ (fv (B) − {x})
fv (λx.M)
def
≡ fv (M) − {x}
fv (MN)
def
≡ fv (M) ∪ fv (N)
fv
x:A
B
def
≡ fv (A) ∪ (fv (B) − {x})
fv ((M, N))
def
≡ fv (M) ∪ fv (N)
fv (πi(M))
def
≡ fv (M)
fv (⊥)
def
≡ ∅
fv ( )
def
≡ ∅
fv (())
def
≡ ∅
fv (M =A N)
def
≡ fv (A) ∪ fv (M) ∪ fv (N)
fv (reflA(M))
def
≡ fv (A) ∪ fv (M)
fv (idpeel(M, N))
def
≡ fv (M) ∪ fv (N)
x[L/x]
def
≡ L
y[L/x]
def
≡ y
c[L/x]
def
≡ c
type[L/x]
def
≡ type
kind[L/x]
def
≡ kind
((x:M) → N)[L/x]
def
≡ (x:M[L/x]) → N
((y:M) → N)[L/x]
def
≡ (y:M[L/x]) → (N[L/x])
where x /∈ fv (N) ∨ y /∈ fv (L) .
(λx.M)[L/x]
def
≡ λx.M
(λy.M)[L/x]
def
≡ λy.M[L/x]
where x /∈ fv (N) ∨ y /∈ fv (L) .
(MN)[L/x]
def
≡ (M[L/x])(N[L/x])
x:M
N
[L/x]
def
≡
x:M[L/x]
N
y:M
N
[L/x]
def
≡
y:M[L/x]
(N[L/x])
where x /∈ fv (N) ∨ y /∈ fv (L) .
((M, N))[L/x]
def
≡ (M[L/x], N[L/x])
(π1(M))[L/x]
def
≡ π1(M[L/x])
(π2(M))[L/x]
def
≡ π2(M[L/x])
⊥[L/x]
def
≡ ()
[L/x]
def
≡ ()
()[L/x]
def
≡ ()
(M =A N)[L/x]
def
≡ M[L/x] =A[L/x] N[L/x]
(reflA(M))[L/x]
def
≡ reflA[L/x](M[L/x])
(idpeel(M, N))[L/x]
def
≡ idpeel(M[L/x], N[L/x])
88 / 104
PTS DTT formal presentation Underspecified DTT
Reduction
Definition (β-reduction in DTT)
x ⇓ x type ⇓ type kind ⇓ kind
A ⇓ A B ⇓ B
(x:A) → B ⇓ (x:A ) → B
M ⇓ M
λx.M ⇓ λx.M
M ⇓ λx.M M [N/x] ⇓ M
MN ⇓ M
M ⇓ n N ⇓ N
MN ⇓ nN
A ⇓ A B ⇓ B
x:A
B
⇓
x:A
B
M ⇓ M N ⇓ N
(M, N) ⇓ (M , N )
M ⇓ (M1, M2)
πiM ⇓ Mi
M ⇓ n
πiM ⇓ πin
⊥ ⇓ ⊥ ⇓ () ⇓ ()
89 / 104
PTS DTT formal presentation Underspecified DTT
Reduction
Definition (Values and neutral terms of DTT)
v ::= n | type | kind | (x:v) → v | λx.v |
x:v
v
| (v, v) | ⊥ | | ()
n ::= x | c | nv | πin
Theorem
If M is typable, then any M such that M ⇓ M is a value, and
the calculation of M terminates.
Proof.
By induction on the structure of M. In particular, if MN is
typable then M reduces to either the form λx.v or a neutral term;
if πiM is typable then M reduces to either the form (v, v) or a
neutral term.
90 / 104
PTS DTT formal presentation Underspecified DTT
Basic rules
Definition (Basic rules)
Γ type : kind
(typeF)
Γ M : A ∆ N : B
Γ M : A
(WK)
Γ M : A A =β B
Γ M : B
(CONV )
91 / 104
PTS DTT formal presentation Underspecified DTT
Underspecified dependent type theory
92 / 104
PTS DTT formal presentation Underspecified DTT
What is UDTT?
UDTT = DTT + underspecified terms (notation @iA, for i ∈ N)
Definition (Preterms of UDTT)
Let DTTpreterms be a collection of preterms in DTT. The
collection of preterms of UDTT (notation Λ) is defined by the
following BNF grammar (where i ∈ N):
Λ ::= DTTpreterms | @iΛ
Example (Anaphoric expressions/presupposition triggers)
hei = π1@i
x:entity
male(x)
thej = λn.π1@j
x:entity
nx
93 / 104
PTS DTT formal presentation Underspecified DTT
Typing rules of UDTT
The @-rule is the formation rule of underspecified terms.
Definition (@-rule)
DA
Γ A : type Γ DA true
Γ @iA : A
(@)
This is understood as the set of following instructions, when called
as a type checking of @iA : A.
1. Check if A : type, let its diagram be DA.
2. Eliminate @ in A if any, resulting in DA .
3. Then search for a proof term of type DA .
94 / 104
PTS DTT formal presentation Underspecified DTT
Typing rules of UDTT
Definition (type-formation rule)
Γ A : s
Γ, x : A, ∆ x : A
(VAR)
where A is a DTT term.
Γ type : kind
(typeF)
95 / 104
PTS DTT formal presentation Underspecified DTT
Typing rules of UDTT
Definition (Π-formation/introduction/elimination rules)
For any s1, s2 ∈ {type, kind}:
DA
Γ A : s1 Γ, x : DA B : s2
Γ (x:A) → B : s2
(ΠF)
DA
Γ A : s1 Γ, x : DA M : B
Γ λx.M : (x:A) → B
(ΠI )
Γ M : (x:A) → B Γ N : A
Γ MN : B[M/x]
(ΠE) where A is a DTT term.
96 / 104
PTS DTT formal presentation Underspecified DTT
Typing rules of UDTT
Definition (Σ-formation/introduction/elimination rules)
For any s1, s2 ∈ {type, kind}:
DA
Γ A : s1 Γ, x : DA B : s2
Γ
x:A
B
: s2
(ΣF)
DM
Γ M : A Γ N : B[ DM /x]
Γ (M, N) :
x:A
B
(ΣI )
Γ M :
x:A
B
Γ π1(M) : A
(ΣE)
Γ M :
x:A
B
Γ π2(M) : B[π1M/x]
(ΣE)
97 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
@-elimination − is a map from a proof diagram of UDTT
to a term of DTT (=a term without @)
Type checking diagram of UDTT may contain occurrences of
underspecified terms (@).
The @-rule for a term of the form @iA contains a proof of
type A. Let the proof term be M. Then specification replaces
the occurrence of @ with such M, resulting in a DTT
diagram which contains no @.
....
A : s
....
M : A
@iA : A
(@)
....
[· · · @iA · · · ]
= [· · · M · · · ]
98 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Definition (@-elimination for @-rule)
Γ A : s Γ M : DA
Γ (@iA) : A
(@) = M
Definition (@-elimination for type-rule)
For any s1, s2 ∈ {type, kind}:
Γ A : s
Γ, x : A, ∆ x : A
(VAR) = x
Γ type : kind
(typeF)
= type
99 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Definition (@-elimination for Π-rules)
For any s1, s2 ∈ {type, kind}:
DA
Γ A : s1
DB
Γ, x : DA B : s2
Γ (x:A) → B : s2
(ΠF)
= (x: DA ) → DB
DA
Γ A : s1
DM
Γ, x : DA M : B
λx.M : (x:A) → B
(ΠI )
= λx. DM
DM
Γ M : (x:A) → B
DN
Γ N : A
Γ MN : B[N/x]
(ΠE)
= DM DN
100 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Definition (@-elimination for Σ-rules)
DA
Γ A : s1
DB
Γ, x : DA B : s2
Γ
x:A
B
: s2
(ΣF) =
x: DA
DB
DM
M : A
DN
N : B[ DM /x]
(M, N) :
x:A
B
(ΣI ) = ( DM , DN )
DM
Γ M :
x:A
B
Γ π1(M) : A
(ΣE)
= π1( DM )
DM
Γ M :
x:A
B
Γ π2(M) : B[π1(M)/x]
(ΣE)
= π2( DM )
101 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Definition (Free variables and substitution)
fv (@iA)
def
≡ fv (A)
(@iA)[M/x]
def
≡ @i(A[M/x])
Definition (Inferable and checkable terms of UDTT)
Λ↑ ::= x | type | kind
| (x:Λ↓) → Λ↓ | Λ↑Λ↓
|
x:Λ↓
Λ↓
| πiΛ↑
| ⊥ | | ()
| Λ =Λ Λ | reflΛ(Λ) | idpeel(Λ, Λ)
| @iΛ↑
Λ↓ ::= Λ↑ | λx.Λ↓ | (Λ↓, Λ↓) 102 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Definition (Values and neutral terms of UDTT)
Values of UDTT is defined in the same way as DTT, except that a
term of the form @iv is a neutral term.
Definition (β-reduction in UDTT)
β-reduction relation ⇓ in UDTT is defined as that of DTT
extended by the following rule:
A ⇓ A
@iA ⇓ @iA
(@⇓)
103 / 104
PTS DTT formal presentation Underspecified DTT
@-elimination −
Theorem
If M is a checkable term of UDTT that is typable, and M ⇓ M ,
then M is a value.
Proof.
By induction on the structure of M. Interesting cases are when M
is either functional application or projections.
104 / 104
Ad

More Related Content

What's hot (20)

Representing and Reasoning with Modular Ontologies (2007)
Representing and Reasoning with Modular Ontologies (2007)Representing and Reasoning with Modular Ontologies (2007)
Representing and Reasoning with Modular Ontologies (2007)
Jie Bao
 
Cs6503 theory of computation book notes
Cs6503 theory of computation book notesCs6503 theory of computation book notes
Cs6503 theory of computation book notes
appasami
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic Rules
Sho Takase
 
AI Lesson 11
AI Lesson 11AI Lesson 11
AI Lesson 11
Assistant Professor
 
Icml12
Icml12Icml12
Icml12
Daniele Barchiesi
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculus
Rajendran
 
Artificial intelligence and first order logic
Artificial intelligence and first order logicArtificial intelligence and first order logic
Artificial intelligence and first order logic
parsa rafiq
 
A course on mathematical logic
A course on mathematical logicA course on mathematical logic
A course on mathematical logic
Springer
 
Jarrar: Description Logic
Jarrar: Description LogicJarrar: Description Logic
Jarrar: Description Logic
Mustafa Jarrar
 
Semantics
SemanticsSemantics
Semantics
Mohammed Al-Meqdad
 
Modular Ontologies: Package-based Description Logics Approach
Modular Ontologies: Package-based Description Logics ApproachModular Ontologies: Package-based Description Logics Approach
Modular Ontologies: Package-based Description Logics Approach
Jie Bao
 
Contexts 4 quantification (CommonSense2013)
Contexts 4 quantification (CommonSense2013)Contexts 4 quantification (CommonSense2013)
Contexts 4 quantification (CommonSense2013)
Valeria de Paiva
 
Theory of Computation Lecture Notes
Theory of Computation Lecture NotesTheory of Computation Lecture Notes
Theory of Computation Lecture Notes
FellowBuddy.com
 
Predicate Logic
Predicate LogicPredicate Logic
Predicate Logic
giki67
 
Statistical machine translation
Statistical machine translationStatistical machine translation
Statistical machine translation
asimuop
 
Logic programming (1)
Logic programming (1)Logic programming (1)
Logic programming (1)
Nitesh Singh
 
Chaps 1-3-ai-prolog
Chaps 1-3-ai-prologChaps 1-3-ai-prolog
Chaps 1-3-ai-prolog
juanpaperez1234
 
Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents
Mustafa Jarrar
 
First order predicate logic(fopl)
First order predicate logic(fopl)First order predicate logic(fopl)
First order predicate logic(fopl)
surbhi jha
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 
Representing and Reasoning with Modular Ontologies (2007)
Representing and Reasoning with Modular Ontologies (2007)Representing and Reasoning with Modular Ontologies (2007)
Representing and Reasoning with Modular Ontologies (2007)
Jie Bao
 
Cs6503 theory of computation book notes
Cs6503 theory of computation book notesCs6503 theory of computation book notes
Cs6503 theory of computation book notes
appasami
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic Rules
Sho Takase
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculus
Rajendran
 
Artificial intelligence and first order logic
Artificial intelligence and first order logicArtificial intelligence and first order logic
Artificial intelligence and first order logic
parsa rafiq
 
A course on mathematical logic
A course on mathematical logicA course on mathematical logic
A course on mathematical logic
Springer
 
Jarrar: Description Logic
Jarrar: Description LogicJarrar: Description Logic
Jarrar: Description Logic
Mustafa Jarrar
 
Modular Ontologies: Package-based Description Logics Approach
Modular Ontologies: Package-based Description Logics ApproachModular Ontologies: Package-based Description Logics Approach
Modular Ontologies: Package-based Description Logics Approach
Jie Bao
 
Contexts 4 quantification (CommonSense2013)
Contexts 4 quantification (CommonSense2013)Contexts 4 quantification (CommonSense2013)
Contexts 4 quantification (CommonSense2013)
Valeria de Paiva
 
Theory of Computation Lecture Notes
Theory of Computation Lecture NotesTheory of Computation Lecture Notes
Theory of Computation Lecture Notes
FellowBuddy.com
 
Predicate Logic
Predicate LogicPredicate Logic
Predicate Logic
giki67
 
Statistical machine translation
Statistical machine translationStatistical machine translation
Statistical machine translation
asimuop
 
Logic programming (1)
Logic programming (1)Logic programming (1)
Logic programming (1)
Nitesh Singh
 
Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents Jarrar: Introduction to logic and Logic Agents
Jarrar: Introduction to logic and Logic Agents
Mustafa Jarrar
 
First order predicate logic(fopl)
First order predicate logic(fopl)First order predicate logic(fopl)
First order predicate logic(fopl)
surbhi jha
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 

Similar to Composing (Im)politeness in Dependent Type Semantics (20)

LDA on social bookmarking systems
LDA on social bookmarking systemsLDA on social bookmarking systems
LDA on social bookmarking systems
Denis Parra Santander
 
Ecml2010 Slides
Ecml2010 SlidesEcml2010 Slides
Ecml2010 Slides
fanizzi
 
Calculating Projections via Type Checking
Calculating Projections via Type CheckingCalculating Projections via Type Checking
Calculating Projections via Type Checking
Daisuke BEKKI
 
The Geometry of Learning
The Geometry of LearningThe Geometry of Learning
The Geometry of Learning
fridolin.wild
 
Language Technology Enhanced Learning
Language Technology Enhanced LearningLanguage Technology Enhanced Learning
Language Technology Enhanced Learning
telss09
 
Deep Learning for Search
Deep Learning for SearchDeep Learning for Search
Deep Learning for Search
Bhaskar Mitra
 
Dsm as theory building
Dsm as theory buildingDsm as theory building
Dsm as theory building
ClarkTony
 
GDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSC SSN - solution Challenge : Fundamentals of Decision MakingGDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSCSSN
 
Some Information Retrieval Models and Our Experiments for TREC KBA
Some Information Retrieval Models and Our Experiments for TREC KBASome Information Retrieval Models and Our Experiments for TREC KBA
Some Information Retrieval Models and Our Experiments for TREC KBA
Patrice Bellot - Aix-Marseille Université / CNRS (LIS, INS2I)
 
Data mining techniques
Data mining techniquesData mining techniques
Data mining techniques
Higher Education Department KPK, Pakistan
 
From Dependent Types to Natural Language Semantics
From Dependent Types to Natural Language SemanticsFrom Dependent Types to Natural Language Semantics
From Dependent Types to Natural Language Semantics
Daisuke BEKKI
 
Text Mining Analytics 101
Text Mining Analytics 101Text Mining Analytics 101
Text Mining Analytics 101
Manohar Swamynathan
 
Lean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural LogicLean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural Logic
Valeria de Paiva
 
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
Seth Grimes
 
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Seth Grimes
 
Lean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction RevisitedLean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction Revisited
Valeria de Paiva
 
Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...
Rajnish Raj
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
Claudia Wagner
 
A Theory of Scope
A Theory of ScopeA Theory of Scope
A Theory of Scope
Lars Marius Garshol
 
Topic model an introduction
Topic model an introductionTopic model an introduction
Topic model an introduction
Yueshen Xu
 
Ecml2010 Slides
Ecml2010 SlidesEcml2010 Slides
Ecml2010 Slides
fanizzi
 
Calculating Projections via Type Checking
Calculating Projections via Type CheckingCalculating Projections via Type Checking
Calculating Projections via Type Checking
Daisuke BEKKI
 
The Geometry of Learning
The Geometry of LearningThe Geometry of Learning
The Geometry of Learning
fridolin.wild
 
Language Technology Enhanced Learning
Language Technology Enhanced LearningLanguage Technology Enhanced Learning
Language Technology Enhanced Learning
telss09
 
Deep Learning for Search
Deep Learning for SearchDeep Learning for Search
Deep Learning for Search
Bhaskar Mitra
 
Dsm as theory building
Dsm as theory buildingDsm as theory building
Dsm as theory building
ClarkTony
 
GDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSC SSN - solution Challenge : Fundamentals of Decision MakingGDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSC SSN - solution Challenge : Fundamentals of Decision Making
GDSCSSN
 
From Dependent Types to Natural Language Semantics
From Dependent Types to Natural Language SemanticsFrom Dependent Types to Natural Language Semantics
From Dependent Types to Natural Language Semantics
Daisuke BEKKI
 
Lean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural LogicLean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural Logic
Valeria de Paiva
 
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
The Ins and Outs of Preposition Semantics:
 Challenges in Comprehensive Corpu...
Seth Grimes
 
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Preposition Semantics: Challenges in Comprehensive Corpus Annotation and Auto...
Seth Grimes
 
Lean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction RevisitedLean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction Revisited
Valeria de Paiva
 
Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...
Rajnish Raj
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
Claudia Wagner
 
Topic model an introduction
Topic model an introductionTopic model an introduction
Topic model an introduction
Yueshen Xu
 
Ad

More from Daisuke BEKKI (15)

Dependent Type Semantics and its Davidsonian extensions
Dependent Type Semantics and its Davidsonian extensionsDependent Type Semantics and its Davidsonian extensions
Dependent Type Semantics and its Davidsonian extensions
Daisuke BEKKI
 
Dependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural LanguageDependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural Language
Daisuke BEKKI
 
Dependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural LanguageDependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural Language
Daisuke BEKKI
 
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Daisuke BEKKI
 
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic TurnESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-2: More Dependent TypesESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
ESSLLI2016 DTS Lecture Day 4-1: Common NounESSLLI2016 DTS Lecture Day 4-1: Common Noun
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day3: PresuppositionESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day3: Presupposition
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theoryESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
Daisuke BEKKI
 
Conventional Implicature via Dependent Type Semantics
Conventional Implicature via Dependent Type SemanticsConventional Implicature via Dependent Type Semantics
Conventional Implicature via Dependent Type Semantics
Daisuke BEKKI
 
Two types of Japanese scrambling in combinatory categorial grammar
Two types of Japanese scrambling in combinatory categorial grammarTwo types of Japanese scrambling in combinatory categorial grammar
Two types of Japanese scrambling in combinatory categorial grammar
Daisuke BEKKI
 
Dependent Type Semantics and its Davidsonian extensions
Dependent Type Semantics and its Davidsonian extensionsDependent Type Semantics and its Davidsonian extensions
Dependent Type Semantics and its Davidsonian extensions
Daisuke BEKKI
 
Dependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural LanguageDependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural Language
Daisuke BEKKI
 
Dependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural LanguageDependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural Language
Daisuke BEKKI
 
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
Daisuke BEKKI
 
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic TurnESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-2: More Dependent TypesESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
ESSLLI2016 DTS Lecture Day 4-1: Common NounESSLLI2016 DTS Lecture Day 4-1: Common Noun
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day3: PresuppositionESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day3: Presupposition
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
Daisuke BEKKI
 
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theoryESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
Daisuke BEKKI
 
Conventional Implicature via Dependent Type Semantics
Conventional Implicature via Dependent Type SemanticsConventional Implicature via Dependent Type Semantics
Conventional Implicature via Dependent Type Semantics
Daisuke BEKKI
 
Two types of Japanese scrambling in combinatory categorial grammar
Two types of Japanese scrambling in combinatory categorial grammarTwo types of Japanese scrambling in combinatory categorial grammar
Two types of Japanese scrambling in combinatory categorial grammar
Daisuke BEKKI
 
Ad

Recently uploaded (20)

Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
whole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptxwhole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptx
simranjangra13
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Application of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medicalApplication of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medical
Anoja Kurian
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........
Bangladesh Agricultural University,Mymemsingh
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 
Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
whole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptxwhole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptx
simranjangra13
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Application of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medicalApplication of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medical
Anoja Kurian
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 

Composing (Im)politeness in Dependent Type Semantics

  • 1. Honorification DTT DTS Solution Reference Composing (Im)politeness in Dependent Type Semantics Daisuke Bekki Ochanomizu University, Faculty of Core Research / CREST, Japan Science and Technology Agency (JST) / National Institute of Advanced Industrial Science and Technology (AIST) / National Institute of Informatics (NII) Politeness workshop@LENLS12 Ochanomizu University, November 15th (Sun), 2015. http://www.slideshare.net/kaleidotheater/ 1 / 104
  • 2. Honorification DTT DTS Solution Reference Honorification in Japanese 2 / 104
  • 3. Honorification DTT DTS Solution Reference Puzzle 1: Morphology and composition Honorifics indicate that the speaker (is behaving as if she) honors, or feels some distance from, one of the arguments of a verb (or the addressee): (1) Sensei -ga teacher-Nom irassyat -ta. come-Hon-Pst Descriptive: ‘The teacher came.’ + Expressive: ‘The speaker honors the teacher.’ (2) Sensei -ga teacher-Nom ringo-o apple-Acc mesiagat -ta. eat.Hon-Pst Descriptive: ‘The teacher ate an apple.’ + Expressive: ‘The speaker honors the teacher.’ These examples were suppletive honorifics: terms lexically specified as honorific which completely replace nonhonorific forms. 3 / 104
  • 4. Honorification DTT DTS Solution Reference Puzzle 1: Morphology and composition It is also possible in Japanese to derive honorific forms via systematic morphology from ordinary verbs; here, strategies for honorification include use of the ‘passive’ form and the use of ‘pure’ honorific morphology. (3) Sensei -ga teacher-Nom seito-o student-Acc home- rare -ta. praise-Hon-Pst Descriptive: ‘The teacher praised the student.’ + Expressive: ‘The speaker honors the teacher.’ (4) Sensei -ga teacher-Nom seito-o apple-Acc o -home- ninat -ta. Hon-praise-Hon-Pst Descriptive: ‘The teacher praised the student.’ + Expressive: ‘The speaker honors the teacher.’ 4 / 104
  • 5. Honorification DTT DTS Solution Reference Puzzle 1: Morphology and composition Japanese employs different morphology according to the grammatical target of honorific meaning. One can find subject-oriented honorifics, as in (5), and object honorifics, as in (6). (5) Sensei -ga teacher-Nom seito-o student-Acc o -tasuke- ninat -ta. Hon-help-Hon-Pst Descriptive: ‘The teacher helped the student.’ + Expressive: ‘The speaker honors the teacher.’ (6) Seito-ga student-Nom sensei -o teacher-Acc o -tasuke- si -ta. Hon-help-Hon-Pst Descriptive: ‘The student helped the teacher.’ + Expressive: ‘The speaker honors the teacher.’ As we will see, even simple examples like these can cause problems for existing treatments of honorific composition. 5 / 104
  • 6. Honorification DTT DTS Solution Reference Puzzle 1: Morphology and composition Following requirements should be satisfied: Honorific contents require composition : Subject-oriented and object-oriented honorifics Honorific suffixes require higher-order composition : passive suffix, honorific morphology ‘-o’, ‘-nasa(ru)’-suffix, ‘-su(ru)’-suffix, etc 6 / 104
  • 7. Honorification DTT DTS Solution Reference Puzzle 2: Honorific content projects In 1970’s, honorification was considered as an instance of syntactic agreement (Harada, 1976), which has been assumed ever since (Gunji, 1987)(Siegel, 2000)(Boeckx and Niinuma, 2004) The ’syntactic view’ is falsified by the following example (Bekki et al., 2008): (7) Dare -mo nobody-Nom o -mie- ni-nar -anakat-ta. come-Hon-Neg-Pst ‘Nobody (in the contextually salient set) came-Hon.’ 7 / 104
  • 8. Honorification DTT DTS Solution Reference Honorific content projects (8) Sensei -ga teacher-Nom irassyat -ta come-Hon-Pst wakedehanai. Neg # Sensei -ga teacher-Nom ki- yagat -ta-nda. come-AntiHon-Pst-Explanation ‘The teacher did not come-Hon. #The teacher came-AntiHon.’ The honorific content projects over negation. (9) Mosi If Sensei -ga teacher-Nom irassyat -tara come-Hon-Pst otya-o tea-Acc dasi-te serve kudasai. please # Sensei -ga teacher-Nom nomi- yagar -imasu. drink-AntiHon-Nonpst ‘If the teacher comes-Hon, please serve a tea. #He will drink-AntiHon it.’ The honorific content projects over implication. 8 / 104
  • 9. Honorification DTT DTS Solution Reference Puzzle 2: Honorific content projects Based on the projective feature of honorification, Bekki et al. (2008) claimed that honorific contents are presuppositions. However, it turns out that honorific contents CANNOT be filtered by a presupposition filter. (McCready, 2010) (10) Mosi If wareware-ga we-NOM Yamada-si-o Mr.Yamada-ACC sonkeisi-tei-ru-nara, honor-Asp-NonPst-cond Yamada -si-o Mr.Yamada-ACC go -syotai- suru -daroo. invite-Hon-would #Jissai-wa actually sonkeisi-tei-nai-ga. honor-Asp-Neg-Contrastive ‘If we honor Mr.Yamada, we would invite-Hon Mr.Yamada. #But actually we do not honor Mr.Yamada.’ (cf. ’If John is married, his wife will come.’) 9 / 104
  • 10. Honorification DTT DTS Solution Reference Puzzule 1 + Puzzle 2 = ? Honorific contents are expressive contents (not descriptive, nor presuppositional) What we need: a mechanism for composition of expressive contents Two-dimensional semantics? (Potts, 2005)(McCready, 2010)(Gutzmann, 2015) Advantage: Projection, Immunity to presupposition filters, ... Disadvantage: More than two-place honorific predicate Disadvantage: The following case induces a binding problem! (11) Dare -mo nobody-Nom o -mie- ni-nar -anakat-ta. come-Hon-Neg-Pst ‘Nobody (in the contextually salient set) came-Hon.’ ∀x(Descriptive:¬came(x) ∧ Expressive:honor(sp, x)) 10 / 104
  • 11. Honorification DTT DTS Solution Reference Dependent Type Theory 11 / 104
  • 12. Honorification DTT DTS Solution Reference What is Dependent Type Semantics? Dependent Type Semantics (DTS; Bekki (2013, 2014)): DTS is a discourse theory, an alternative framework to DRT, DPL, continuation semantics, etc. DTS is a compositional/lexicalized theory that serves as a semantic component of most categorial grammars. DTS is based on dependent type theory (Martin-L¨of, 1984)(Coquand and Huet, 1988), following the line of Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima (2008) and Luo (2012). DTS provides proof-theoretic semantics of natural language (Dummett, 1975, 1976)(Prawitz, 1980) 12 / 104
  • 13. Honorification DTT DTS Solution Reference What is Dependent Type Semantics? Dependent Type Semantics (DTS; Bekki (2013, 2014)): DTS is a discourse theory, an alternative framework to DRT, DPL, continuation semantics, etc. DTS is a compositional/lexicalized theory that serves as a semantic component of most categorial grammars. DTS is based on dependent type theory (Martin-L¨of, 1984)(Coquand and Huet, 1988), following the line of Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima (2008) and Luo (2012). DTS provides proof-theoretic semantics of natural language (Dummett, 1975, 1976)(Prawitz, 1980) 12 / 104
  • 14. Honorification DTT DTS Solution Reference What is Dependent Type Semantics? Dependent Type Semantics (DTS; Bekki (2013, 2014)): DTS is a discourse theory, an alternative framework to DRT, DPL, continuation semantics, etc. DTS is a compositional/lexicalized theory that serves as a semantic component of most categorial grammars. DTS is based on dependent type theory (Martin-L¨of, 1984)(Coquand and Huet, 1988), following the line of Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima (2008) and Luo (2012). DTS provides proof-theoretic semantics of natural language (Dummett, 1975, 1976)(Prawitz, 1980) 12 / 104
  • 15. Honorification DTT DTS Solution Reference What is Dependent Type Semantics? Dependent Type Semantics (DTS; Bekki (2013, 2014)): DTS is a discourse theory, an alternative framework to DRT, DPL, continuation semantics, etc. DTS is a compositional/lexicalized theory that serves as a semantic component of most categorial grammars. DTS is based on dependent type theory (Martin-L¨of, 1984)(Coquand and Huet, 1988), following the line of Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima (2008) and Luo (2012). DTS provides proof-theoretic semantics of natural language (Dummett, 1975, 1976)(Prawitz, 1980) 12 / 104
  • 16. Honorification DTT DTS Solution Reference What is Dependent Type Semantics? Dependent Type Semantics (DTS; Bekki (2013, 2014)): DTS is a discourse theory, an alternative framework to DRT, DPL, continuation semantics, etc. DTS is a compositional/lexicalized theory that serves as a semantic component of most categorial grammars. DTS is based on dependent type theory (Martin-L¨of, 1984)(Coquand and Huet, 1988), following the line of Sundholm (1986), Ranta (1994), Cooper (2005), Mineshima (2008) and Luo (2012). DTS provides proof-theoretic semantics of natural language (Dummett, 1975, 1976)(Prawitz, 1980) 12 / 104
  • 17. Honorification DTT DTS Solution Reference Three key concepts in DTS 1. Proof-theoretic semantics (vs. Model-theoretic semantics) 2. Curry-Howard Correspondence (between logic and type theory) 3. Dependent types (vs. Simple types) 13 / 104
  • 18. Honorification DTT DTS Solution Reference A proof theory: Natural deduction rules Implication Conjunction Introduction rules Γ, A B Γ A → B (→I ) Γ A Γ B Γ A ∧ B (∧I ) Elimination rules Γ A → B Γ A Γ B (→E) Γ A ∧ B Γ A (∧E) Γ A ∧ B Γ B (∧E) 14 / 104
  • 19. Honorification DTT DTS Solution Reference Typing rules for simply-typed lambda calculus (STLC) with binary products Function type Product type Type construction rules Γ, x : A M : B Γ λx.M function : A → B (LAM ) Γ M : A Γ N : B Γ (M, N) pair : A × B (PROD) Type deconstruction rules Γ M : A → B Γ N : A Γ MN : B (APP) Γ M : A × B Γ π1(M) : A (PROJ) Γ M : A × B Γ π2(M) : B (PROJ) 15 / 104
  • 20. Honorification DTT DTS Solution Reference Typing rules for simply-typed lambda calculus (STLC) with binary products f : A → B, x : A f : A → B (VAR) f : A → B, x : A x : A (VAR) f : A → B, x : A fx : B (APP) f : A → B λx.fx : A → B (LAM ) λf.λx.fx : (A → B) → (A → B) (LAM ) The typing tree of a term is a record of rules used for typing. The typing tree of a term (in STLC) can be recovered from the structure of term. (cf. Milner (1978)) Fact 1 A term is an encoding of a typing tree. 16 / 104
  • 21. Honorification DTT DTS Solution Reference Curry-Howard Correspondence btw. function type and implication Typing rules in STLC Natural Deduction rules Introduction rules Γ, x : A M : B Γ λx.M function : A → B (LAM ) Γ, A B Γ A → B (→I ) Elimination rules Γ M : A → B Γ N : A Γ MN : B (APP) Γ A → B Γ A Γ B (→E) Fact 2 Typing rules of STLC (almost exactly) correspond to natural deduction rules in logic. 17 / 104
  • 22. Honorification DTT DTS Solution Reference Curry-Howard Correspondence btw. product type and conjunction Typing rules in STLC Natural Deduction rules Introduction rules Γ M : A Γ N : B Γ (M, N) pair : A × B (PROD) Γ A Γ B Γ A ∧ B (∧I ) Elimination rules Γ M : A × B Γ π1(M) : A (PROJ) Γ A ∧ B Γ A (∧E) Γ M : A × B Γ π2(M) : B (PROJ) Γ A ∧ B Γ B (∧E) Fact 2 Typing rules of STLC (almost exactly) correspond to natural deduction rules in logic. 18 / 104
  • 23. Honorification DTT DTS Solution Reference Curry-Howard Correspondence Fact 1 A term is an encoding of a typing tree. + Fact 2 Typing rules of STLC (almost exactly) correspond to natural deduction rules in logic. ⇓ Fact 3 A term of type A is an encoding of a proof diagram of a proposition A. 19 / 104
  • 24. Honorification DTT DTS Solution Reference Curry-Howard Correspondence btw. product type and conjunction Fact 3 A term of type A is also an encoding of a proof diagram of a proposition A (under the view that proposition is type). In particular: Functions encode proofs of →. Pairs encode proofs of ∧. 20 / 104
  • 25. Honorification DTT DTS Solution Reference Curry-Howard Correspondence btw. product type and conjunction The correspondence between the notions of logic and type theory : Logic Type Theory proposition type proof term (or program) axiom constant symbol assumption variable logical connective type constructor implication functional type conjunction product type disjunction direct sum type absurdity empty type introduction constructor elimination destructor provability inhabitance cut substitution normalization reduction 21 / 104
  • 26. Honorification DTT DTS Solution Reference Three different queries on Judgements Γ M : A · · · Type check (returns yes/no) Γ M : ? · · · Type inference (returns a type) Γ ? : A · · · Proof search (returns a term) Γ A true · · · There is a term M such that Γ M : A 22 / 104
  • 27. Honorification DTT DTS Solution Reference Simple function type vs. Dependent function type Function type → in STLC Dependent function type (Π) in DTT Introduction rules Γ, x : A M : B Γ λx.M function : A → B (LAM ) Γ A : s Γ, x : A M : B Γ λx.M : (x:A) → B (ΠI ) Elimination rules Γ M : A → B Γ N : A Γ MN : B (APP) Γ M : (x:A) → B Γ N : A Γ MN : B (ΠE) Scope: (x:A) → B 23 / 104
  • 28. Honorification DTT DTS Solution Reference Simple product type vs. Dependent product type Product type × in STLC Dependent product type (Σ) in DTT Introduction rules Γ M : A Γ N : B Γ (M, N) pair : A × B (PROD) Γ M : A Γ N : B[M/x] Γ (M, N) : x:A B (ΣI ) Elimination rules Γ M : A × B Γ π1(M) : A (PROJ) Γ M : x:A B Γ π1(M) : A (ΣE) Γ M : A × B Γ π2(M) : B (PROJ) Γ M : x:A B Γ π2(M) : B[π1(M)/x] (ΣE) Scope: x:A B 24 / 104
  • 29. Honorification DTT DTS Solution Reference Dependent types and First-order logic Dependent types Standard notation x ∈ fv (B) x ∈ fv (B) (x:A) → B (Πx : A)B A → B (∀x : A)B x:A B (Σx : A)B A ∧ B (∃x : A)B 25 / 104
  • 30. Honorification DTT DTS Solution Reference Examples Types dependent on terms List(n): lists of length n append in DTT: List(m) × List(n) → List(m + n) append in STLC: List × List → List Linguist(x): proofs of x’s being a linguist. Dependent product types m:month day(m) : pairs of a month and its day m:entity linguist(m) : pairs of an entity and its proof of being a linguist (=“There is a linguist.”) Dependent function types u: m:entity linguist(m) → mortal(π1u): functions from pairs to proofs of mortality (=“Every linguist is mortal.”) 26 / 104
  • 31. Honorification DTT DTS Solution Reference Dependent function type Definition (Π-formation/introduction/elimination rules) Γ A : s1 Γ, x : A B : s2 Γ (x:A) → B : s2 (ΠF) where s1, s2 ∈ {type, kind} . Γ A : s Γ, x : A M : B Γ λx.M : (x:A) → B (ΠI ) where s ∈ {type, kind} , x /∈ fv (Γ) . Γ M : (x:A) → B Γ N : A Γ MN : B (ΠE) 27 / 104
  • 32. Honorification DTT DTS Solution Reference Dependent function type Definition (Negation) ¬A def ≡ A → ⊥ Definition (¬-formation/introduction/elimination rules) Γ A : type Γ ¬A : type (¬F) Γ, x : A M : ⊥ Γ λx.M : ¬A (¬I ) Γ M : ¬A Γ N : A Γ MN : ⊥ (¬E) 28 / 104
  • 33. Honorification DTT DTS Solution Reference Dependent product type Definition (Σ-formation/introduction/elimination rules) DA Γ A : s1 Γ, x : A B : s2 Γ x:A B : s2 (ΣF) where s1, s2 ∈ {type, kind} . Γ M : A Γ N : B[M/x] Γ (M, N) : x:A B (ΣI ) Γ M : x:A B Γ π1(M) : A (ΣE) Γ M : x:A B Γ π2(M) : B[π1(M)/x] (ΣE) 29 / 104
  • 34. Honorification DTT DTS Solution Reference Natural numbers Definition (N-formation/introduction/elimination rules) Γ N : type (NF) Γ 0 : N (NI ) Γ n : N Γ s(n) : N (NI ) Γ P : N → type Γ e : P(0) Γ, n : N f : P(s(n)) Γ, n : N natrec(n, e, f) : P(n) (NE) 30 / 104
  • 35. Honorification DTT DTS Solution Reference Intensional equality type Definition (id-formation/introduction/elimination rules) Γ A : s Γ M : A Γ N : A Γ M =A N : type (IdF) Γ A : type Γ M : A Γ reflA(M) : M =A M (IdI ) Γ C : (x:A) → (y:A) → (x =A y) → type Γ, x : A N : Cxx(reflA(x)) Γ, e : M1 =A M2 idpeel(e, N) : CM1M2e (IdE) 31 / 104
  • 36. Honorification DTT DTS Solution Reference E-type anaphora: Ranta (1994) (12) A man entered. He whistled.       v:    u: x:entity man(x) enter(π1u)    whistle( π1π1v )       Note: x:A B is a type for pairs of A and B[x]. 32 / 104
  • 37. Honorification DTT DTS Solution Reference Donkey anaphora: Sundholm (1986) (13) Every farmer who owns a donkey beats it .        u:        x:entity     farmer(x)   v: y:entity donkey(y) own(x, π1v)                       → beat(π1u, π1π1π2π2u ) Note: (x:A) → B is a type for functions from A to B[x]. 33 / 104
  • 38. Honorification DTT DTS Solution Reference Accessibility: Ranta (1994) (14) Every man entered. * He whistled.     v: u: x:entity man(x) → enter(π1u) whistle( ? )     In this case, the pronoun CANNOT pick up the entity (=the man who entered) from v, since v is a function. This explains the following cases uniformly, since both implication and negation are instances of dependent functional types: (15) a. If John owns a car, it must be a Porsche. *It is red. b. John did not buy a car. *It is a Porsche. This accounts for accessibility, based on the structure of a proof. 34 / 104
  • 39. Honorification DTT DTS Solution Reference Problem: Context retrieval Ranta (1994), Krause (1995), D´avila-P´erez (1995), Krahmer and Piwek (1999), Piwek and Krahmer (2000): Anaphora resolution/presupposition binding as proof search of the form Γ M : A Context Γ consists of: 1. Knowledge of the hearer 2. Preceding discourse 3. Variables from c-commanding quantifiers Problem of context retrieval for each anaphora/presupposition trigger Syntactic approaches: Ranta (1994) Semantic approaches: Mineshima (2008, 2014), Bekki (2014) Context retrieval by type checking 35 / 104
  • 40. Honorification DTT DTS Solution Reference Dependent Type Semantics 36 / 104
  • 41. Honorification DTT DTS Solution Reference Underspecified DTT UDTT = DTT + underspecified terms (@) A map ‘@-elimination’ − : UDTT proof diagrams → DTT terms Definition (@-rule) DA Γ A : type Γ DA true Γ @iA : A (@) A UDTT proof diagram contains information to specify the antecedent of @s in the diagram @-elimination replaces every occurrence of @ by a proof term specified in the UDTT diagram 37 / 104
  • 42. Honorification DTT DTS Solution Reference Organization of grammar Sentences ⇓ CCG Parser ⇓ Underspecified SRs in UDTT ⇓ Discoruse relation (e.g. Progressive conjunction) ⇓ A underspecified SR of a discourse in UDTT ⇓ Type checking in UDTT (+ Proof search in a DTT fragment) ⇓ A proof diagram of the well-formedness of an SR in UDTT ⇓ @-elimination ⇓ A semantic representation in DTT ⇓ Inference in DTT 38 / 104
  • 43. Honorification DTT DTS Solution Reference Lexical items in DTS PF CCG categories Semantic representations in DTS if S/S/S λp.λq. (u:p) → q everynom S/(SNP)/N λn.λp. u: x:entity nx → p(π1(u)) everyacc T (T /NP)/N λn.λp.λx. v: y:entity ny → p(π1(v))x anom, somenom S/(SNP)/N λn.λp.   u: x:entity nx p(π1(u))   aacc, someacc T (T /NP)/N λn.λp.λx.   v: y:entity ny p(π1(v))x   farmer N λx.farmer(x) donkey N λx.donkey(x) who NN/(SNP) λp.λn.λx.(nx; px) whom NN/(S/NP) λp.λn.λx.(nx; px) owns SNP/NP λy.λx.own(x, y) beats SNP/NP λy.λx.beat(x, y) he NP π1@i x:entity male(x) it NP π1@i x:entity ¬human(x) the NP/N λn.π1@i x:entity nx 39 / 104
  • 44. Honorification DTT DTS Solution Reference Syntactic calculus/semantic composition A S/(SNP)/N : λn.λp.   u: x:entity nx p(π1u)   man N : λx.man(x) S/(SNP) : λp.   u: x:entity man(x) p(π1u)   > entered SNP : λx.enter(x) S :   u: x:entity man(x) enter(π1u)   > 40 / 104
  • 45. Honorification DTT DTS Solution Reference Syntactic calculus/semantic composition He NP : π1@ x:entity man(x) whistled SNP : λx.whistle(x) S : whistle π1@ x:entity man(x) < 41 / 104
  • 46. Honorification DTT DTS Solution Reference Progressive conjunction: Ranta (1994) Definition (Progressive conjunction) M; N def ≡ u:M N where u /∈ fv (N) (12) A man entered. He whistled.   x:entity man(x) enter(x)   ; whistle( π1@ x:entity man(x) ) underspecified term =        u:   x:entity man(x) enter(x)   whistle( π1@ x:entity man(x) )        42 / 104
  • 47. Honorification DTT DTS Solution Reference Presupposition projection as type checking Felicity condition as Type Checking K       u:   x:entity man(x) enter(x)   whistle @i x:entity man(x)       : type ⇓ Type checking in UDTT K, u :   x:entity man(x) enter(x)   @i x:entity man(x) Type checking: reconstruction of context Proof search: anaphora resolution/presupposition binding 43 / 104
  • 48. Honorification DTT DTS Solution Reference Type checking in Underspecified DTT D1 K   u: x:entity man(x) enter(π1u)   : type K, v :   u: x:entity man(x) enter(π1u)   whistle : entity → type (VAR) D2 K, v :   u: x:entity man(x) enter(π1u)   x:entity man(x) : type K, v :   u: x:entity man(x) enter(π1u)   x:entity man(x) true K, v :   u: x:entity man(x) enter(π1u)   @i x:entity man(x) : x:entity man(x) (@) K, v :   u: x:entity man(x) enter(π1u)   π1@i x:entity man(x) : entity (ΣE) K, v :   u: x:entity man(x) enter(π1u)   whistle π1@i x:entity man(x) : type (→E) K       v:   u: x:entity man(x) enter(π1u)   whistle π1@i x:entity man(x)       : type (ΣF),2 44 / 104
  • 49. Honorification DTT DTS Solution Reference Anaphora resolution is Proof search in DTT D1 K   u: x:entity man(x) enter(π1u)   : type K, v :   u: x:entity man(x) enter(π1u)   whistle : entity → type (VAR) D2 K, v :   u: x:entity man(x) enter(π1u)   x:entity man(x) : type K, v :   u: x:entity man(x) enter(π1u)   v :   u: x:entity man(x) enter(π1u)   (VAR) K, v :   u: x:entity man(x) enter(π1u)   π1v : x:entity man(x) (ΣE) K, v :   u: x:entity man(x) enter(π1u)   @i x:entity man(x) : x:entity man(x) (@) K, v :   u: x:entity man(x) enter(π1u)   π1 @i x:entity man(x) : entity (ΣE) K, v :   u: x:entity man(x) enter(π1u)   whistle π1 @i x:entity man(x) : type (→E) K        v:   u: x:entity man(x) enter(π1u)   whistle π1 @i x:entity man(x)        : type (ΣF),2 45 / 104
  • 50. Honorification DTT DTS Solution Reference @-elimination D1 K   u: x:entity man(x) enter(π1u)   : type K, v :   u: x:entity man(x) enter(π1u)   whistle : entity → type (VAR) D2 K, v :   u: x:entity man(x) enter(π1u)   x:entity man(x) : type K, v :   u: x:entity man(x) enter(π1u)   v :   u: x:entity man(x) enter(π1u)   (VAR) K, v :   u: x:entity man(x) enter(π1u)   π1v : x:entity man(x) (ΣE) K, v :   u: x:entity man(x) enter(π1u)   @i x:entity man(x) : x:entity man(x) (@) K, v :   u: x:entity man(x) enter(π1u)   π1 @i x:entity man(x) : entity (ΣE) K, v :   u: x:entity man(x) enter(π1u)   whistle π1 @i x:entity man(x) : type (→E) K        v:   u: x:entity man(x) enter(π1u)   whistle π1 @i x:entity man(x)        : type (ΣF),2 =     v:   u: x:entity man(x) enter(π1u)   whistle(π1π1v)     46 / 104
  • 51. Honorification DTT DTS Solution Reference @-elimination Definition (@-elimination rules (excerpt)) Γ A : s Γ M : DA Γ (@iA) : A (@) = M DM Γ M : (x:A) → B DN Γ N : A Γ MN : B[N/x] (ΠE) = DM DN 47 / 104
  • 52. Honorification DTT DTS Solution Reference Verification of the theory (16) a. [A man]i entered. Hei whistled. A man entered. b. [A man]i entered. Hei whistled. A man whistled. c. A man entered and whistled. [A man]i entered. Hei whistled. (17) a. K,     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))       u: x:entity man(x) enter(π1(u))   b. K,     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))       u: x:entity man(x) whistle(π1(u))   c. K,     u: x:entity man(x) enter(π1(u)) whistle(π1(u))         v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     48 / 104
  • 53. Honorification DTT DTS Solution Reference Entailments Predicted (17a) K,     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))       u: x:entity man(x) enter(π1(u))   K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1(π1(v)))     t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1(π1(v)))     (VAR) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1(π1(v)))     π1(t) :   u: x:entity man(x) enter(π1(u))   (ΣE) 49 / 104
  • 54. Honorification DTT DTS Solution Reference Entailments Predicted (17b) K,     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))       u: x:entity man(x) whistle(π1(u))   K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     (VAR) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     π1(t) :   u: x:entity man(x) enter(π1(u))   (ΣE) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     π1π1(t) : x:entity man(x) (ΣE) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     (VAR) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     π2(t) : whistle(π1π1(v))[π1(t)/v] =β whistle(π1π1π1(t)) =β whistle(π1(u))[π1π1(t)/u] (ΣE) K, t :     v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     (π1π1(t), π2(t)) :   u: x:entity man(x) whistle(π1(u))   (ΣI ) 50 / 104
  • 55. Honorification DTT DTS Solution Reference Entailments Predicted (17c) K,     u: x:entity man(x) enter(π1(u)) whistle(π1(u))         v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     (VAR) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     π1t : x:entity man(x) (ΣE) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     (VAR) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     π2t : enter(π1π1t) whistle(π1π1t) (ΣE) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     π1π2t : enter(π1π1t) =β enter(π1(u))[π1t/u] (ΣE) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     (π1t, π1π2t) :   u: x:entity man(x) enter(π1(u))   (ΣI ) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     (VAR) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     π2t : enter(π1π1t) whistle(π1π1t) (ΣE) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))     π2π2t : whistle(π1π1t) =β whistle(π1π1v)[(π1t, π1π2t)/v] (ΣE) K, t :     u: x:entity man(x) enter(π1(u)) whistle(π1(u))         v:   u: x:entity man(x) enter(π1(u))   whistle(π1π1(v))     (ΣI ) 51 / 104
  • 56. Honorification DTT DTS Solution Reference Presupposition projection The NP/N : λn.π1@i x:entity nx king of France N : λx.KoF(x) NP : π1@i x:entity KoF(x) < S/(SNP) : λp.p π1@i x:entity KoF(x) >T is not S(S/(SNP))/(SNP) : λp.λq.¬(qp) bald SNP : λx.bald(x) S(S/(SNP)) : λq.¬(q(λx.bald(x))) > S : ¬bald π1@i x:entity KoF(x) < 52 / 104
  • 57. Honorification DTT DTS Solution Reference Presupposition projection K bald : entity → type (VAR) K entity : type (VAR) K, x : entity KoF : entity → type (VAR) K, x : entity x : entity (VAR) K, x : entity KoF(x) : type (→E) K x:entity KoF(x) : type (ΣF) K x:entity KoF(x) true K @ x:entity KoF(x) : x:entity KoF(x) (@) K π1@ x:entity KoF(x) : entity (ΣE) K bald π1@ x:entity KoF(x) : type (→E) K ¬bald π1@ x:entity KoF(x) : type (¬F) 53 / 104
  • 58. Honorification DTT DTS Solution Reference Presupposition binding If S/S/S : λp.λq. (u:p) → q John NP : j has SNP/NP : λy.λx.have(x, y) a T (T /NP)/N : λn.λp.λx.   v: y:entity ny p(π1(v))x   wife N : λx.wife(x) T (T /NP) : λp.λx.   v: y:entity wife(y) p(π1(v))x   > SNP : λx.   v: y:entity wife(y) have(x, π1(v))   < S :   v: y:entity wife(y) have(j, π1(v))   < S/S : λq.  u:   v: y:entity wife(y) have(j, π1(v))     → q > 54 / 104
  • 59. Honorification DTT DTS Solution Reference If John has a wife, John’s wife is happy: Parsing John NP : j ’s NP/N NP : λy.λn.π1@i   x:entity nx have(y, x)   NP/N : λn.π1@i   x:entity nx have(j, x)   < wife N : λx.wife(x) NP : π1@i   x:entity wife(x) have(j, x)   > is SNP/(SNP) : id happy SNP : λx.happy(x) SNP : λx.happy(x) > S : happy  π1@i   x:entity wife(x) have(j, x)     < 55 / 104
  • 60. Honorification DTT DTS Solution Reference If John has a wife, John’s wife is happy: Parsing If John has a wife S/S : λq.  u:   v: y:entity wife(y) have(j, π1(v))     → q John’s wife is happy S : happy  π1@i   x:entity wife(x) have(j, x)     S :  u:   v: y:entity wife(y) have(j, π1(v))     → happy  π1@i   x:entity wife(x) have(j, x)     > 56 / 104
  • 61. Honorification DTT DTS Solution Reference If John has a wife, John’s wife is happy: Type Cheking D  v: y:entity wife(y) have(j, π1(v))   : type happy : entity → type (CON ) ....  x:entity wife(x) have(j, x)   : type u :   v: y:entity wife(y) have(j, π1(v))   1 ....  x:entity wife(x) have(j, x)   true @i   x:entity wife(x) have(j, x)   :   x:entity wife(x) have(j, x)   (@) π1@i   x:entity wife(x) have(j, x)   : entity (ΣE) happy  π1@i   x:entity wife(x) have(j, x)     : type (→E)  u:   v: y:entity wife(y) have(j, π1(v))     → happy  π1@i   x:entity wife(x) have(j, x)     : type (ΠF),1 57 / 104
  • 62. Honorification DTT DTS Solution Reference If John has a wife, John’s wife is happy: Proof Search u :   v: y:entity wife(y) have(j, π1v)   1 π1u : y:entity wife(y) (ΣE) π1π1u : entity (ΣE) wife(x) have(j, x) [π1π1u/x] ⇓ wife(π1π1u) have(j, π1π1u) u :   v: y:entity wife(y) have(j, π1v)   1 π1u : y:entity wife(y) (ΣE) wife(y)[π1π1u/y] ⇓ wife(π1π1u) π2π1u : wife(π1π1u) (ΣE) u :   v: y:entity wife(y) have(j, π1v)   1 have(j, π1v)[π1u/v] ⇓ have(j, π1π1u) π2u : have(j, π1π1u) (ΣE) (π2π1u, π2u) : wife(π1π1u) have(j, π1π1u) (ΣI ) (π1π1u, (π2π1u, π2u)) :   x:entity wife(x) have(j, x)   (ΣI ) 58 / 104
  • 63. Honorification DTT DTS Solution Reference Solution 59 / 104
  • 64. Honorification DTT DTS Solution Reference Subject honorification: lexical Analysis of Japanese honorification based on DTS (Watanabe, McCready and Bekki, 2014): No problem arises for more than two-place honorific predicates. Descriptive and expressive contents use the different channels: types and proofs. But still integrated in a single-dimensional semantic representation. Sensei-ga T /(T NPga) : λp.p(sensei) ringo-o T /(T NPo) : λp.p(apple) mesiagat-ta Sv::5::r term|attr NPgaNPo : λy.λx.λc. eat(x, y) CI(honor(sp, x)) Sv::5::r term|attr NPga : λx.λc. eat(x, apple) CI(honor(sp, x)) > Sv::5::r term|attr : λc. eat(sensei, apple) CI(honor(sp, sensei)) > 60 / 104
  • 65. Honorification DTT DTS Solution Reference Subject honorification: verb stem + passive form homera Sv::5::r vo::r NPgaNPo : λy.λx.λc.praise(x, y) re Sv::1 stem NPga$(Svo::r NPga$) : λp.λy.λx.λc. pyxc CI(honor(sp, x)) Sv::1 stem NPgaNPo : λy.λx.λc. praise(x, y) CI(honor(sp, x)) < ta S1 term|attr +t S1 euph::t : id Sv::1 term|attr +t NPgaNPo : λy.λx.λc. praise(x, y) CI(honor(sp, x)) < 61 / 104
  • 66. Honorification DTT DTS Solution Reference Subject honorification: o-verb stem o- Sn::da|no stem +hon NPga$/(Scont +O NPga$) : λp.λy.λx.λc. pyxc CI(honor(sp, x)) home Sv::5::r cont +O NPgaNPo : λy.λx.λc.praise(x, y) Sn::da|no stem +hon NPgaNPo : λy.λx.λc. praise(x, y) CI(honor(sp, x)) > nina-ru Sv::5::r term|attr Sn::da stem +hon : id Sv::5::r term|attr NPgaNPo : λy.λx.λc. praise(x, y) CI(honor(sp, x)) <B2 62 / 104
  • 67. Honorification DTT DTS Solution Reference Object honorification Taro-ga T /(T NPga) : λp.p(taro) sensei-o T /(T NPo) : λp.p(sensei) o-tasuke Sv::S stem NPgaNPo : λy.λx.λc.   help(x, y) CI( honor(sp, y) honor(x, y) )   suru Sv::S term|attr Sv::S stem : id Sv::S term|attr NPgaNPo : λy.λx.λc.   help(x, y) CI( honor(sp, y) honor(x, y) )   <B2 Sv::S term|attr NPga : λx.λc.   help(x, sensei) CI( honor(sp, sensei) honor(x, sensei) )   > Sv::S term|attr : λc.   help(taro, sensei) CI( honor(sp, sensei) honor(taro, sensei) )   > 63 / 104
  • 68. Honorification DTT DTS Solution Reference What is the CI-operator? Defined by means of intentional equality type: Definition CIi(A) def ≡ @iA =A @iA Γ A : s Anaphora resolution within A .... Γ A : type Proof search for A (=projection of A) .... Γ M : A Γ @iA : A (@) Γ @iA =A @iA : type (IdF) where fv (M) ⊆ fv (K) . Not filtered by the linguistic antecedent! 64 / 104
  • 69. Honorification DTT DTS Solution Reference Honorific contents project over negation Sensei-ga NP : teacher irassyat-ta SNP : λx. come(x) CI(honor(sp, x)) S : come(teacher) CI(honor(sp, teacher)) < n wakedehanai SS : λp.¬p S : ¬ come(teacher) CI(honor(sp, teacher)) < 65 / 104
  • 70. Honorification DTT DTS Solution Reference Honorific contents project over negation K come(teacher) K honor(sp, teacher) : type K honor(sp, teacher) true K CI(honor(sp, teacher)) (@) K come(teacher) CI(honor(sp, teacher)) : type (ΣF) K ¬ come(teacher) CI(honor(sp, teacher)) : type (¬F) 66 / 104
  • 71. Honorification DTT DTS Solution Reference Honorific contents are not filtered K honor(we, Y ) : type K, u : honor(we, Y ) invite(we, Y ) : type K, u : honor(we, Y ) honor(we, Y ) : type K, u : honor(we, Y ) honor(we, Y ) true K, u : honor(we, Y ) CI(honor(we, Y )) : type (IdF) K, u : honor(we, Y ) invite(we, Y ) CI(honor(we, Y )) (ΣF) K (u:honor(we, Y )) → invite(we, Y ) CI(honor(we, Y )) (ΠF) Proof search for a proof term M such that fv (M) ⊆ fv (K) → a term of type honor(we, Y ) without u 67 / 104
  • 72. Honorification DTT DTS Solution Reference Binding problem (18) Dare -mo nobody-Nom o -mie- ni-nar -anakat-ta. come-Hon-Neg-Pst ‘Nobody (in the contextually salient set) came.’ ∀x(Descriptive:¬came(x) ∧ Expressive:honor(sp, x)) 68 / 104
  • 73. Honorification DTT DTS Solution Reference Binding problem K x:entity human(x) : type K, u : x:entity human(x) come(π1u) : type K, u : x:entity human(x) honor(sp, π1u) : type K, u : x:entity human(x) honor(sp, π1u) true K, u : x:entity human(x) CI(honor(sp, π1u)) : type (IdF) K, u : x:entity human(x) come(π1u) CI(honor(sp, π1u)) : type (ΣF) K, u : x:entity human(x) ¬ come(π1u) CI(honor(sp, π1u)) : type (¬F) K u: x:entity human(x) → ¬ come(π1u) CI(honor(sp, π1u)) : type (ΠF) 69 / 104
  • 74. Honorification DTT DTS Solution Reference Local accommodation K x:entity human(x) : type K, u : x:entity human(x) come(π1u) : type K, u : x:entity human(x) honor(sp, π1u) : type K, u : x:entity human(x) @i u: x:entity human(x) → honor(sp, π1u) u : honor(sp, x) K, u : x:entity human(x) CI(honor(sp, π1u)) : type (IdF) K, u : x:entity human(x) come(π1u) CI(honor(sp, π1u)) : type (ΣF) K, u : x:entity human(x) ¬ come(π1u) CI(honor(sp, π1u)) : type (¬F) K u: x:entity human(x) → ¬ come(π1u) CI(honor(sp, π1u)) : type (ΠF) A new variable of type u: x:entity human(x) → honor(sp, π1u) will be added to K “The speaker honors everyone” This seems to be a bit strong, but if the restriction of the universal quantification is contextually specified, it gives a correct information to be “locally-accommodated.” 70 / 104
  • 75. Honorification DTT DTS Solution Reference Summary Dependent type semantics: a proof-theoretic, compositional alternative to DRT(s) and Dynamic Logic(s) Two levels of information in single-dimensional representations: types and terms, propositions and proofs, formation rules and introduction/elimination rules Gives a solution to compositionality of expressive contents, including Japanese honorification In DTS, calculations of presupposition projection and binding reduce to type checking and proof search. 71 / 104
  • 76. Honorification DTT DTS Solution Reference Reference I Bekki, D. (2013) “Dependent Type Semantics: An Introduction”, In: the 2012 edition of the LIRa yearbook: a selection of papers. University of Amsterdam. Bekki, D. (2014) “Representing Anaphora with Dependent Types”, In the Proceedings of N. Asher and S. V. Soloviev (eds.): Logical Aspects of Computational Linguistics (8th international conference, LACL2014, Toulouse, France, June 2014 Proceedings), LNCS 8535. Toulouse, pp.14–29, Springer, Heiderburg. Bekki, D., A. Kawazoe, K. Kataoka, and M. Saito. (2008) “Semantics of Honorification”, In the Proceedings of NLP2008. University of Tokyo, pp.681–684. 72 / 104
  • 77. Honorification DTT DTS Solution Reference Reference II Boeckx, C. and F. Niinuma. (2004) “Conditions on Agreement in Japanese”, Natural Language and Linguistic Theory 22, pp.453–480. Cooper, R. (2005) “Austinian truth, attitudes and type theory”, Research on Language and Computation 3, pp.333–362. Coquand, T. and G. Huet. (1988) “The Calculus of Constructions”, Information and Computation 76(2-3), pp.95–120. D´avila-P´erez, R. (1995) “Semantics and Parsing in Intuitionistic Categorial Grammar”, Ph.d. thesis, University of Essex. Dummett, M. (1975) “What is a Theory of Meaning?”, In: S. Guttenplan (ed.): Mind and Language. Oxford, Oxford University Press, pp.97–138. 73 / 104
  • 78. Honorification DTT DTS Solution Reference Reference III Dummett, M. (1976) “What is a Theory of Meaning? (II)”, In: Evans and McDowell (eds.): Truth and Meaning. Oxford, Oxford University Press, pp.67–137. Gunji, T. (1987) Japanese Phrase Structure Grammar: A Unification-based Approach. Dordrecht, D. Reidel. Gutzmann, D. (2015) Use-conditional meaning, Vol. 6 of Studies in Semantics and Pragmatics, Oxford Studies in Semantics and Pragmatics. Oxford, Oxford University Press. Harada, S.-I. (1976) “Honorifics”, In: M. Shibatani (ed.): Syntax and Semantics 5, Vol. 499-561. New York, Academic Press. 74 / 104
  • 79. Honorification DTT DTS Solution Reference Reference IV Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as Proof Construction”, In: H. Bunt and R. Muskens (eds.): Computing Meanings: Current Issues in Computational Semantics, Studies in Linguistics Philosophy Series. Dordrecht, Kluwer Academic Publishers. Krause, P. (1995) “Presupposition and Abduction in Type Theory”, In the Proceedings of K. E., S. Manandhar, W. Nutt, and J. Siekman (eds.): Edinburgh Conference on Computational Logic and Natural Language Processing. Edinburgh: HCRC. Luo, Z. (2012) “Formal Semantics in Modern Type Theories with Coercive Subtyping”, Linguistics and Philosophy 35(6). Martin-L¨of, P. (1984) Intuitionistic Type Theory, Vol. 17. Naples, Italy: Bibliopolis. Sambin, Giovanni (ed.). 75 / 104
  • 80. Honorification DTT DTS Solution Reference Reference V McCready, E. (2010) “Varieties of Conventional Implicature”, Semantics and Pragmatics 3(8), pp.1–57. Milner, R. (1978) “A Theory of Type Polymorphism in Programming”, Journal of Computer and System Science (JCSS) 17, pp.348–374. Mineshima, K. (2008) “A presuppositional analysis of definite descriptions in proof theory”, In: K. Satoh, A. Inokuchi, K. Nagao, and T. Kawamura (eds.): New Frontiers in Artificial Intelligence: JSAI 2007 Conference and Workshops, Revised Selected Papers, Lecture Notes in Computer Science Vol. 4914. Springer-Verlag, pp.214–227. Mineshima, K. (2014) “Presupposition and Descriptions: A Proof-Theoretical Approach”, In: Aspects of Inference in Natural Language. Keio University, p.135. 76 / 104
  • 81. Honorification DTT DTS Solution Reference Reference VI Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context: Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R. Nossum (eds.): Formal Aspects of Context, Applied Logic Series. Dordrecht, Kluwer Academic Publishers. Potts, C. (2005) The Logic of Conventional Implicatures. Oxford University Press. Prawitz, D. (1980) “Intuitionistic Logic: A Philosophical Challenge”, In: G. von Wright (ed.): Logics and Philosophy. The Hague, Martinus Nijhoff. Ranta, A. (1994) Type-Theoretical Grammar. Oxford University Press. 77 / 104
  • 82. Honorification DTT DTS Solution Reference Reference VII Siegel, M. (2000) “Japanese Honorification in an HPSG Framework”, In the Proceedings of PACLIC 14 : 14th Pacific Asia Conference on Language, Information and Computation. Waseda University International Conference Center, Tokyo, Japan, pp.289–300, PACLIC 14 Organizing Committee. Sundholm, G. (1986) “Proof theory and meaning”, In: D. Gabbay and F. Guenthner (eds.): Handbook of Philosophical Logic, Vol. III. Reidel, Kluwer, pp.471–506. 78 / 104
  • 83. PTS DTT formal presentation Underspecified DTT Proof-theoretic Semantics 79 / 104
  • 84. PTS DTT formal presentation Underspecified DTT Model-theoretic vs. proof-theoretic semantics Model-theoretic semantics (of mathematics and natural language) Primitive notions: truth , model Interpretation is a function: formula × model → truth Validity of inference is defined as a derived notion. Meaning of a sentence: its truth-condition Proof-theoretic semantics (of mathematics and natural language) Primitive notion: formation / introduction / elimination rules Provability is a binary relation between a list of formula and formula Truth is defined as a derived notion. Meaning of a sentence: its verification condition 80 / 104
  • 85. PTS DTT formal presentation Underspecified DTT Model-theoretic vs. proof-theoretic semantics In classical and intuitionistic first-order logic, there are many pairs of model theory and proof theory that satisfy the sound and complete relation. Γ A ⇐⇒ Γ A In other words, For every model M, if Γ M = 1 then A M = 1 ⇐⇒ There is a proof from Γ to A A pair of a model theory and a proof theory which is sound and complete with each other do not make any difference with respect to inferences. Given that (almost all) the data in semantics are entailment relations between sentences, the two approaches are not distinguishable as natural sciences. 81 / 104
  • 86. PTS DTT formal presentation Underspecified DTT A proof theory: General elimination rules Implication Conjunction Introduction rules Γ, A B Γ A → B (→I ) Γ A Γ B Γ A ∧ B (∧I ) Elimination rules Γ A → B Γ A Γ B (→E) Γ A ∧ B Γ A (∧E) Γ A ∧ Γ B General elimination rules Γ A B, Γ C Γ, A → B C (→GE) Γ, A, B C Γ, A ∧ B C (∧GE) 82 / 104
  • 87. PTS DTT formal presentation Underspecified DTT General elimination rules General elimination rules: are equivalent to elimination rules ca be automatically obtained from a set of introduction rules ensure that the introduction rules are exhaustive Thus Introduction rules carry a primary meaning of the type: verificational meaning Elimination rules carry a secondary meaning of the type: pragmatic meaning 83 / 104
  • 88. PTS DTT formal presentation Underspecified DTT Verification conditions: Example (19) John jogs and Mary runs. Verification of (19) requires the verifications of “John jogs” and “Mary runs”. (20) If x s a natural number, then either x is odd or even. Verification of (20) requires the verification of “either x is odd or even”, assuming the verification of “x s a natural number”. 84 / 104
  • 89. PTS DTT formal presentation Underspecified DTT DTT formal presentation 85 / 104
  • 90. PTS DTT formal presentation Underspecified DTT Type Theory A definition of a type theory consists of following items: 1. Alphabets 2. Preterms 3. Free variables 4. Substitution 5. Reduction 6. Typing/inference rules 6.1 Formation rule(s) 6.2 Introduction rule(s) 6.3 Elimination rule(s) 86 / 104
  • 91. PTS DTT formal presentation Underspecified DTT Preterms Definition (Preterms) A collection of preterms (notation: Λ) for an alphabet (Var, Con) is recursively defined by the following BNF grammar (where x ∈ Var and c ∈ Con). Λ ::= x | c | type | kind | (x:Λ) → Λ | λx.Λ | ΛΛ | x:Λ Λ | (Λ, Λ) | π1(Λ) | π2(Λ) | ⊥ | | () | Λ =Λ Λ | reflΛ(Λ) | idpeel(Λ, Λ) Var def ≡ {x, y, z, u, v, w, . . .} Con def ≡ {entity, man, donkey, enter, own, beats, . . .} 87 / 104
  • 92. PTS DTT formal presentation Underspecified DTT Free variables and substitution fv (x) def ≡ {x} fv (c) def ≡ ∅ fv (type) def ≡ ∅ fv (kind) def ≡ ∅ fv ((x:A) → B) def ≡ fv (A) ∪ (fv (B) − {x}) fv (λx.M) def ≡ fv (M) − {x} fv (MN) def ≡ fv (M) ∪ fv (N) fv x:A B def ≡ fv (A) ∪ (fv (B) − {x}) fv ((M, N)) def ≡ fv (M) ∪ fv (N) fv (πi(M)) def ≡ fv (M) fv (⊥) def ≡ ∅ fv ( ) def ≡ ∅ fv (()) def ≡ ∅ fv (M =A N) def ≡ fv (A) ∪ fv (M) ∪ fv (N) fv (reflA(M)) def ≡ fv (A) ∪ fv (M) fv (idpeel(M, N)) def ≡ fv (M) ∪ fv (N) x[L/x] def ≡ L y[L/x] def ≡ y c[L/x] def ≡ c type[L/x] def ≡ type kind[L/x] def ≡ kind ((x:M) → N)[L/x] def ≡ (x:M[L/x]) → N ((y:M) → N)[L/x] def ≡ (y:M[L/x]) → (N[L/x]) where x /∈ fv (N) ∨ y /∈ fv (L) . (λx.M)[L/x] def ≡ λx.M (λy.M)[L/x] def ≡ λy.M[L/x] where x /∈ fv (N) ∨ y /∈ fv (L) . (MN)[L/x] def ≡ (M[L/x])(N[L/x]) x:M N [L/x] def ≡ x:M[L/x] N y:M N [L/x] def ≡ y:M[L/x] (N[L/x]) where x /∈ fv (N) ∨ y /∈ fv (L) . ((M, N))[L/x] def ≡ (M[L/x], N[L/x]) (π1(M))[L/x] def ≡ π1(M[L/x]) (π2(M))[L/x] def ≡ π2(M[L/x]) ⊥[L/x] def ≡ () [L/x] def ≡ () ()[L/x] def ≡ () (M =A N)[L/x] def ≡ M[L/x] =A[L/x] N[L/x] (reflA(M))[L/x] def ≡ reflA[L/x](M[L/x]) (idpeel(M, N))[L/x] def ≡ idpeel(M[L/x], N[L/x]) 88 / 104
  • 93. PTS DTT formal presentation Underspecified DTT Reduction Definition (β-reduction in DTT) x ⇓ x type ⇓ type kind ⇓ kind A ⇓ A B ⇓ B (x:A) → B ⇓ (x:A ) → B M ⇓ M λx.M ⇓ λx.M M ⇓ λx.M M [N/x] ⇓ M MN ⇓ M M ⇓ n N ⇓ N MN ⇓ nN A ⇓ A B ⇓ B x:A B ⇓ x:A B M ⇓ M N ⇓ N (M, N) ⇓ (M , N ) M ⇓ (M1, M2) πiM ⇓ Mi M ⇓ n πiM ⇓ πin ⊥ ⇓ ⊥ ⇓ () ⇓ () 89 / 104
  • 94. PTS DTT formal presentation Underspecified DTT Reduction Definition (Values and neutral terms of DTT) v ::= n | type | kind | (x:v) → v | λx.v | x:v v | (v, v) | ⊥ | | () n ::= x | c | nv | πin Theorem If M is typable, then any M such that M ⇓ M is a value, and the calculation of M terminates. Proof. By induction on the structure of M. In particular, if MN is typable then M reduces to either the form λx.v or a neutral term; if πiM is typable then M reduces to either the form (v, v) or a neutral term. 90 / 104
  • 95. PTS DTT formal presentation Underspecified DTT Basic rules Definition (Basic rules) Γ type : kind (typeF) Γ M : A ∆ N : B Γ M : A (WK) Γ M : A A =β B Γ M : B (CONV ) 91 / 104
  • 96. PTS DTT formal presentation Underspecified DTT Underspecified dependent type theory 92 / 104
  • 97. PTS DTT formal presentation Underspecified DTT What is UDTT? UDTT = DTT + underspecified terms (notation @iA, for i ∈ N) Definition (Preterms of UDTT) Let DTTpreterms be a collection of preterms in DTT. The collection of preterms of UDTT (notation Λ) is defined by the following BNF grammar (where i ∈ N): Λ ::= DTTpreterms | @iΛ Example (Anaphoric expressions/presupposition triggers) hei = π1@i x:entity male(x) thej = λn.π1@j x:entity nx 93 / 104
  • 98. PTS DTT formal presentation Underspecified DTT Typing rules of UDTT The @-rule is the formation rule of underspecified terms. Definition (@-rule) DA Γ A : type Γ DA true Γ @iA : A (@) This is understood as the set of following instructions, when called as a type checking of @iA : A. 1. Check if A : type, let its diagram be DA. 2. Eliminate @ in A if any, resulting in DA . 3. Then search for a proof term of type DA . 94 / 104
  • 99. PTS DTT formal presentation Underspecified DTT Typing rules of UDTT Definition (type-formation rule) Γ A : s Γ, x : A, ∆ x : A (VAR) where A is a DTT term. Γ type : kind (typeF) 95 / 104
  • 100. PTS DTT formal presentation Underspecified DTT Typing rules of UDTT Definition (Π-formation/introduction/elimination rules) For any s1, s2 ∈ {type, kind}: DA Γ A : s1 Γ, x : DA B : s2 Γ (x:A) → B : s2 (ΠF) DA Γ A : s1 Γ, x : DA M : B Γ λx.M : (x:A) → B (ΠI ) Γ M : (x:A) → B Γ N : A Γ MN : B[M/x] (ΠE) where A is a DTT term. 96 / 104
  • 101. PTS DTT formal presentation Underspecified DTT Typing rules of UDTT Definition (Σ-formation/introduction/elimination rules) For any s1, s2 ∈ {type, kind}: DA Γ A : s1 Γ, x : DA B : s2 Γ x:A B : s2 (ΣF) DM Γ M : A Γ N : B[ DM /x] Γ (M, N) : x:A B (ΣI ) Γ M : x:A B Γ π1(M) : A (ΣE) Γ M : x:A B Γ π2(M) : B[π1M/x] (ΣE) 97 / 104
  • 102. PTS DTT formal presentation Underspecified DTT @-elimination − @-elimination − is a map from a proof diagram of UDTT to a term of DTT (=a term without @) Type checking diagram of UDTT may contain occurrences of underspecified terms (@). The @-rule for a term of the form @iA contains a proof of type A. Let the proof term be M. Then specification replaces the occurrence of @ with such M, resulting in a DTT diagram which contains no @. .... A : s .... M : A @iA : A (@) .... [· · · @iA · · · ] = [· · · M · · · ] 98 / 104
  • 103. PTS DTT formal presentation Underspecified DTT @-elimination − Definition (@-elimination for @-rule) Γ A : s Γ M : DA Γ (@iA) : A (@) = M Definition (@-elimination for type-rule) For any s1, s2 ∈ {type, kind}: Γ A : s Γ, x : A, ∆ x : A (VAR) = x Γ type : kind (typeF) = type 99 / 104
  • 104. PTS DTT formal presentation Underspecified DTT @-elimination − Definition (@-elimination for Π-rules) For any s1, s2 ∈ {type, kind}: DA Γ A : s1 DB Γ, x : DA B : s2 Γ (x:A) → B : s2 (ΠF) = (x: DA ) → DB DA Γ A : s1 DM Γ, x : DA M : B λx.M : (x:A) → B (ΠI ) = λx. DM DM Γ M : (x:A) → B DN Γ N : A Γ MN : B[N/x] (ΠE) = DM DN 100 / 104
  • 105. PTS DTT formal presentation Underspecified DTT @-elimination − Definition (@-elimination for Σ-rules) DA Γ A : s1 DB Γ, x : DA B : s2 Γ x:A B : s2 (ΣF) = x: DA DB DM M : A DN N : B[ DM /x] (M, N) : x:A B (ΣI ) = ( DM , DN ) DM Γ M : x:A B Γ π1(M) : A (ΣE) = π1( DM ) DM Γ M : x:A B Γ π2(M) : B[π1(M)/x] (ΣE) = π2( DM ) 101 / 104
  • 106. PTS DTT formal presentation Underspecified DTT @-elimination − Definition (Free variables and substitution) fv (@iA) def ≡ fv (A) (@iA)[M/x] def ≡ @i(A[M/x]) Definition (Inferable and checkable terms of UDTT) Λ↑ ::= x | type | kind | (x:Λ↓) → Λ↓ | Λ↑Λ↓ | x:Λ↓ Λ↓ | πiΛ↑ | ⊥ | | () | Λ =Λ Λ | reflΛ(Λ) | idpeel(Λ, Λ) | @iΛ↑ Λ↓ ::= Λ↑ | λx.Λ↓ | (Λ↓, Λ↓) 102 / 104
  • 107. PTS DTT formal presentation Underspecified DTT @-elimination − Definition (Values and neutral terms of UDTT) Values of UDTT is defined in the same way as DTT, except that a term of the form @iv is a neutral term. Definition (β-reduction in UDTT) β-reduction relation ⇓ in UDTT is defined as that of DTT extended by the following rule: A ⇓ A @iA ⇓ @iA (@⇓) 103 / 104
  • 108. PTS DTT formal presentation Underspecified DTT @-elimination − Theorem If M is a checkable term of UDTT that is typable, and M ⇓ M , then M is a value. Proof. By induction on the structure of M. Interesting cases are when M is either functional application or projections. 104 / 104