SlideShare a Scribd company logo
6
Most read
9
Most read
12
Most read
Computational Chemistry:
A DFT crash course
Useful Material
Books
 A chemist’s guide to density-functional theory
Wolfram Koch and Max C. Holthausen (second edition,
Wiley)
 The theory of the cohesive energies of solids
G. P. Srivastava and D. Weaire
Advances in Physics 36 (1987) 463-517
 Gulliver among the atoms
Mike Gillan, New Scientist 138 (1993) 34
Web
 www.nobel.se/chemistry/laureates/1998/
 www.abinit.org
Version 4.2.3 compiled for windows, install and good
tutorial
Outline: Part 1,
The Framework of DFT
DFT: the theory
 Schroedinger’s equation
 Hohenberg-Kohn Theorem
 Kohn-Sham Theorem
 Simplifying Schroedinger’s
 LDA, GGA
Elements of Solid State Physics
 Reciprocal space
 Band structure
 Plane waves
And then ?
 Forces (Hellmann-Feynman theorem)
 E.O., M.D., M.C. …
Outline: Part2
Using DFT
Practical Issues
 Input File(s)
 Output files
 Configuration
 K-points mesh
 Pseudopotentials
 Control Parameters
 LDA/GGA
 ‘Diagonalisation’
Applications
 Isolated molecule
 Bulk
 Surface
The Basic Problem
Dangerously
classical
representation
Cores
Electron
s
Schroedinger’s Equation
   
i
i
i
i r
R
r
R
V
m
,
.
,
2
2











 

Hamiltonian operator
Kinetic Energy
Potential Energy
Coulombic interaction
External Fields
Very Complex many body Problem !!
(Because everything interacts)
Wave function
Energy levels
First approximations
Adiabatic (or Born-Openheimer)
 Electrons are much lighter, and faster
 Decoupling in the wave function
Nuclei are treated classically
 They go in the external potential
     
i
i
i
i r
R
r
R 
 .
, 

H.K. Theorem
The ground state is unequivocally
defined by the electronic density
        r
r
r d
v
F
Ev 

 


Universal
functional
•Functional ?? Function of a function
•No more wave functions here
•But still too complex
K.S. Formulation
Use an auxiliary system
 Non interacting electrons
 Same Density
 => Back to wave functions, but simpler this time
(a lot more though)
   
r
r
V
m
i
i
i
eff 

 .
2
2











        
r
r
r
r
r
r
r 


XC
eff d
V
V 





 
   


i
i
2
r
r 

N K.S. equations
(ONE particle in a box really)
(KS3)
(KS2)
(KS1)
Exchange correlation
potential
Self consistent loop
Solve the independents
K.S. =>wave functions
From density, work out
Effective potential
New density ‘=‘
input density ??
Deduce new density from
w.f.
Initial density
Finita la musica
YES
N
O
DFT energy functional
           




 XC
NI E
d
d
d
v
T
E 






 

 r
r
r
r
r
r
r
r
2
1
Exchange correlation
funtional
Contains:
Exchange
Correlation
Interacting part of K.E.
Electrons are fermions
(antisymmetric wave function)
Exchange correlation
functional
At this stage, the only thing we need is:  

XC
E
Still a functional (way too many variables)
#1 approximation, Local Density Approximation:
Homogeneous electron gas
Functional becomes function !! (see KS3)
Very good parameterisation for  

XC
E
Generalised Gradient Approximation:
 

 
,
XC
E
GGA
LDA
DFT: Summary
The ground state energy depends only
on the electronic density (H.K.)
One can formally replace the SE for the
system by a set of SE for non-interacting
electrons (K.S.)
Everything hard is dumped into Exc
Simplistic approximations of Exc work !
LDA or GGA
different:
A little bit of Solid State Physics
Crystal structure Periodicity
Reciprocal space
Real Space
ai
ij
j
i b
a 
.
2


Reciprocal Space
bi
Brillouin
Zone
(Inverting effect)
k-vector (or k-point)
sin(k.r)
See X-Ray diffraction for instance
Also, Fourier transform and Bloch theorem
Band structure
Molecul
e
E
Crystal
Energy
levels (eigenvalues
of SE)
The k-point mesh
Brillouin
Zone
(6x6) mesh
Corresponds to a
supercell 36 time bigger
than the primitive cell
Question:
Which require a finer
mesh, Metals or Insulators
??
Plane waves
Project the wave functions on a basis set
Tricky integrals become linear algebra
Plane Wave for Solid State
Could be localised (ex: Gaussians)
+ + =
Sum of plane waves of increasing
frequency (or energy)
One has to stop: Ecut
Solid State: Summary
Quantities can be calculated in the
direct or reciprocal space
k-point Mesh
Plane wave basis set, Ecut
Now what ?
We have access to the energy of a
system, without any empirical input
With little efforts, the forces can be
computed, Hellman-Feynman theorem
Then, the methodologies discussed for atomistic
potential can be used
Energy Optimisation
Monte Carlo
Molecular dynamics
   
 



 r
r
r
F d
v i
i
i 

More Related Content

Similar to Computational Chemistry: A DFT crash course (20)

PDF
Electronic structure of strongly correlated materials
ABDERRAHMANE REGGAD
 
PPTX
Density functional theory
sandhya singh
 
PPTX
Density Functional Theory.pptx
HassanShah396906
 
PPTX
Introduction to density functional theory
Sarthak Hajirnis
 
PPT
Lecture 03 Electrons in Materials Density Functional Theory.ppt
Usman Mastoi
 
PDF
QE-SSP - Lecture 1: Introduction to DFT with QE
Nguyen Tuan Hung
 
PDF
Introduction to DFT Part 2
Mariana M. Odashima
 
PDF
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
Computational Materials Science Initiative
 
PPTX
molecular orbital theory quantum mechanics
ManasNag4
 
PPTX
Advanced Topics in Density Functional Theory (DFT)
MukeshJakhar19
 
PPTX
Methods available in WIEN2k for the treatment of exchange and correlation ef...
ABDERRAHMANE REGGAD
 
PDF
NANO266 - Lecture 4 - Introduction to DFT
University of California, San Diego
 
PPTX
Quantum Chemistry II
baoilleach
 
PPT
finland.ppt
RAMARATHI2
 
PDF
Handbook of magnetism and advanced magnetic materials 1st Edition Helmut Kron...
realismouti7
 
PDF
Handbook of magnetism and advanced magnetic materials 1st Edition Helmut Kron...
fokwyjak0568
 
PPTX
Hartree-Fock Review
Inon Sharony
 
PPTX
PRESENT PRESENT PRESENT PRESENT PRESENTPRESENT
AbdulJaleelLecturerP
 
PPTX
Density functional theory.pptx
ShazidHussain2
 
Electronic structure of strongly correlated materials
ABDERRAHMANE REGGAD
 
Density functional theory
sandhya singh
 
Density Functional Theory.pptx
HassanShah396906
 
Introduction to density functional theory
Sarthak Hajirnis
 
Lecture 03 Electrons in Materials Density Functional Theory.ppt
Usman Mastoi
 
QE-SSP - Lecture 1: Introduction to DFT with QE
Nguyen Tuan Hung
 
Introduction to DFT Part 2
Mariana M. Odashima
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
Computational Materials Science Initiative
 
molecular orbital theory quantum mechanics
ManasNag4
 
Advanced Topics in Density Functional Theory (DFT)
MukeshJakhar19
 
Methods available in WIEN2k for the treatment of exchange and correlation ef...
ABDERRAHMANE REGGAD
 
NANO266 - Lecture 4 - Introduction to DFT
University of California, San Diego
 
Quantum Chemistry II
baoilleach
 
finland.ppt
RAMARATHI2
 
Handbook of magnetism and advanced magnetic materials 1st Edition Helmut Kron...
realismouti7
 
Handbook of magnetism and advanced magnetic materials 1st Edition Helmut Kron...
fokwyjak0568
 
Hartree-Fock Review
Inon Sharony
 
PRESENT PRESENT PRESENT PRESENT PRESENTPRESENT
AbdulJaleelLecturerP
 
Density functional theory.pptx
ShazidHussain2
 

Recently uploaded (20)

PDF
A NEW FAMILY OF OPTICALLY CONTROLLED LOGIC GATES USING NAPHTHOPYRAN MOLECULE
ijoejnl
 
PPTX
GitHub_Copilot_Basics...........................pptx
ssusera13041
 
PDF
The Complete Guide to the Role of the Fourth Engineer On Ships
Mahmoud Moghtaderi
 
PPT
04 Origin of Evinnnnnnnnnnnnnnnnnnnnnnnnnnl-notes.ppt
LuckySangalala1
 
PPTX
File Strucutres and Access in Data Structures
mwaslam2303
 
PPTX
Smart_Cities_IoT_Integration_Presentation.pptx
YashBhisade1
 
PDF
3.-Differential-Calculus-Part-2-NOTES.pdf
KurtMarbinCalicdan1
 
PPT
Oxygen Co2 Transport in the Lungs(Exchange og gases)
SUNDERLINSHIBUD
 
PPTX
00-ClimateChangeImpactCIAProcess_PPTon23.12.2024-ByDr.VijayanGurumurthyIyer1....
praz3
 
PDF
July 2025 - Top 10 Read Articles in Network Security & Its Applications.pdf
IJNSA Journal
 
PPTX
Mining Presentation Underground - Copy.pptx
patallenmoore
 
PPTX
ENSA_Module_8.pptx_nice_ipsec_presentation
RanaMukherjee24
 
PDF
th International conference on Big Data, Machine learning and Applications (B...
Zac Darcy
 
PDF
BEE331-Week 04-SU25.pdf semiconductors UW
faemoxley
 
PDF
Comparative Analysis of the Use of Iron Ore Concentrate with Different Binder...
msejjournal
 
PPTX
Unit II: Meteorology of Air Pollution and Control Engineering:
sundharamm
 
PDF
NOISE CONTROL ppt - SHRESTH SUDHIR KOKNE
SHRESTHKOKNE
 
PDF
SMART HOME AUTOMATION PPT BY - SHRESTH SUDHIR KOKNE
SHRESTHKOKNE
 
PDF
LEARNING CROSS-LINGUAL WORD EMBEDDINGS WITH UNIVERSAL CONCEPTS
kjim477n
 
PDF
Non Text Magic Studio Magic Design for Presentations L&P.pdf
rajpal7872
 
A NEW FAMILY OF OPTICALLY CONTROLLED LOGIC GATES USING NAPHTHOPYRAN MOLECULE
ijoejnl
 
GitHub_Copilot_Basics...........................pptx
ssusera13041
 
The Complete Guide to the Role of the Fourth Engineer On Ships
Mahmoud Moghtaderi
 
04 Origin of Evinnnnnnnnnnnnnnnnnnnnnnnnnnl-notes.ppt
LuckySangalala1
 
File Strucutres and Access in Data Structures
mwaslam2303
 
Smart_Cities_IoT_Integration_Presentation.pptx
YashBhisade1
 
3.-Differential-Calculus-Part-2-NOTES.pdf
KurtMarbinCalicdan1
 
Oxygen Co2 Transport in the Lungs(Exchange og gases)
SUNDERLINSHIBUD
 
00-ClimateChangeImpactCIAProcess_PPTon23.12.2024-ByDr.VijayanGurumurthyIyer1....
praz3
 
July 2025 - Top 10 Read Articles in Network Security & Its Applications.pdf
IJNSA Journal
 
Mining Presentation Underground - Copy.pptx
patallenmoore
 
ENSA_Module_8.pptx_nice_ipsec_presentation
RanaMukherjee24
 
th International conference on Big Data, Machine learning and Applications (B...
Zac Darcy
 
BEE331-Week 04-SU25.pdf semiconductors UW
faemoxley
 
Comparative Analysis of the Use of Iron Ore Concentrate with Different Binder...
msejjournal
 
Unit II: Meteorology of Air Pollution and Control Engineering:
sundharamm
 
NOISE CONTROL ppt - SHRESTH SUDHIR KOKNE
SHRESTHKOKNE
 
SMART HOME AUTOMATION PPT BY - SHRESTH SUDHIR KOKNE
SHRESTHKOKNE
 
LEARNING CROSS-LINGUAL WORD EMBEDDINGS WITH UNIVERSAL CONCEPTS
kjim477n
 
Non Text Magic Studio Magic Design for Presentations L&P.pdf
rajpal7872
 
Ad

Computational Chemistry: A DFT crash course

  • 2. Useful Material Books  A chemist’s guide to density-functional theory Wolfram Koch and Max C. Holthausen (second edition, Wiley)  The theory of the cohesive energies of solids G. P. Srivastava and D. Weaire Advances in Physics 36 (1987) 463-517  Gulliver among the atoms Mike Gillan, New Scientist 138 (1993) 34 Web  www.nobel.se/chemistry/laureates/1998/  www.abinit.org Version 4.2.3 compiled for windows, install and good tutorial
  • 3. Outline: Part 1, The Framework of DFT DFT: the theory  Schroedinger’s equation  Hohenberg-Kohn Theorem  Kohn-Sham Theorem  Simplifying Schroedinger’s  LDA, GGA Elements of Solid State Physics  Reciprocal space  Band structure  Plane waves And then ?  Forces (Hellmann-Feynman theorem)  E.O., M.D., M.C. …
  • 4. Outline: Part2 Using DFT Practical Issues  Input File(s)  Output files  Configuration  K-points mesh  Pseudopotentials  Control Parameters  LDA/GGA  ‘Diagonalisation’ Applications  Isolated molecule  Bulk  Surface
  • 6. Schroedinger’s Equation     i i i i r R r R V m , . , 2 2               Hamiltonian operator Kinetic Energy Potential Energy Coulombic interaction External Fields Very Complex many body Problem !! (Because everything interacts) Wave function Energy levels
  • 7. First approximations Adiabatic (or Born-Openheimer)  Electrons are much lighter, and faster  Decoupling in the wave function Nuclei are treated classically  They go in the external potential       i i i i r R r R   . ,  
  • 8. H.K. Theorem The ground state is unequivocally defined by the electronic density         r r r d v F Ev       Universal functional •Functional ?? Function of a function •No more wave functions here •But still too complex
  • 9. K.S. Formulation Use an auxiliary system  Non interacting electrons  Same Density  => Back to wave functions, but simpler this time (a lot more though)     r r V m i i i eff    . 2 2                     r r r r r r r    XC eff d V V               i i 2 r r   N K.S. equations (ONE particle in a box really) (KS3) (KS2) (KS1) Exchange correlation potential
  • 10. Self consistent loop Solve the independents K.S. =>wave functions From density, work out Effective potential New density ‘=‘ input density ?? Deduce new density from w.f. Initial density Finita la musica YES N O
  • 11. DFT energy functional                  XC NI E d d d v T E            r r r r r r r r 2 1 Exchange correlation funtional Contains: Exchange Correlation Interacting part of K.E. Electrons are fermions (antisymmetric wave function)
  • 12. Exchange correlation functional At this stage, the only thing we need is:    XC E Still a functional (way too many variables) #1 approximation, Local Density Approximation: Homogeneous electron gas Functional becomes function !! (see KS3) Very good parameterisation for    XC E Generalised Gradient Approximation:      , XC E GGA LDA
  • 13. DFT: Summary The ground state energy depends only on the electronic density (H.K.) One can formally replace the SE for the system by a set of SE for non-interacting electrons (K.S.) Everything hard is dumped into Exc Simplistic approximations of Exc work ! LDA or GGA
  • 14. different: A little bit of Solid State Physics Crystal structure Periodicity
  • 15. Reciprocal space Real Space ai ij j i b a  . 2   Reciprocal Space bi Brillouin Zone (Inverting effect) k-vector (or k-point) sin(k.r) See X-Ray diffraction for instance Also, Fourier transform and Bloch theorem
  • 17. The k-point mesh Brillouin Zone (6x6) mesh Corresponds to a supercell 36 time bigger than the primitive cell Question: Which require a finer mesh, Metals or Insulators ??
  • 18. Plane waves Project the wave functions on a basis set Tricky integrals become linear algebra Plane Wave for Solid State Could be localised (ex: Gaussians) + + = Sum of plane waves of increasing frequency (or energy) One has to stop: Ecut
  • 19. Solid State: Summary Quantities can be calculated in the direct or reciprocal space k-point Mesh Plane wave basis set, Ecut
  • 20. Now what ? We have access to the energy of a system, without any empirical input With little efforts, the forces can be computed, Hellman-Feynman theorem Then, the methodologies discussed for atomistic potential can be used Energy Optimisation Monte Carlo Molecular dynamics           r r r F d v i i i 