SlideShare a Scribd company logo
Containerized Data Persistence
on Mesos with Kafka, MySQL,
Cassandra, HDFS and More!
CEO of Elodina, Inc. Elodina http://www.elodina.net/ is a startup focusing
on the support & maintenance of third party open source software (like
Mesos frameworks) and offering SaaS based solutions for those
systems. Elodina started as Big Data Open Source Security
http://stealth.ly and has been working for the last couple of years on
implementing and assisting organizations with their Kafka, Mesos,
Hadoop, Cassandra, Accumulo, Storm, Spark, etc, Big Data systems.
Twitter: https://twitter.com/allthingshadoop
LinkedIn: https://www.linkedin.com/in/charmalloc
Joe Stein
◉ File systems, databases, object
stores, storage solutions, etc.
◉ Apache Mesos and the Datacenter
Operating System.
◉ Kafka, Cassandra, MySQL, HDFS.
Overview
File Systems
- manages space
- directories
- file names
- meta-data
- permissions
- compression
- quotas
Distributed File System
- Remote block management
- Replication
- Streaming Data Access
- Large Data Sets
Replicated Log
- Immutable Appends
- Replicated Partitions
- Messaging Features
- Log Retention
Transactional and/or Relational Databases ~ ACID
Dynamo
Storage Solutions
- Storage Area Networks
- Network Attached Storage
- W.O.R.M.
- Cold Storage
Quick intro to Mesos
Static partitioning
Static partitioning
Static partitioning
Static partitioning
Better option
Data Center Operating System
Containerized Data Persistence on Mesos
Mesos
Containerized Data Persistence on Mesos
Resources & Attributes
The Mesos system has two basic methods to describe the
slaves that comprise a cluster. One of these is managed
by the Mesos master, the other is simply passed onwards
to the frameworks using the cluster.
--attributes='disks:sata;raid:jbod;dc:1;rack:3'
Roles
Total consumable resources per slave, in the form 'name(role):value;name(role):value...'. This value can be set
to limit resources per role, or to overstate the number of resources that are available to the slave.
--resources="cpus(*):8; mem(*):15360; disk(*):710534; ports(*):[31000-32000]"
--resources="cpus(prod):8; cpus(stage):2 mem(*):15360; disk(*):710534; ports(*):[31000-32000]"
All * roles will be detected, so you can specify only the resources that are not all roles (*). --
resources="cpus(prod):8; cpus(stage)"
Frameworks bind a specific roles or any. A default roll (instead of *) can also be configured.
Roles can be used to isolate and segregate frameworks.
In coming release(s) to make things even better!
MESOS-2018 Dynamic Reservations
MESOS-1554 Persistent resources support for storage-like
services
MESOS-1279 Add resize task primitive
Apache Kafka with Apache Mesos
mesos/kafka
https://github.com/mesos/kafka
Goals we set out with
● smart broker.id assignment.
● preservation of broker placement (through constraints
and/or new features).
● ability to-do configuration changes.
● rolling restarts (for things like configuration changes).
● scaling the cluster up and down with automatic,
programmatic and manual options.
● smart partition assignment via constraints visa vi
roles, resources and attributes.
Scheduler
● Provides the operational automation for a Kafka Cluster.
● Manages the changes to the broker's configuration.
● Exposes a REST API for the CLI to use or any other
client.
● Runs on Marathon for high availability.
Executor
● The executor interacts with the kafka broker as an
intermediary to the scheduler
Scheduler & Executor
CLI & REST API
● scheduler - starts the scheduler.
● add - adds one more more brokers to the cluster.
● update - changes resources, constraints or broker properties one or more
brokers.
● remove - take a broker out of the cluster.
● start - starts a broker up.
● stop - this can either a graceful shutdown or will force kill it (./kafka-mesos.sh
help stop)
● rebalance - allows you to rebalance a cluster either by selecting the brokers
or topics to rebalance. Manual assignment is still possible using the Apache
Kafka project tools. Rebalance can also change the replication factor on a
topic.
● help - ./kafka-mesos.sh help || ./kafka-mesos.sh help {command}
Launch 20 brokers in seconds
./kafka-mesos.sh add 1000..1019 --cpus 0.01 --heap 128 --mem 256 --options num.io.threads=1
./kafka-mesos.sh start 1000..1019
Kafka is available on DCOS
https://mesosphere.com/product/
dcos install kafka
dcos kafka help
Mesosphere DCOS
Apache Cassandra with Apache
Mesos
Cassandra on Mesos
https://github.com/mesosphere/cassandra-mesos
The Mesos scheduler is the component with the most
high-level intelligence in the framework. It will need to
possess the ability to bootstrap a ring and distribute
the correct configuration to all subsequently started
nodes. The Scheduler will also be responsible for
orchestrating all tasks with regard to restarting nodes
and triggering and monitoring periodic administrative
tasks required by a node.
Cassandra Scheduler
◉ Bootstrapping a ring
◉ Adding nodes to a ring
◉ Restarting a node that has crashed
◉ Providing configuration to nodes
o Seed nodes, Snitch Class, JVM
OPTS
◉ Scheduling and running administrative
utilities
o nodetool repair
o nodetool cleanup
◉ Registers with a failover timeout
◉ Supports framework authentication
◉ Declines offers to resources it
doesn't need
◉ Only use necessary fraction of
offers
◉ Deal with lost tasks
◉ Does not rely on in-memory state
◉ Verifies supported Mesos Version
◉ Supports roles
◉ Able to provide set of ports to be
used by Nodes
◉ Initial implementation will be for a
static set of ports with a potential
for longer term dynamic port usage.
Cassandra Executor
◉ Monitor health of running node
◉ Use JMX Mbeans for interfacing
with Cassandra Server Process
◉ Communicate results of
administrative actions via
StatusUpdates to scheduler
when necessary
◉ Does not rely on file system
state outside sandbox
◉ Pure libprocess
communication with Scheduler
leveraging StatusUpdate
◉ Does not rely on running on a
particular slave node
◉ Data directories will be
created and managed by
Mesos leveraging the features
provided in MESOS-1554
Apache HDFS with Apache Mesos
HDFS on Mesos
https://github.com/mesosphere/hdfs
◉ 3 journal nodes
◉ 2 name nodes (active/standby)
◉ data nodes, lots of them!
◉ Fault tolerance more
than just what Hadoop
gives.
◉ Ease of configuration and
distributing nodes.
◉ Elastic DFS
◉ Run multiple frameworks
at a time for new
solutions
MySQL with Apache Mesos
MySQL on Mesos (Apache Incubating)
◉ Open sourced by Twitter https://github.com/twitter/mysos
◉ Moving to Apache https://twitter.com/ApacheMysos
◉ Dramatically simplifies the management of a MySQL cluster:
o Efficient hardware utilization through multi-tenancy (in performance-
isolated containers)
o High reliability through preserving the MySQL state during failure and
automatic backing up to/restoring from HDFS
o An automated self-service option for bringing up new MySQL clusters
o High availability through automatic MySQL master failover
o An elastic solution that allows users to easily scale up and down a MySQL
cluster by changing the number of slave instances
Questions?
Joe Stein
http://www.elodina.net
Ad

More Related Content

What's hot (20)

Introduction to Mesos
Introduction to MesosIntroduction to Mesos
Introduction to Mesos
koboltmarky
 
Introduction of mesos persistent storage
Introduction of mesos persistent storageIntroduction of mesos persistent storage
Introduction of mesos persistent storage
Zhou Weitao
 
Streaming Processing with a Distributed Commit Log
Streaming Processing with a Distributed Commit LogStreaming Processing with a Distributed Commit Log
Streaming Processing with a Distributed Commit Log
Joe Stein
 
Apache Mesos
Apache MesosApache Mesos
Apache Mesos
Puneet soni
 
Mesos and containers
Mesos and containersMesos and containers
Mesos and containers
Jiang Yan Xu
 
Elastic HBase on Mesos - HBaseCon 2015
Elastic HBase on Mesos - HBaseCon 2015Elastic HBase on Mesos - HBaseCon 2015
Elastic HBase on Mesos - HBaseCon 2015
Cosmin Lehene
 
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache AccumuloReal-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Joe Stein
 
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
DataStax
 
8a. How To Setup HBase with Docker
8a. How To Setup HBase with Docker8a. How To Setup HBase with Docker
8a. How To Setup HBase with Docker
Fabio Fumarola
 
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
C4Media
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
Phil Peace
 
Introduction to mesos bay
Introduction to mesos bayIntroduction to mesos bay
Introduction to mesos bay
hongbin034
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
tomasbart
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
Knoldus Inc.
 
Scaling Big Data with Hadoop and Mesos
Scaling Big Data with Hadoop and MesosScaling Big Data with Hadoop and Mesos
Scaling Big Data with Hadoop and Mesos
Discover Pinterest
 
HBaseConEast2016: HBase on Docker with Clusterdock
HBaseConEast2016: HBase on Docker with ClusterdockHBaseConEast2016: HBase on Docker with Clusterdock
HBaseConEast2016: HBase on Docker with Clusterdock
Michael Stack
 
Cassandra and Rails at LA NoSQL Meetup
Cassandra and Rails at LA NoSQL MeetupCassandra and Rails at LA NoSQL Meetup
Cassandra and Rails at LA NoSQL Meetup
Michael Wynholds
 
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google CloudDrupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Dropsolid
 
Friends of Solr - Nutch & HDFS
Friends of Solr - Nutch & HDFSFriends of Solr - Nutch & HDFS
Friends of Solr - Nutch & HDFS
Saumitra Srivastav
 
Develop with linux containers and docker
Develop with linux containers and dockerDevelop with linux containers and docker
Develop with linux containers and docker
Fabio Fumarola
 
Introduction to Mesos
Introduction to MesosIntroduction to Mesos
Introduction to Mesos
koboltmarky
 
Introduction of mesos persistent storage
Introduction of mesos persistent storageIntroduction of mesos persistent storage
Introduction of mesos persistent storage
Zhou Weitao
 
Streaming Processing with a Distributed Commit Log
Streaming Processing with a Distributed Commit LogStreaming Processing with a Distributed Commit Log
Streaming Processing with a Distributed Commit Log
Joe Stein
 
Mesos and containers
Mesos and containersMesos and containers
Mesos and containers
Jiang Yan Xu
 
Elastic HBase on Mesos - HBaseCon 2015
Elastic HBase on Mesos - HBaseCon 2015Elastic HBase on Mesos - HBaseCon 2015
Elastic HBase on Mesos - HBaseCon 2015
Cosmin Lehene
 
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache AccumuloReal-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Real-Time Distributed and Reactive Systems with Apache Kafka and Apache Accumulo
Joe Stein
 
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
Cassandra on Mesos Across Multiple Datacenters at Uber (Abhishek Verma) | C* ...
DataStax
 
8a. How To Setup HBase with Docker
8a. How To Setup HBase with Docker8a. How To Setup HBase with Docker
8a. How To Setup HBase with Docker
Fabio Fumarola
 
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
Making Distributed Data Persistent Services Elastic (Without Losing All Your ...
C4Media
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
Phil Peace
 
Introduction to mesos bay
Introduction to mesos bayIntroduction to mesos bay
Introduction to mesos bay
hongbin034
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
tomasbart
 
Introduction to Apache Mesos
Introduction to Apache MesosIntroduction to Apache Mesos
Introduction to Apache Mesos
Knoldus Inc.
 
Scaling Big Data with Hadoop and Mesos
Scaling Big Data with Hadoop and MesosScaling Big Data with Hadoop and Mesos
Scaling Big Data with Hadoop and Mesos
Discover Pinterest
 
HBaseConEast2016: HBase on Docker with Clusterdock
HBaseConEast2016: HBase on Docker with ClusterdockHBaseConEast2016: HBase on Docker with Clusterdock
HBaseConEast2016: HBase on Docker with Clusterdock
Michael Stack
 
Cassandra and Rails at LA NoSQL Meetup
Cassandra and Rails at LA NoSQL MeetupCassandra and Rails at LA NoSQL Meetup
Cassandra and Rails at LA NoSQL Meetup
Michael Wynholds
 
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google CloudDrupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Drupaljam 2017 - Deploying Drupal 8 onto Hosted Kubernetes in Google Cloud
Dropsolid
 
Friends of Solr - Nutch & HDFS
Friends of Solr - Nutch & HDFSFriends of Solr - Nutch & HDFS
Friends of Solr - Nutch & HDFS
Saumitra Srivastav
 
Develop with linux containers and docker
Develop with linux containers and dockerDevelop with linux containers and docker
Develop with linux containers and docker
Fabio Fumarola
 

Viewers also liked (17)

Real-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Real-Time Log Analysis with Apache Mesos, Kafka and CassandraReal-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Real-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Joe Stein
 
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
종빈 오
 
하스켈학교 세미나 - Haxl
하스켈학교 세미나 - Haxl하스켈학교 세미나 - Haxl
하스켈학교 세미나 - Haxl
Jooyung Han
 
jstein.cassandra.nyc.2011
jstein.cassandra.nyc.2011jstein.cassandra.nyc.2011
jstein.cassandra.nyc.2011
Joe Stein
 
Data Pipeline with Kafka
Data Pipeline with KafkaData Pipeline with Kafka
Data Pipeline with Kafka
Peerapat Asoktummarungsri
 
Storing Time Series Metrics With Cassandra and Composite Columns
Storing Time Series Metrics With Cassandra and Composite ColumnsStoring Time Series Metrics With Cassandra and Composite Columns
Storing Time Series Metrics With Cassandra and Composite Columns
Joe Stein
 
Developing Realtime Data Pipelines With Apache Kafka
Developing Realtime Data Pipelines With Apache KafkaDeveloping Realtime Data Pipelines With Apache Kafka
Developing Realtime Data Pipelines With Apache Kafka
Joe Stein
 
Apache Cassandra 2.0
Apache Cassandra 2.0Apache Cassandra 2.0
Apache Cassandra 2.0
Joe Stein
 
Developing Real-Time Data Pipelines with Apache Kafka
Developing Real-Time Data Pipelines with Apache KafkaDeveloping Real-Time Data Pipelines with Apache Kafka
Developing Real-Time Data Pipelines with Apache Kafka
Joe Stein
 
Introduction Apache Kafka
Introduction Apache KafkaIntroduction Apache Kafka
Introduction Apache Kafka
Joe Stein
 
Developing with the Go client for Apache Kafka
Developing with the Go client for Apache KafkaDeveloping with the Go client for Apache Kafka
Developing with the Go client for Apache Kafka
Joe Stein
 
Current and Future of Apache Kafka
Current and Future of Apache KafkaCurrent and Future of Apache Kafka
Current and Future of Apache Kafka
Joe Stein
 
SMACK Stack 1.1
SMACK Stack 1.1SMACK Stack 1.1
SMACK Stack 1.1
Joe Stein
 
Hadoop Streaming Tutorial With Python
Hadoop Streaming Tutorial With PythonHadoop Streaming Tutorial With Python
Hadoop Streaming Tutorial With Python
Joe Stein
 
cloud scheduling
cloud schedulingcloud scheduling
cloud scheduling
Mudit Verma
 
core.logic (Clojure)
core.logic (Clojure)core.logic (Clojure)
core.logic (Clojure)
Seonho Kim
 
Apache Kafka
Apache KafkaApache Kafka
Apache Kafka
Joe Stein
 
Real-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Real-Time Log Analysis with Apache Mesos, Kafka and CassandraReal-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Real-Time Log Analysis with Apache Mesos, Kafka and Cassandra
Joe Stein
 
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
[SICP] 4.4 Logic Programming : 논리로 프로그램 짜기
종빈 오
 
하스켈학교 세미나 - Haxl
하스켈학교 세미나 - Haxl하스켈학교 세미나 - Haxl
하스켈학교 세미나 - Haxl
Jooyung Han
 
jstein.cassandra.nyc.2011
jstein.cassandra.nyc.2011jstein.cassandra.nyc.2011
jstein.cassandra.nyc.2011
Joe Stein
 
Storing Time Series Metrics With Cassandra and Composite Columns
Storing Time Series Metrics With Cassandra and Composite ColumnsStoring Time Series Metrics With Cassandra and Composite Columns
Storing Time Series Metrics With Cassandra and Composite Columns
Joe Stein
 
Developing Realtime Data Pipelines With Apache Kafka
Developing Realtime Data Pipelines With Apache KafkaDeveloping Realtime Data Pipelines With Apache Kafka
Developing Realtime Data Pipelines With Apache Kafka
Joe Stein
 
Apache Cassandra 2.0
Apache Cassandra 2.0Apache Cassandra 2.0
Apache Cassandra 2.0
Joe Stein
 
Developing Real-Time Data Pipelines with Apache Kafka
Developing Real-Time Data Pipelines with Apache KafkaDeveloping Real-Time Data Pipelines with Apache Kafka
Developing Real-Time Data Pipelines with Apache Kafka
Joe Stein
 
Introduction Apache Kafka
Introduction Apache KafkaIntroduction Apache Kafka
Introduction Apache Kafka
Joe Stein
 
Developing with the Go client for Apache Kafka
Developing with the Go client for Apache KafkaDeveloping with the Go client for Apache Kafka
Developing with the Go client for Apache Kafka
Joe Stein
 
Current and Future of Apache Kafka
Current and Future of Apache KafkaCurrent and Future of Apache Kafka
Current and Future of Apache Kafka
Joe Stein
 
SMACK Stack 1.1
SMACK Stack 1.1SMACK Stack 1.1
SMACK Stack 1.1
Joe Stein
 
Hadoop Streaming Tutorial With Python
Hadoop Streaming Tutorial With PythonHadoop Streaming Tutorial With Python
Hadoop Streaming Tutorial With Python
Joe Stein
 
cloud scheduling
cloud schedulingcloud scheduling
cloud scheduling
Mudit Verma
 
core.logic (Clojure)
core.logic (Clojure)core.logic (Clojure)
core.logic (Clojure)
Seonho Kim
 
Apache Kafka
Apache KafkaApache Kafka
Apache Kafka
Joe Stein
 
Ad

Similar to Containerized Data Persistence on Mesos (20)

Fully fault tolerant real time data pipeline with docker and mesos
Fully fault tolerant real time data pipeline with docker and mesos Fully fault tolerant real time data pipeline with docker and mesos
Fully fault tolerant real time data pipeline with docker and mesos
Rahul Kumar
 
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Akhil Das
 
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating SystemOSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
NETWAYS
 
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax
 
Real time data pipeline with spark streaming and cassandra with mesos
Real time data pipeline with spark streaming and cassandra with mesosReal time data pipeline with spark streaming and cassandra with mesos
Real time data pipeline with spark streaming and cassandra with mesos
Rahul Kumar
 
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
DataStax
 
Getting Started Running Apache Spark on Apache Mesos
Getting Started Running Apache Spark on Apache MesosGetting Started Running Apache Spark on Apache Mesos
Getting Started Running Apache Spark on Apache Mesos
Paco Nathan
 
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
DataStax Academy
 
xPatterns on Spark, Tachyon and Mesos - Bucharest meetup
xPatterns on Spark, Tachyon and Mesos - Bucharest meetupxPatterns on Spark, Tachyon and Mesos - Bucharest meetup
xPatterns on Spark, Tachyon and Mesos - Bucharest meetup
Radu Chilom
 
Reusable, composable, battle-tested Terraform modules
Reusable, composable, battle-tested Terraform modulesReusable, composable, battle-tested Terraform modules
Reusable, composable, battle-tested Terraform modules
Yevgeniy Brikman
 
DockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and ContainerizationDockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and Containerization
Docker, Inc.
 
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark Summit
 
Sparkstreaming
SparkstreamingSparkstreaming
Sparkstreaming
Marilyn Waldman
 
Abhishek Kumar - CloudStack Locking Service
Abhishek Kumar - CloudStack Locking ServiceAbhishek Kumar - CloudStack Locking Service
Abhishek Kumar - CloudStack Locking Service
ShapeBlue
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Cassandra - A decentralized storage system
Cassandra - A decentralized storage systemCassandra - A decentralized storage system
Cassandra - A decentralized storage system
Arunit Gupta
 
HPC and cloud distributed computing, as a journey
HPC and cloud distributed computing, as a journeyHPC and cloud distributed computing, as a journey
HPC and cloud distributed computing, as a journey
Peter Clapham
 
Big data processing using hadoop poster presentation
Big data processing using hadoop poster presentationBig data processing using hadoop poster presentation
Big data processing using hadoop poster presentation
Amrut Patil
 
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit
 
Hadoop cluster configuration
Hadoop cluster configurationHadoop cluster configuration
Hadoop cluster configuration
prabakaranbrick
 
Fully fault tolerant real time data pipeline with docker and mesos
Fully fault tolerant real time data pipeline with docker and mesos Fully fault tolerant real time data pipeline with docker and mesos
Fully fault tolerant real time data pipeline with docker and mesos
Rahul Kumar
 
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Fully Fault tolerant Streaming Workflows at Scale using Apache Mesos & Spark ...
Akhil Das
 
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating SystemOSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
OSDC 2015: Bernd Mathiske | Why the Datacenter Needs an Operating System
NETWAYS
 
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax
 
Real time data pipeline with spark streaming and cassandra with mesos
Real time data pipeline with spark streaming and cassandra with mesosReal time data pipeline with spark streaming and cassandra with mesos
Real time data pipeline with spark streaming and cassandra with mesos
Rahul Kumar
 
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
Realtime Data Pipeline with Spark Streaming and Cassandra with Mesos (Rahul K...
DataStax
 
Getting Started Running Apache Spark on Apache Mesos
Getting Started Running Apache Spark on Apache MesosGetting Started Running Apache Spark on Apache Mesos
Getting Started Running Apache Spark on Apache Mesos
Paco Nathan
 
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
Big Data Open Source Security LLC: Realtime log analysis with Mesos, Docker, ...
DataStax Academy
 
xPatterns on Spark, Tachyon and Mesos - Bucharest meetup
xPatterns on Spark, Tachyon and Mesos - Bucharest meetupxPatterns on Spark, Tachyon and Mesos - Bucharest meetup
xPatterns on Spark, Tachyon and Mesos - Bucharest meetup
Radu Chilom
 
Reusable, composable, battle-tested Terraform modules
Reusable, composable, battle-tested Terraform modulesReusable, composable, battle-tested Terraform modules
Reusable, composable, battle-tested Terraform modules
Yevgeniy Brikman
 
DockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and ContainerizationDockerCon14 Cluster Management and Containerization
DockerCon14 Cluster Management and Containerization
Docker, Inc.
 
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark on Mesos-A Deep Dive-(Dean Wampler and Tim Chen, Typesafe and Mesosphere)
Spark Summit
 
Abhishek Kumar - CloudStack Locking Service
Abhishek Kumar - CloudStack Locking ServiceAbhishek Kumar - CloudStack Locking Service
Abhishek Kumar - CloudStack Locking Service
ShapeBlue
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Cassandra - A decentralized storage system
Cassandra - A decentralized storage systemCassandra - A decentralized storage system
Cassandra - A decentralized storage system
Arunit Gupta
 
HPC and cloud distributed computing, as a journey
HPC and cloud distributed computing, as a journeyHPC and cloud distributed computing, as a journey
HPC and cloud distributed computing, as a journey
Peter Clapham
 
Big data processing using hadoop poster presentation
Big data processing using hadoop poster presentationBig data processing using hadoop poster presentation
Big data processing using hadoop poster presentation
Amrut Patil
 
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit 2015: Real-Time Distributed and Reactive Systems with Apache ...
Accumulo Summit
 
Hadoop cluster configuration
Hadoop cluster configurationHadoop cluster configuration
Hadoop cluster configuration
prabakaranbrick
 
Ad

Recently uploaded (20)

Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 

Containerized Data Persistence on Mesos

  • 1. Containerized Data Persistence on Mesos with Kafka, MySQL, Cassandra, HDFS and More!
  • 2. CEO of Elodina, Inc. Elodina http://www.elodina.net/ is a startup focusing on the support & maintenance of third party open source software (like Mesos frameworks) and offering SaaS based solutions for those systems. Elodina started as Big Data Open Source Security http://stealth.ly and has been working for the last couple of years on implementing and assisting organizations with their Kafka, Mesos, Hadoop, Cassandra, Accumulo, Storm, Spark, etc, Big Data systems. Twitter: https://twitter.com/allthingshadoop LinkedIn: https://www.linkedin.com/in/charmalloc Joe Stein
  • 3. ◉ File systems, databases, object stores, storage solutions, etc. ◉ Apache Mesos and the Datacenter Operating System. ◉ Kafka, Cassandra, MySQL, HDFS. Overview
  • 4. File Systems - manages space - directories - file names - meta-data - permissions - compression - quotas
  • 5. Distributed File System - Remote block management - Replication - Streaming Data Access - Large Data Sets
  • 6. Replicated Log - Immutable Appends - Replicated Partitions - Messaging Features - Log Retention
  • 9. Storage Solutions - Storage Area Networks - Network Attached Storage - W.O.R.M. - Cold Storage
  • 10. Quick intro to Mesos
  • 18. Mesos
  • 20. Resources & Attributes The Mesos system has two basic methods to describe the slaves that comprise a cluster. One of these is managed by the Mesos master, the other is simply passed onwards to the frameworks using the cluster. --attributes='disks:sata;raid:jbod;dc:1;rack:3'
  • 21. Roles Total consumable resources per slave, in the form 'name(role):value;name(role):value...'. This value can be set to limit resources per role, or to overstate the number of resources that are available to the slave. --resources="cpus(*):8; mem(*):15360; disk(*):710534; ports(*):[31000-32000]" --resources="cpus(prod):8; cpus(stage):2 mem(*):15360; disk(*):710534; ports(*):[31000-32000]" All * roles will be detected, so you can specify only the resources that are not all roles (*). -- resources="cpus(prod):8; cpus(stage)" Frameworks bind a specific roles or any. A default roll (instead of *) can also be configured. Roles can be used to isolate and segregate frameworks.
  • 22. In coming release(s) to make things even better! MESOS-2018 Dynamic Reservations MESOS-1554 Persistent resources support for storage-like services MESOS-1279 Add resize task primitive
  • 23. Apache Kafka with Apache Mesos
  • 25. Goals we set out with ● smart broker.id assignment. ● preservation of broker placement (through constraints and/or new features). ● ability to-do configuration changes. ● rolling restarts (for things like configuration changes). ● scaling the cluster up and down with automatic, programmatic and manual options. ● smart partition assignment via constraints visa vi roles, resources and attributes.
  • 26. Scheduler ● Provides the operational automation for a Kafka Cluster. ● Manages the changes to the broker's configuration. ● Exposes a REST API for the CLI to use or any other client. ● Runs on Marathon for high availability. Executor ● The executor interacts with the kafka broker as an intermediary to the scheduler Scheduler & Executor
  • 27. CLI & REST API ● scheduler - starts the scheduler. ● add - adds one more more brokers to the cluster. ● update - changes resources, constraints or broker properties one or more brokers. ● remove - take a broker out of the cluster. ● start - starts a broker up. ● stop - this can either a graceful shutdown or will force kill it (./kafka-mesos.sh help stop) ● rebalance - allows you to rebalance a cluster either by selecting the brokers or topics to rebalance. Manual assignment is still possible using the Apache Kafka project tools. Rebalance can also change the replication factor on a topic. ● help - ./kafka-mesos.sh help || ./kafka-mesos.sh help {command}
  • 28. Launch 20 brokers in seconds ./kafka-mesos.sh add 1000..1019 --cpus 0.01 --heap 128 --mem 256 --options num.io.threads=1 ./kafka-mesos.sh start 1000..1019
  • 29. Kafka is available on DCOS https://mesosphere.com/product/ dcos install kafka dcos kafka help Mesosphere DCOS
  • 30. Apache Cassandra with Apache Mesos
  • 31. Cassandra on Mesos https://github.com/mesosphere/cassandra-mesos The Mesos scheduler is the component with the most high-level intelligence in the framework. It will need to possess the ability to bootstrap a ring and distribute the correct configuration to all subsequently started nodes. The Scheduler will also be responsible for orchestrating all tasks with regard to restarting nodes and triggering and monitoring periodic administrative tasks required by a node.
  • 32. Cassandra Scheduler ◉ Bootstrapping a ring ◉ Adding nodes to a ring ◉ Restarting a node that has crashed ◉ Providing configuration to nodes o Seed nodes, Snitch Class, JVM OPTS ◉ Scheduling and running administrative utilities o nodetool repair o nodetool cleanup ◉ Registers with a failover timeout ◉ Supports framework authentication ◉ Declines offers to resources it doesn't need ◉ Only use necessary fraction of offers ◉ Deal with lost tasks ◉ Does not rely on in-memory state ◉ Verifies supported Mesos Version ◉ Supports roles ◉ Able to provide set of ports to be used by Nodes ◉ Initial implementation will be for a static set of ports with a potential for longer term dynamic port usage.
  • 33. Cassandra Executor ◉ Monitor health of running node ◉ Use JMX Mbeans for interfacing with Cassandra Server Process ◉ Communicate results of administrative actions via StatusUpdates to scheduler when necessary ◉ Does not rely on file system state outside sandbox ◉ Pure libprocess communication with Scheduler leveraging StatusUpdate ◉ Does not rely on running on a particular slave node ◉ Data directories will be created and managed by Mesos leveraging the features provided in MESOS-1554
  • 34. Apache HDFS with Apache Mesos
  • 35. HDFS on Mesos https://github.com/mesosphere/hdfs ◉ 3 journal nodes ◉ 2 name nodes (active/standby) ◉ data nodes, lots of them! ◉ Fault tolerance more than just what Hadoop gives. ◉ Ease of configuration and distributing nodes. ◉ Elastic DFS ◉ Run multiple frameworks at a time for new solutions
  • 37. MySQL on Mesos (Apache Incubating) ◉ Open sourced by Twitter https://github.com/twitter/mysos ◉ Moving to Apache https://twitter.com/ApacheMysos ◉ Dramatically simplifies the management of a MySQL cluster: o Efficient hardware utilization through multi-tenancy (in performance- isolated containers) o High reliability through preserving the MySQL state during failure and automatic backing up to/restoring from HDFS o An automated self-service option for bringing up new MySQL clusters o High availability through automatic MySQL master failover o An elastic solution that allows users to easily scale up and down a MySQL cluster by changing the number of slave instances