This document proposes a new type of recommender system called a context recommender that recommends appropriate contexts (e.g. time, location, companion) for users to consume items. It discusses how context recommenders are different than traditional and context-aware recommenders. It also presents the framework for context recommenders including algorithms using multi-label classification to directly predict contexts. The document reports on experiments comparing these algorithms on several datasets and finds that personalized algorithms outperform non-personalized ones and that certain multi-label classification algorithms like label powerset using support vector machines achieve the best performance.