Chapter 1 basic components of control systemHarish Odedra
This presentation is on basic of control engineering subject which is offered to 5th sem Mechanical Engineering Department in Gujarat Technological University.
This document provides an overview of control systems. It begins with definitions of key terms like controlled variable, controller, plant, disturbance, feedback control, and servo mechanism. It then classifies systems as linear/non-linear, time-variant/invariant, continuous/discrete, dynamic/static, and open-loop/closed-loop. Mathematical modeling approaches like transfer functions and modeling of physical systems like translational, rotational, and electrical analogues are discussed. The document provides a comprehensive introduction to fundamental control system concepts, analysis techniques, and applications.
Some important tips for control systemsmanish katara
This document provides notes on control systems for a Bachelor of Engineering degree. It includes:
1. An introduction to control systems, defining key terms like controlled variable, controller, plant, disturbance, feedback control, and open-loop and closed-loop systems.
2. A classification of control systems based on their method of analysis and design, type of signal, system components, and main purpose.
3. An overview of mathematical models of linear systems, including analogous electrical systems, translational and rotational mechanical systems, and D'Alembert's principle.
4. An introduction to transfer functions, including their features and how to obtain them from system equations by taking the Laplace transform.
Chapter 1 introduction to control systemLenchoDuguma
This chapter introduces control systems and covers the following topics:
1. It defines open-loop and closed-loop control systems, with open-loop systems having no feedback and closed-loop systems using feedback to reduce errors between the output and desired input.
2. It discusses the history of control systems from the 18th century to present day, including developments in areas like stability analysis, frequency response methods, and state-space methods.
3. It compares classical and modern control theory, noting that modern control theory can handle more complex multi-input, multi-output systems through time-domain analysis of differential equations.
This document provides an introduction to control systems and analog control laboratories. It defines control systems and gives everyday examples. The document outlines topics that will be covered, including system modeling and analysis in MATLAB/Simulink, control design using PID, root locus and frequency response methods, and interfacing real hardware. It discusses requirements for good control systems such as accuracy, sensitivity, stability, and bandwidth. It also differentiates between open-loop and closed-loop control systems, providing examples of each, and compares their advantages and disadvantages.
This document provides an overview of control systems engineering. It defines a control system as a group of connected elements that perform a specific function. A control system regulates the output of a system by adjusting the input. Control systems can be classified based on their analysis/design methods, signal types, system components, and purpose. Linear systems follow superposition principles while nonlinear systems do not. Time-invariant systems have parameters unaffected by time. Continuous and discrete systems have continuous or discrete signals. Single-input single-output and multiple-input multiple-output systems have one or multiple inputs/outputs. Feedback control systems have their output fed back to modify the input to monitor performance. Open-loop systems do not use feedback to control the output,
The document provides an introduction to control systems, including definitions, representations, classifications, and components. It defines a control system as a collection of devices that function together to drive a system's output in a desired direction. Control systems are classified as open-loop or closed-loop. Closed-loop systems include feedback, feedforward, and adaptive control systems. The key components of a control system are the input, process, output, sensing elements, and controller.
This document provides a syllabus for a course on Control System Engineering-I. It covers various topics related to control systems including an introduction to control systems, feedback characteristics and sensitivity measures, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus is intended to teach students the basic concepts, classifications, components, analysis techniques, and design aspects of control systems. It disclaims any original content and states that the information is a collection from various sources for teaching purposes only.
The document provides a syllabus for the course "Control System Engineering-I". It covers topics such as introduction to control systems, feedback characteristics, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus aims to teach students about modeling and analyzing linear time-invariant control systems. Key concepts covered include transfer functions, block diagrams, time response analysis, stability criteria, root locus plots, and frequency response methods. The overall goal is for students to understand analysis and design of basic linear feedback control systems.
This document provides a syllabus for a course on Control System Engineering-I. It covers various topics related to control systems including an introduction to control systems, feedback characteristics and sensitivity measures, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus is intended to teach students the basic concepts, classifications, components, analysis techniques, and design aspects of linear control systems. It disclaims any original content and states that the information is a collection from various sources for teaching purposes only.
Pe 3032 wk 1 introduction to control system march 04eCharlton Inao
This document outlines the course PE-3032 Introduction to Control Systems Engineering taught by Professor Charlton S. Inao at Defence Engineering University College in Ethiopia in 2012. The course covers topics such as open and closed loop control, Laplace transformations, stability analysis, root locus, frequency response, PID controllers, and digital control. Students are expected to develop abilities in applying mathematical principles to control systems, obtaining mathematical models of systems, deriving transfer functions and state space models, and performing time and frequency domain analysis. Assessment includes a midterm, final exam, lab assessments, and assignments. Recommended textbooks and references are also provided.
This document provides an overview of biocontrol systems. It begins with basic definitions, explaining that a biocontrol system maintains or alters a biological quantity through desired control. It then covers classifications of control systems including open-loop and closed-loop systems. Open-loop systems do not use feedback while closed-loop systems do. Examples of biocontrol systems given include fluid level control, incubator temperature control, and heat control in the body. The document provides terminology and descriptions of basic elements in control systems including controllers, plants, feedback, and more.
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
This document provides an introduction to control systems. It begins by stating the objectives of describing the process of designing a control system and examining examples. It then defines what is meant by "control" and provides everyday examples. Automatic control is discussed as playing a vital role in engineering applications like robotics, transportation and industrial processes. The key difference between open-loop and closed-loop control systems is explained, with closed-loop systems being able to account for disturbances but being more complex. Key terms are defined and examples of control systems for liquid level, CD player speed, temperature and antenna position are described.
This document provides an overview of control systems. It defines a control system as an arrangement of components designed to achieve a specific objective. The document discusses open loop and closed loop systems. Open loop systems do not provide feedback, while closed loop systems constantly monitor and adjust the output based on feedback. Examples are given of each type of system. The key requirements, terms, types of systems, their comparison and design process are outlined over the course of the document.
A control system uses feedback to regulate physical components and achieve a desired output from a given input. It has an input, output, and control action to achieve objectives. Control systems can be open-loop or closed-loop. Open-loop systems do not measure or feedback output, so accuracy depends on input calibration. Closed-loop systems compare input to measured output and use error signals to maintain output at the desired level, making them more accurate but also more complex and expensive.
This document provides an introduction to control systems. It defines a control system as a system used to achieve a desired output. The basic components of a control system are identified as a plant, controller, actuator, sensor, and disturbance. Control systems are classified as open-loop or closed-loop based on whether feedback is used. A brief history of control is provided, highlighting early examples and the development of modern control theory. Requirements for control systems like stability, quickness, and accuracy are also discussed.
The document provides an introduction to control systems. It defines key terms like systems, control systems, open loop and closed loop systems. It explains that a system is a combination of components that work together, while a control system includes feedback to achieve a desired output. Open loop systems operate independently of feedback, while closed loop systems use feedback to adjust. Common examples of open and closed loop systems are also provided like electric hand driers and automatic washing machines. The basic elements of control systems like resistors, inductors, and capacitors are also introduced in the context of electrical systems.
This document provides an overview of a control systems engineering course. It outlines the course syllabus which covers classical and modern control techniques including modeling, analysis in the time and frequency domains, and controller design methods. The general content includes system modeling, analysis of open and closed loop systems, stability analysis, and compensation techniques. Recommended textbooks are provided and prerequisites of differential equations, linear algebra, and basic physics systems are listed. Finally, basic definitions of elements in a control system including controllers, actuators, sensors, and the design process are introduced.
This document provides an overview of control systems, including:
- Defining the basic components and configurations of control systems
- Describing open-loop and closed-loop systems, their advantages and disadvantages
- Classifying control systems as single-input single-output, multiple-input multiple-output, linear, non-linear, time-variant, or time-invariant
- Outlining a 6-step general process for designing a control system
- Assigning an activity for students to describe the operation of a control system from a selected sector by reverse engineering it according to the design steps
basic of open and closed loop control systemSACHINNikam39
This document provides an introduction to control systems. It defines a control system as a system that manages or directs other systems to achieve desired results. The key types of control systems discussed are:
1. Open loop and closed loop systems. Open loop systems operate independently of output, while closed loop systems use feedback to adjust input based on output.
2. Electrical, pneumatic, hydraulic, and computer control systems which use different driving mediums.
3. Mechanical, electronic, and computer-based systems which can incorporate control systems. Accuracy, stability, sensitivity, speed, oscillation, and bandwidth are discussed as important characteristics of good control systems.
This document discusses control systems. It defines a control system as a means to maintain or alter a quantity of interest in accordance with a desired manner. Control systems can be classified in various ways, including as open-loop or closed-loop depending on whether feedback is present, and as continuous or discrete depending on the type of signals used. Open-loop systems are simple but inaccurate, while closed-loop systems are complex but accurate due to feedback correcting any errors. Feedback affects the stability and overall gain of a system. Common examples of control systems discussed include temperature control, motor position control, and liquid level control in a tank.
in modern world, work which are done by humans are now that places are taken by machines. control system are essential to understand how they work. this is basic of control system and also with the example.
This slide show contains a detailed explanation of the following topics from Control System:
1. Open loop & Closed loop
2. Mathematical modeling
3. f-v and f-i analogy
4. Block diagram reduction technique
5. Signal flow graph
The document provides an introduction to control systems, including:
- Control systems are integral parts of modern society and are found in applications like rockets, manufacturing machines, and self-driving vehicles.
- The chapter defines a control system and describes their basic features and configurations, including open-loop and closed-loop systems.
- The objectives of control system analysis and design are described as producing the desired transient response, reducing steady-state error, and achieving stability.
- The design process for control systems is outlined in six steps: determining requirements, drawing block diagrams, creating schematics, developing mathematical models, reducing block diagrams, and analyzing and designing the system.
The document provides an introduction to control systems, including definitions, representations, classifications, and components. It defines a control system as a collection of devices that function together to drive a system's output in a desired direction. Control systems are classified as open-loop or closed-loop. Closed-loop systems include feedback, feedforward, and adaptive control systems. The key components of a control system are the input, process, output, sensing elements, and controller.
This document provides a syllabus for a course on Control System Engineering-I. It covers various topics related to control systems including an introduction to control systems, feedback characteristics and sensitivity measures, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus is intended to teach students the basic concepts, classifications, components, analysis techniques, and design aspects of control systems. It disclaims any original content and states that the information is a collection from various sources for teaching purposes only.
The document provides a syllabus for the course "Control System Engineering-I". It covers topics such as introduction to control systems, feedback characteristics, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus aims to teach students about modeling and analyzing linear time-invariant control systems. Key concepts covered include transfer functions, block diagrams, time response analysis, stability criteria, root locus plots, and frequency response methods. The overall goal is for students to understand analysis and design of basic linear feedback control systems.
This document provides a syllabus for a course on Control System Engineering-I. It covers various topics related to control systems including an introduction to control systems, feedback characteristics and sensitivity measures, control system components, time domain performance analysis, stability analysis, root locus technique, and frequency domain analysis. The syllabus is intended to teach students the basic concepts, classifications, components, analysis techniques, and design aspects of linear control systems. It disclaims any original content and states that the information is a collection from various sources for teaching purposes only.
Pe 3032 wk 1 introduction to control system march 04eCharlton Inao
This document outlines the course PE-3032 Introduction to Control Systems Engineering taught by Professor Charlton S. Inao at Defence Engineering University College in Ethiopia in 2012. The course covers topics such as open and closed loop control, Laplace transformations, stability analysis, root locus, frequency response, PID controllers, and digital control. Students are expected to develop abilities in applying mathematical principles to control systems, obtaining mathematical models of systems, deriving transfer functions and state space models, and performing time and frequency domain analysis. Assessment includes a midterm, final exam, lab assessments, and assignments. Recommended textbooks and references are also provided.
This document provides an overview of biocontrol systems. It begins with basic definitions, explaining that a biocontrol system maintains or alters a biological quantity through desired control. It then covers classifications of control systems including open-loop and closed-loop systems. Open-loop systems do not use feedback while closed-loop systems do. Examples of biocontrol systems given include fluid level control, incubator temperature control, and heat control in the body. The document provides terminology and descriptions of basic elements in control systems including controllers, plants, feedback, and more.
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
This document provides an introduction to control systems. It begins by stating the objectives of describing the process of designing a control system and examining examples. It then defines what is meant by "control" and provides everyday examples. Automatic control is discussed as playing a vital role in engineering applications like robotics, transportation and industrial processes. The key difference between open-loop and closed-loop control systems is explained, with closed-loop systems being able to account for disturbances but being more complex. Key terms are defined and examples of control systems for liquid level, CD player speed, temperature and antenna position are described.
This document provides an overview of control systems. It defines a control system as an arrangement of components designed to achieve a specific objective. The document discusses open loop and closed loop systems. Open loop systems do not provide feedback, while closed loop systems constantly monitor and adjust the output based on feedback. Examples are given of each type of system. The key requirements, terms, types of systems, their comparison and design process are outlined over the course of the document.
A control system uses feedback to regulate physical components and achieve a desired output from a given input. It has an input, output, and control action to achieve objectives. Control systems can be open-loop or closed-loop. Open-loop systems do not measure or feedback output, so accuracy depends on input calibration. Closed-loop systems compare input to measured output and use error signals to maintain output at the desired level, making them more accurate but also more complex and expensive.
This document provides an introduction to control systems. It defines a control system as a system used to achieve a desired output. The basic components of a control system are identified as a plant, controller, actuator, sensor, and disturbance. Control systems are classified as open-loop or closed-loop based on whether feedback is used. A brief history of control is provided, highlighting early examples and the development of modern control theory. Requirements for control systems like stability, quickness, and accuracy are also discussed.
The document provides an introduction to control systems. It defines key terms like systems, control systems, open loop and closed loop systems. It explains that a system is a combination of components that work together, while a control system includes feedback to achieve a desired output. Open loop systems operate independently of feedback, while closed loop systems use feedback to adjust. Common examples of open and closed loop systems are also provided like electric hand driers and automatic washing machines. The basic elements of control systems like resistors, inductors, and capacitors are also introduced in the context of electrical systems.
This document provides an overview of a control systems engineering course. It outlines the course syllabus which covers classical and modern control techniques including modeling, analysis in the time and frequency domains, and controller design methods. The general content includes system modeling, analysis of open and closed loop systems, stability analysis, and compensation techniques. Recommended textbooks are provided and prerequisites of differential equations, linear algebra, and basic physics systems are listed. Finally, basic definitions of elements in a control system including controllers, actuators, sensors, and the design process are introduced.
This document provides an overview of control systems, including:
- Defining the basic components and configurations of control systems
- Describing open-loop and closed-loop systems, their advantages and disadvantages
- Classifying control systems as single-input single-output, multiple-input multiple-output, linear, non-linear, time-variant, or time-invariant
- Outlining a 6-step general process for designing a control system
- Assigning an activity for students to describe the operation of a control system from a selected sector by reverse engineering it according to the design steps
basic of open and closed loop control systemSACHINNikam39
This document provides an introduction to control systems. It defines a control system as a system that manages or directs other systems to achieve desired results. The key types of control systems discussed are:
1. Open loop and closed loop systems. Open loop systems operate independently of output, while closed loop systems use feedback to adjust input based on output.
2. Electrical, pneumatic, hydraulic, and computer control systems which use different driving mediums.
3. Mechanical, electronic, and computer-based systems which can incorporate control systems. Accuracy, stability, sensitivity, speed, oscillation, and bandwidth are discussed as important characteristics of good control systems.
This document discusses control systems. It defines a control system as a means to maintain or alter a quantity of interest in accordance with a desired manner. Control systems can be classified in various ways, including as open-loop or closed-loop depending on whether feedback is present, and as continuous or discrete depending on the type of signals used. Open-loop systems are simple but inaccurate, while closed-loop systems are complex but accurate due to feedback correcting any errors. Feedback affects the stability and overall gain of a system. Common examples of control systems discussed include temperature control, motor position control, and liquid level control in a tank.
in modern world, work which are done by humans are now that places are taken by machines. control system are essential to understand how they work. this is basic of control system and also with the example.
This slide show contains a detailed explanation of the following topics from Control System:
1. Open loop & Closed loop
2. Mathematical modeling
3. f-v and f-i analogy
4. Block diagram reduction technique
5. Signal flow graph
The document provides an introduction to control systems, including:
- Control systems are integral parts of modern society and are found in applications like rockets, manufacturing machines, and self-driving vehicles.
- The chapter defines a control system and describes their basic features and configurations, including open-loop and closed-loop systems.
- The objectives of control system analysis and design are described as producing the desired transient response, reducing steady-state error, and achieving stability.
- The design process for control systems is outlined in six steps: determining requirements, drawing block diagrams, creating schematics, developing mathematical models, reducing block diagrams, and analyzing and designing the system.
Better Builder Magazine brings together premium product manufactures and leading builders to create better differentiated homes and buildings that use less energy, save water and reduce our impact on the environment. The magazine is published four times a year.
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
In this lecture, I explain the fundamentals of electromagnetic compatibility (EMC), the basic coupling model and coupling paths via cables, electric fields, magnetic fields and wave fields. We also look at electric vehicles as an example of systems with many conducted EMC problems due to power electronic devices such as rectifiers and inverters with non-linear components such as diodes and fast switching components such as MOSFETs or IGBTs. After a brief review of circuit analysis fundamentals and an experimental investigation of the frequency-dependent impedance of resistors, capacitors and inductors, we look at a simple low-pass filter. The input impedance from both sides as well as the transfer function are measured.
Although the exploitation of GWO advances sharply, it has limitations for continuous implementing exploration. On the other hand, the EHO algorithm easily has shown its capability to prevent local optima. For hybridization and by considering the advantages of GWO and the abilities of EHO, it would be impressive to combine these two algorithms. In this respect, the exploitation and exploration performances and the convergence speed of the GWO algorithm are improved by combining it with the EHO algorithm. Therefore, this paper proposes a new hybrid Grey Wolf Optimizer (GWO) combined with Elephant Herding Optimization (EHO) algorithm. Twenty-three benchmark mathematical optimization challenges and six constrained engineering challenges are used to validate the performance of the suggested GWOEHO compared to both the original GWO and EHO algorithms and some other well-known optimization algorithms. Wilcoxon's rank-sum test outcomes revealed that GWOEHO outperforms others in most function minimization. The results also proved that the convergence speed of GWOEHO is faster than the original algorithms.
7. Control system
• A control system is defined as a system of devices that manages,
commands, directs, or regulates the behavior of other devices or
systems to achieve a desired result.
• A control system can be simplified as a system, which controls other
systems.
10. Need of control system
One needs to be pro-active!
No one wants to find a fault after it had occurred!
11. Need of control system
One needs to be pro-active!
No one wants to find a fault after it had occurred!
One has to expect the unexpected!
12. Need of control system
• In order to modify the behavior of a system so it behaves in a
specific desirable way over time, control is introduced.
13. Control System : Definition and Representation
• A system, which provides the desired response by controlling
the output.
• A collection of devices/systems which function together to
drive things in a desired direction, either from external input
or sensed conditions.
• Today are a central part of industry and of automation.
14. Control system
• eliminates the redundant manual controls.
• reduces human errors that can cost loss.
• certifies that there is a strategic method to improving
productivity.
• ensures enhancement of the best practices.
15. Control system
• should be evaluated frequently to ensure that the processes
are where they need to be and functioning efficiently and
effectively.
16. Basic components of Control System
• Input : Source of power to the system.
• Process being controlled : Function of the system.
• Output : Result of function of the system.
• Sensing elements : To sense the output quantities/errors.
• Controller & Actuating devices : System that controls &
system that is controlled.
17. Control System characteristics
• Accuracy: is the measurement tolerance of the instrument and defines the
limits of the errors made when the instrument is used in normal operating
conditions.
• Sensitivity: is changing with the change in surrounding conditions, internal
disturbance or any other parameters.
• Noise: an undesired input signal.
• Stability: the output must be bounded for bounded input signal and
output must be zero if the input is zero.
• Bandwidth: operating frequency range decides the bandwidth of the
control system.
• Speed: time taken by the control system to achieve its stable output.
• Oscillation: small numbers of oscillation or constant oscillation of output
tend to indicate the system to be stable.
18. Classifications of control systems
• Open loop control systems
• Those systems in which the output has no effect on the control action are
called open-loop control systems.
• the output is neither measured nor feedback for comparison with the input.
• The practical examples are washing machine, light switches, gas ovens,
automatic coffee server, electric lift, traffic signals, theater lamp dimmer,
etc.
20. • In any open-loop control system the output is not compared with the reference input.
• Open-loop control can be used, in practice, only if the relationship between the input and output is known
and if there are neither internal nor external disturbances
Advantages
I. They are simple in construction and design.
II. They are economic.
III. Easy for maintenance.
IV. Not much problems of stability.
V. Convenient to use when output is difficult to measure
Disadvantages
I. Inaccurate and unreliable because accuracy is dependent on calibration.
II. Error in results due to parameter variations, internal disturbances.
III. To maintain quality and accuracy, recalibration of controller is necessary in regular time interval.
21. 2. Closed loop control systems
• A system that maintains a prescribed relationship between the output and the reference inputby
comparing them and using the difference as a means of control is called a closed loop control
systems.
• Sometimes, we may use the output of the control system to adjust the input signal. This iscalled
feedback.
• Feedback control systems are often referred to as closed-loop controlsystems.
22. • The practical examples are air conditioner, automatic electric iron, missile launched and auto tracked by radar, servo
voltage stabilizer, sun-seeker solar system, water level controller, etc.
• The term closed-loop control always implies the use of feedback control action in order to reduce system error.
Advantages:
I. Accuracy is very high as errors are corrected.
II. It senses changes in output due to parametric changes, internal disturbances, etc. and corrects them.
III. Reduced effect of non-linearties.
IV. High bandwidth means large operating frequency range.
V. Facilitates and supports automation.
Disadvantages:
I. Complicated in design and costlier maintenance.
II. This system is generally higher in cost and power.
III. Stability is a major problem in this system.
23. Comparison between open loop and closed loop control systems
Open loop system Closed loop system
No feedback and elements of feedback. Feedback and elements of feedback exists.
No error detector. Error detector is present.
Inaccurate. Accurate.
Highly sensitive to parameter changes. Less sensitive to parameter changes.
Small bandwidth. Large bandwidth.
No issue of stability. Issue of stability.
Lower in cost and power. Higher in cost and power.
Examples: washing machine, light switches,
gas ovens, automatic coffee server, electric
lift, traffic signals, theater lamp dimmer,
etc.
Examples: air conditioner, automatic electric
iron, missile launched and auto tracked by
radar, servo voltage stabilizer, sun-seeker
solar system, water level controller, etc.
24. Concept of superposition for linear systems
• Before understanding concept of superposition for linear systems, we have to understand concept of linearity.
• Linearity:
• Basically, a mathematical equation is said to be linear if the following properties hold
• homogeneity
• additivity
• Homogeneity requires that if the input (excitation) of a system (equation) is multiplied by a constant, thenthe
output should be obtained by multiplying by the
same constant to obtain the correct solution. Does homogeneity hold for the following equation?
y = 4x
If x = 1, y = 4. If we double x to x = 2 and substitute this value into above equation, we get y = 8.
25. • Now for homogenity to hold, scaling should hold for y. That is, y has a value of 4 when x = 1. If we
increase x by a factor of 2, when we should be able to multiply y by the same factor and get the same
answer and when we substitute into the right side of the equation for x = 2.
• Additivity property is equivalent to the statement that the response of a system to a sum of inputs is the
same as the responses of the system when each input is applied separately and the individual responses
summed (added together). This can be explained by considering the following illustrations.
Given, y = 4x
Let x = x1, then y1 = 4x1 Let x = x2, then y2 = 4x2
Then y = y1 + y2 = 4x1 + 4x2 …. Eq 1.1
Also, we note,
y = f(x1 + x2) = 4(x1 + x2) = 4x1 + 4x2 …. Eq 1.2
Since Equations (1.1) and (1.2) are identical, the additivity property holds.
26. Concept of Superposition
• The mathematical model of a system is linear if it obeys principle of superposition. The concept of
superposition implies that if y1 = f(x1) and y2 = f(x2) then f(x1+x2) = y1+y2.
• This is called the Superposition principle. What does that mean? It means that if we know that our
system responds to a certain input (x1) with a certain output (y1), and we also know that it responds to
another input (x2) with some other output (y2), then it response to the sum of these inputs should be the
sum of the two outputs.
• Usually your inputs, and consequently your output vary over time (or over space), so a better way to
write the above is:
if y1 (t) = f(x1(t)) and y2(t) = f(x2(t))
then f(x1(t)+x2(t)) = y1(t)+y2(t)
• Which is exactly what we wrote above, but with x replaced by x(t), and y replaced by y(t).
27. ControlSystem:
Classification
Types : Considering I/P-O/P
1. SISO (single input single output)
2. MIMO (multiple input multiple output)
Types : Considering Signal Types
1. Continuous time control system
2. Discrete time control system