Chan's Algorithm for Convex Hull Problem. Output Sensitive Algorithm. Takes O(n log h) time. Presentation for the final project in CS 6212/Spring/Arora.
The document presents Aabid Shah's presentation on the divide-and-conquer algorithm and Graham's scan for computing the convex hull of a set of points. It introduces divide-and-conquer as a technique that divides a problem into smaller subproblems, solves the subproblems recursively, and combines the solutions. Graham's scan is described as a divide-and-conquer algorithm that uses a stack to find the convex hull of a set of points in O(n log n) time by sorting points by polar angle and checking for non-left turns. The key steps of Graham's scan and properties of the convex hull are outlined.
This document discusses convex hull algorithms. It defines a convex set as one where any line segment between two points in the set is also contained in the set. The convex hull of a set of points is the smallest convex set containing those points. Intuitively, in 2D the convex hull is the shape formed by stretching a rubber band around nails at each point, and in 3D it is the shape formed by stretching plastic wrap tightly around the points. The document then lists and describes several existing convex hull algorithms and provides an overview of an interior points algorithm that identifies non-extreme points based on whether they lie within triangles formed by other points.
Strassen's algorithm improves on the basic matrix multiplication algorithm which runs in O(N3) time. It achieves this by dividing the matrices into sub-matrices and performing 7 multiplications and 18 additions on the sub-matrices, rather than the 8 multiplications of the basic algorithm. This results in a runtime of O(N2.81) using divide and conquer, providing an asymptotic improvement over the basic O(N3) algorithm.
The document discusses the convex hull algorithm. It begins by defining a convex hull as the shape a rubber band would take if stretched around pins on a board. It then provides explanations of extreme points, edges, and applications of convex hulls. Various algorithms for finding convex hulls are presented, including divide and conquer in O(n log n) time and Jarvis march in O(n^2) time in the worst case.
The document discusses several algorithms for computing the convex hull of a set of points, including brute force, quick hull, divide and conquer, Graham's scan, and Jarvis march. It provides details on the time complexity of each algorithm, ranging from O(n^2) for brute force to O(n log n) for quick hull, divide and conquer, and Graham's scan. Jarvis march runs in O(nh) time where h is the number of points on the convex hull.
The Viterbi algorithm is used to find the most likely sequence of hidden states in a Hidden Markov Model. It was first proposed in 1967 and uses dynamic programming to calculate the probability of different state sequences given a series of observations. The algorithm outputs the single best state sequence by tracking the highest probability path recursively through the model. It has applications in areas like communications, speech recognition, and bioinformatics.
This document discusses constraint satisfaction problems (CSP) and the CSP solving technique called forward checking. It provides an example of a map coloring CSP problem and then explains forward checking, which tracks remaining legal values for unassigned variables and terminates the search when a variable has no legal values left. It also discusses using heuristics like the degree heuristic, minimum remaining values heuristic, and least constraining value heuristic to guide the search order during forward checking.
The document discusses brute force and exhaustive search approaches to solving problems. It provides examples of how brute force can be applied to sorting, searching, and string matching problems. Specifically, it describes selection sort and bubble sort as brute force sorting algorithms. For searching, it explains sequential search and brute force string matching. It also discusses using brute force to solve the closest pair, convex hull, traveling salesman, knapsack, and assignment problems, noting that brute force leads to inefficient exponential time algorithms for TSP and knapsack.
The Nelder-Mead search algorithm is an optimization technique used to find the minimum or maximum of an objective function by iteratively modifying a set of parameter values. It begins with an initial set of points forming a simplex in parameter space and evaluates the objective function at each point, replacing the highest point with a new point to form a new simplex. This process repeats until the optimal value is found or a stopping criteria is met. The algorithm is simple to implement and can find local optima for problems with multiple parameters, but depends on the initial starting point and may get stuck in local optima rather than finding the global solution.
This document provides an overview of greedy algorithms, including examples and analysis. It discusses how greedy algorithms work by making locally optimal choices at each step in hopes of finding a global optimum. Examples covered include counting change using coins, scheduling jobs on processors, minimum spanning trees, and Dijkstra's shortest path algorithm. The document notes that greedy algorithms may not always find the optimal solution and provides examples where they fail. It also analyzes the time complexity of various greedy algorithms.
This document discusses greedy algorithms, which are algorithms that select locally optimal choices at each step in the hopes of finding a global optimum. It provides examples of problems that greedy algorithms can solve optimally, such as coin counting, and problems where greedy algorithms fail to find an optimal solution, such as scheduling jobs. It also analyzes the time complexity of various greedy algorithms, such as Dijkstra's algorithm for finding shortest paths.
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"22bcs058
Greedy algorithms are fundamental techniques used in computer science and optimization problems. They belong to a class of algorithms that make decisions based on the current best option without considering the overall future consequences. Despite their simplicity and intuitive appeal, greedy algorithms can provide efficient solutions to a wide range of problems across various domains.
At the core of greedy algorithms lies a simple principle: at each step, choose the locally optimal solution that seems best at the moment, with the hope that it will lead to a globally optimal solution. This principle makes greedy algorithms easy to understand and implement, as they typically involve iterating through a set of choices and making decisions based on some criteria.
One of the key characteristics of greedy algorithms is their greedy choice property, which states that at each step, the locally optimal choice leads to an optimal solution overall. This property allows greedy algorithms to make decisions without needing to backtrack or reconsider previous choices, resulting in efficient solutions for many problems.
Greedy algorithms are commonly used in problems involving optimization, scheduling, and combinatorial optimization. Examples include finding the minimum spanning tree in a graph (Prim's and Kruskal's algorithms), finding the shortest path in a weighted graph (Dijkstra's algorithm), and scheduling tasks to minimize completion time (interval scheduling).
Despite their effectiveness in many situations, greedy algorithms may not always produce the optimal solution for a given problem. In some cases, a greedy approach can lead to suboptimal solutions that are not globally optimal. This occurs when the greedy choice property does not guarantee an optimal solution at each step, or when there are conflicting objectives that cannot be resolved by a greedy strategy alone.
To mitigate these limitations, it is essential to carefully analyze the problem at hand and determine whether a greedy approach is appropriate. In some cases, greedy algorithms can be augmented with additional techniques or heuristics to improve their performance or guarantee optimality. Alternatively, other algorithmic paradigms such as dynamic programming or divide and conquer may be better suited for certain problems.
Overall, greedy algorithms offer a powerful and versatile tool for solving optimization problems efficiently. By understanding their principles and characteristics, programmers and researchers can leverage greedy algorithms to tackle a wide range of computational challenges and design elegant solutions that balance simplicity and effectiveness.
DSA Complexity.pptx What is Complexity Analysis? What is the need for Compl...2022cspaawan12556
What is Complexity Analysis?
What is the need for Complexity Analysis?
Asymptotic Notations
How to measure complexity?
1. Time Complexity
2. Space Complexity
3. Auxiliary Space
How does Complexity affect any algorithm?
How to optimize the time and space complexity of an Algorithm?
Different types of Complexity exist in the program:
1. Constant Complexity
2. Logarithmic Complexity
3. Linear Complexity
4. Quadratic Complexity
5. Factorial Complexity
6. Exponential Complexity
Worst Case time complexity of different data structures for different operations
Complexity Analysis Of Popular Algorithms
Practice some questions on Complexity Analysis
practice with giving Quiz
Conclusion
This document discusses analyzing the time efficiency of recursive algorithms. It provides a general 5-step plan: 1) choose a parameter for input size, 2) identify the basic operation, 3) check if operation count varies, 4) set up a recurrence relation, 5) solve the relation to determine growth order. It then gives two examples - computing factorial recursively and solving the Tower of Hanoi puzzle recursively - to demonstrate applying the plan. The document also briefly discusses algorithm visualization using static or dynamic images to convey information about an algorithm's operations and performance.
Skiena algorithm 2007 lecture01 introduction to algorithmszukun
This document provides an introduction and overview of algorithms. It defines an algorithm as the set of steps to solve a general problem and discusses criteria for evaluating algorithms, including correctness and efficiency. Several examples of algorithmic problems and potential solutions are presented, including sorting, robot tour optimization, and movie star scheduling. Commonly used techniques for describing algorithms like pseudocode are also introduced.
The document discusses algorithms for finding the convex hull of a set of points in two dimensions. It describes the Jarvis march (also called the gift wrapping algorithm) and the Graham scan algorithm. The Jarvis march finds the convex hull by iterating through points and finding the next point that forms the smallest interior angle with the last two points on the hull. The Graham scan sorts points by angle and then iterates through, eliminating any point that forms an obtuse angle with the last three points. Both algorithms run in O(n log n) time.
The document discusses algorithm analysis and design. It begins with an introduction to analyzing algorithms including average case analysis and solving recurrences. It then provides definitions of algorithms both informal and formal. Key aspects of algorithm study and specification methods like pseudocode are outlined. Selection sort and tower of Hanoi problems are presented as examples and analyzed for time and space complexity. Average case analysis is discussed assuming all inputs are equally likely.
The purpose behind this document is to understand what the methods of gradient descent and Newton’s method are that are used exclusively in the field of optimization and operations research.
This document summarizes key concepts in cryptography and number theory relevant to public key cryptography algorithms like RSA. It discusses number theoretic concepts like prime numbers, modular arithmetic, discrete logarithms, and one-way functions. It then provides an overview of the RSA algorithm, explaining how it uses the difficulty of factoring large numbers to enable secure public key encryption and digital signatures.
The document discusses divide and conquer algorithms. It explains that divide and conquer algorithms work by dividing problems into smaller subproblems, solving the subproblems independently, and then combining the solutions to solve the original problem. An example of finding the minimum and maximum elements in an array using divide and conquer is provided, with pseudocode. Advantages of divide and conquer algorithms include solving difficult problems and often finding efficient solutions.
What is an Algorithm
Time Complexity
Space Complexity
Asymptotic Notations
Recursive Analysis
Selection Sort
Insertion Sort
Recurrences
Substitution Method
Master Tree Method
Recursion Tree Method
This document discusses algorithms for NP-complete problems. It introduces the maximum independent set problem and shows that while it is NP-complete for general graphs, it can be solved efficiently for trees using a recursive formulation. It also discusses the traveling salesperson problem and presents a dynamic programming algorithm that provides a better running time than brute force. Finally, it discusses approximation algorithms for the TSP and shows a 2-approximation algorithm that finds a tour with cost at most twice the optimal using minimum spanning trees.
Graph Traversal Algorithms - Breadth First SearchAmrinder Arora
The document discusses branch and bound algorithms. It begins with an overview of breadth first search (BFS) and how it can be used to solve problems on infinite mazes or graphs. It then provides pseudocode for implementing BFS using a queue data structure. Finally, it discusses branch and bound as a general technique for solving optimization problems that applies when greedy methods and dynamic programming fail. Branch and bound performs a BFS-like search, but prunes parts of the search tree using lower and upper bounds to avoid exploring all possible solutions.
Ad
More Related Content
Similar to Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and Zhe Yang (20)
The Nelder-Mead search algorithm is an optimization technique used to find the minimum or maximum of an objective function by iteratively modifying a set of parameter values. It begins with an initial set of points forming a simplex in parameter space and evaluates the objective function at each point, replacing the highest point with a new point to form a new simplex. This process repeats until the optimal value is found or a stopping criteria is met. The algorithm is simple to implement and can find local optima for problems with multiple parameters, but depends on the initial starting point and may get stuck in local optima rather than finding the global solution.
This document provides an overview of greedy algorithms, including examples and analysis. It discusses how greedy algorithms work by making locally optimal choices at each step in hopes of finding a global optimum. Examples covered include counting change using coins, scheduling jobs on processors, minimum spanning trees, and Dijkstra's shortest path algorithm. The document notes that greedy algorithms may not always find the optimal solution and provides examples where they fail. It also analyzes the time complexity of various greedy algorithms.
This document discusses greedy algorithms, which are algorithms that select locally optimal choices at each step in the hopes of finding a global optimum. It provides examples of problems that greedy algorithms can solve optimally, such as coin counting, and problems where greedy algorithms fail to find an optimal solution, such as scheduling jobs. It also analyzes the time complexity of various greedy algorithms, such as Dijkstra's algorithm for finding shortest paths.
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"22bcs058
Greedy algorithms are fundamental techniques used in computer science and optimization problems. They belong to a class of algorithms that make decisions based on the current best option without considering the overall future consequences. Despite their simplicity and intuitive appeal, greedy algorithms can provide efficient solutions to a wide range of problems across various domains.
At the core of greedy algorithms lies a simple principle: at each step, choose the locally optimal solution that seems best at the moment, with the hope that it will lead to a globally optimal solution. This principle makes greedy algorithms easy to understand and implement, as they typically involve iterating through a set of choices and making decisions based on some criteria.
One of the key characteristics of greedy algorithms is their greedy choice property, which states that at each step, the locally optimal choice leads to an optimal solution overall. This property allows greedy algorithms to make decisions without needing to backtrack or reconsider previous choices, resulting in efficient solutions for many problems.
Greedy algorithms are commonly used in problems involving optimization, scheduling, and combinatorial optimization. Examples include finding the minimum spanning tree in a graph (Prim's and Kruskal's algorithms), finding the shortest path in a weighted graph (Dijkstra's algorithm), and scheduling tasks to minimize completion time (interval scheduling).
Despite their effectiveness in many situations, greedy algorithms may not always produce the optimal solution for a given problem. In some cases, a greedy approach can lead to suboptimal solutions that are not globally optimal. This occurs when the greedy choice property does not guarantee an optimal solution at each step, or when there are conflicting objectives that cannot be resolved by a greedy strategy alone.
To mitigate these limitations, it is essential to carefully analyze the problem at hand and determine whether a greedy approach is appropriate. In some cases, greedy algorithms can be augmented with additional techniques or heuristics to improve their performance or guarantee optimality. Alternatively, other algorithmic paradigms such as dynamic programming or divide and conquer may be better suited for certain problems.
Overall, greedy algorithms offer a powerful and versatile tool for solving optimization problems efficiently. By understanding their principles and characteristics, programmers and researchers can leverage greedy algorithms to tackle a wide range of computational challenges and design elegant solutions that balance simplicity and effectiveness.
DSA Complexity.pptx What is Complexity Analysis? What is the need for Compl...2022cspaawan12556
What is Complexity Analysis?
What is the need for Complexity Analysis?
Asymptotic Notations
How to measure complexity?
1. Time Complexity
2. Space Complexity
3. Auxiliary Space
How does Complexity affect any algorithm?
How to optimize the time and space complexity of an Algorithm?
Different types of Complexity exist in the program:
1. Constant Complexity
2. Logarithmic Complexity
3. Linear Complexity
4. Quadratic Complexity
5. Factorial Complexity
6. Exponential Complexity
Worst Case time complexity of different data structures for different operations
Complexity Analysis Of Popular Algorithms
Practice some questions on Complexity Analysis
practice with giving Quiz
Conclusion
This document discusses analyzing the time efficiency of recursive algorithms. It provides a general 5-step plan: 1) choose a parameter for input size, 2) identify the basic operation, 3) check if operation count varies, 4) set up a recurrence relation, 5) solve the relation to determine growth order. It then gives two examples - computing factorial recursively and solving the Tower of Hanoi puzzle recursively - to demonstrate applying the plan. The document also briefly discusses algorithm visualization using static or dynamic images to convey information about an algorithm's operations and performance.
Skiena algorithm 2007 lecture01 introduction to algorithmszukun
This document provides an introduction and overview of algorithms. It defines an algorithm as the set of steps to solve a general problem and discusses criteria for evaluating algorithms, including correctness and efficiency. Several examples of algorithmic problems and potential solutions are presented, including sorting, robot tour optimization, and movie star scheduling. Commonly used techniques for describing algorithms like pseudocode are also introduced.
The document discusses algorithms for finding the convex hull of a set of points in two dimensions. It describes the Jarvis march (also called the gift wrapping algorithm) and the Graham scan algorithm. The Jarvis march finds the convex hull by iterating through points and finding the next point that forms the smallest interior angle with the last two points on the hull. The Graham scan sorts points by angle and then iterates through, eliminating any point that forms an obtuse angle with the last three points. Both algorithms run in O(n log n) time.
The document discusses algorithm analysis and design. It begins with an introduction to analyzing algorithms including average case analysis and solving recurrences. It then provides definitions of algorithms both informal and formal. Key aspects of algorithm study and specification methods like pseudocode are outlined. Selection sort and tower of Hanoi problems are presented as examples and analyzed for time and space complexity. Average case analysis is discussed assuming all inputs are equally likely.
The purpose behind this document is to understand what the methods of gradient descent and Newton’s method are that are used exclusively in the field of optimization and operations research.
This document summarizes key concepts in cryptography and number theory relevant to public key cryptography algorithms like RSA. It discusses number theoretic concepts like prime numbers, modular arithmetic, discrete logarithms, and one-way functions. It then provides an overview of the RSA algorithm, explaining how it uses the difficulty of factoring large numbers to enable secure public key encryption and digital signatures.
The document discusses divide and conquer algorithms. It explains that divide and conquer algorithms work by dividing problems into smaller subproblems, solving the subproblems independently, and then combining the solutions to solve the original problem. An example of finding the minimum and maximum elements in an array using divide and conquer is provided, with pseudocode. Advantages of divide and conquer algorithms include solving difficult problems and often finding efficient solutions.
What is an Algorithm
Time Complexity
Space Complexity
Asymptotic Notations
Recursive Analysis
Selection Sort
Insertion Sort
Recurrences
Substitution Method
Master Tree Method
Recursion Tree Method
This document discusses algorithms for NP-complete problems. It introduces the maximum independent set problem and shows that while it is NP-complete for general graphs, it can be solved efficiently for trees using a recursive formulation. It also discusses the traveling salesperson problem and presents a dynamic programming algorithm that provides a better running time than brute force. Finally, it discusses approximation algorithms for the TSP and shows a 2-approximation algorithm that finds a tour with cost at most twice the optimal using minimum spanning trees.
Graph Traversal Algorithms - Breadth First SearchAmrinder Arora
The document discusses branch and bound algorithms. It begins with an overview of breadth first search (BFS) and how it can be used to solve problems on infinite mazes or graphs. It then provides pseudocode for implementing BFS using a queue data structure. Finally, it discusses branch and bound as a general technique for solving optimization problems that applies when greedy methods and dynamic programming fail. Branch and bound performs a BFS-like search, but prunes parts of the search tree using lower and upper bounds to avoid exploring all possible solutions.
Graph Traversal Algorithms - Depth First Search TraversalAmrinder Arora
This document discusses graph traversal techniques, specifically depth-first search (DFS) and breadth-first search (BFS). It provides pseudocode for DFS and explains key properties like edge classification, time complexity of O(V+E), and applications such as finding connected components and articulation points.
Arima Forecasting - Presentation by Sera Cresta, Nora Alosaimi and Puneet MahanaAmrinder Arora
Arima Forecasting - Presentation by Sera Cresta, Nora Alosaimi and Puneet Mahana. Presentation for CS 6212 final project in GWU during Fall 2015 (Prof. Arora's class)
Stopping Rule for Secretory Problem - Presentation by Haoyang Tian, Wesam Als...Amrinder Arora
Stopping Rule for Secretory Problem - Presentation by Haoyang Tian, Wesam Alshami and Dong Wang. Final Presentation for P4, in CS 6212, Fall 2015 taught by Prof. Arora.
Proof of O(log *n) time complexity of Union find (Presentation by Wei Li, Zeh...Amrinder Arora
The document discusses the union find algorithm and its time complexity. It defines the union find problem and three operations: MAKE-SET, FIND, and UNION. It describes optimizations like union by rank and path compression that achieve near-linear time complexity of O(m log* n) for m operations on n elements. It proves several lemmas about ranks and buckets to establish this time complexity through an analysis of the costs of find operations.
How multiple experts can be leveraged in a machine learning application without knowing apriori who are "good" experts and who are "bad" experts. See how we can quantify the bounds on the overall results.
NP completeness. Classes P and NP are two frequently studied classes of problems in computer science. Class P is the set of all problems that can be solved by a deterministic Turing machine in polynomial time.
This document presents algorithmic puzzles and their solutions. It discusses puzzles involving counterfeit coins, uneven water pitchers, strong eggs on tiny floors, and people arranged in a circle. For each puzzle, it provides the problem description, an analysis or solution approach, and sometimes additional discussion. The document is a presentation on algorithmic puzzles given by Amrinder Arora, including their contact information.
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisAmrinder Arora
Euclid's algorithm for finding greatest common divisor is an elegant algorithm that can be written iteratively as well as recursively. The time complexity of this algorithm is O(log^2 n) where n is the larger of the two inputs.
Dynamic Programming design technique is one of the fundamental algorithm design techniques, and possibly one of the ones that are hardest to master for those who did not study it formally. In these slides (which are continuation of part 1 slides), we cover two problems: maximum value contiguous subarray, and maximum increasing subsequence.
This document discusses dynamic programming techniques. It covers matrix chain multiplication and all pairs shortest paths problems. Dynamic programming involves breaking down problems into overlapping subproblems and storing the results of already solved subproblems to avoid recomputing them. It has four main steps - defining a mathematical notation for subproblems, proving optimal substructure, deriving a recurrence relation, and developing an algorithm using the relation.
Divide and Conquer - Part II - Quickselect and Closest Pair of PointsAmrinder Arora
This document discusses divide and conquer algorithms. It covers the closest pair of points problem, which can be solved in O(n log n) time using a divide and conquer approach. It also discusses selection algorithms like quickselect that can find the median or kth element of an unsorted array in linear time O(n) on average. The document provides pseudocode for these algorithms and analyzes their time complexity using recurrence relations. It also provides an overview of topics like mergesort, quicksort, and solving recurrence relations that were covered in previous lectures.
Divide and Conquer Algorithms - D&C forms a distinct algorithm design technique in computer science, wherein a problem is solved by repeatedly invoking the algorithm on smaller occurrences of the same problem. Binary search, merge sort, Euclid's algorithm can all be formulated as examples of divide and conquer algorithms. Strassen's algorithm and Nearest Neighbor algorithm are two other examples.
This is the second lecture in the CS 6212 class. Covers asymptotic notation and data structures. Also outlines the coming lectures wherein we will study the various algorithm design techniques.
Introduction to Algorithms and Asymptotic NotationAmrinder Arora
Asymptotic Notation is a notation used to represent and compare the efficiency of algorithms. It is a concise notation that deliberately omits details, such as constant time improvements, etc. Asymptotic notation consists of 5 commonly used symbols: big oh, small oh, big omega, small omega, and theta.
Set Operations - Union Find and Bloom FiltersAmrinder Arora
Set Operations - make set, union, find and contains are standard operations that appear in many scenarios. Union Find is a marvelous data structure to solve problems involving union and find operations.
Different use arises when we merely want to answer queries on whether a set contains an element x without keeping the entire set in the memory. Bloom Filters play an interesting role there.
How to Manage Opening & Closing Controls in Odoo 17 POSCeline George
In Odoo 17 Point of Sale, the opening and closing controls are key for cash management. At the start of a shift, cashiers log in and enter the starting cash amount, marking the beginning of financial tracking. Throughout the shift, every transaction is recorded, creating an audit trail.
Geography Sem II Unit 1C Correlation of Geography with other school subjectsProfDrShaikhImran
The correlation of school subjects refers to the interconnectedness and mutual reinforcement between different academic disciplines. This concept highlights how knowledge and skills in one subject can support, enhance, or overlap with learning in another. Recognizing these correlations helps in creating a more holistic and meaningful educational experience.
Contact Lens:::: An Overview.pptx.: OptometryMushahidRaza8
A comprehensive guide for Optometry students: understanding in easy launguage of contact lens.
Don't forget to like,share and comments if you found it useful!.
K12 Tableau Tuesday - Algebra Equity and Access in Atlanta Public Schoolsdogden2
Algebra 1 is often described as a “gateway” class, a pivotal moment that can shape the rest of a student’s K–12 education. Early access is key: successfully completing Algebra 1 in middle school allows students to complete advanced math and science coursework in high school, which research shows lead to higher wages and lower rates of unemployment in adulthood.
Learn how The Atlanta Public Schools is using their data to create a more equitable enrollment in middle school Algebra classes.
Odoo Inventory Rules and Routes v17 - Odoo SlidesCeline George
Odoo's inventory management system is highly flexible and powerful, allowing businesses to efficiently manage their stock operations through the use of Rules and Routes.
How to Manage Purchase Alternatives in Odoo 18Celine George
Managing purchase alternatives is crucial for ensuring a smooth and cost-effective procurement process. Odoo 18 provides robust tools to handle alternative vendors and products, enabling businesses to maintain flexibility and mitigate supply chain disruptions.
Real GitHub Copilot Exam Dumps for SuccessMark Soia
Download updated GitHub Copilot exam dumps to boost your certification success. Get real exam questions and verified answers for guaranteed performance
APM event hosted by the Midlands Network on 30 April 2025.
Speaker: Sacha Hind, Senior Programme Manager, Network Rail
With fierce competition in today’s job market, candidates need a lot more than a good CV and interview skills to stand out from the crowd.
Based on her own experience of progressing to a senior project role and leading a team of 35 project professionals, Sacha shared not just how to land that dream role, but how to be successful in it and most importantly, how to enjoy it!
Sacha included her top tips for aspiring leaders – the things you really need to know but people rarely tell you!
We also celebrated our Midlands Regional Network Awards 2025, and presenting the award for Midlands Student of the Year 2025.
This session provided the opportunity for personal reflection on areas attendees are currently focussing on in order to be successful versus what really makes a difference.
Sacha answered some common questions about what it takes to thrive at a senior level in a fast-paced project environment: Do I need a degree? How do I balance work with family and life outside of work? How do I get leadership experience before I become a line manager?
The session was full of practical takeaways and the audience also had the opportunity to get their questions answered on the evening with a live Q&A session.
Attendees hopefully came away feeling more confident, motivated and empowered to progress their careers
Understanding P–N Junction Semiconductors: A Beginner’s GuideGS Virdi
Dive into the fundamentals of P–N junctions, the heart of every diode and semiconductor device. In this concise presentation, Dr. G.S. Virdi (Former Chief Scientist, CSIR-CEERI Pilani) covers:
What Is a P–N Junction? Learn how P-type and N-type materials join to create a diode.
Depletion Region & Biasing: See how forward and reverse bias shape the voltage–current behavior.
V–I Characteristics: Understand the curve that defines diode operation.
Real-World Uses: Discover common applications in rectifiers, signal clipping, and more.
Ideal for electronics students, hobbyists, and engineers seeking a clear, practical introduction to P–N junction semiconductors.
How to track Cost and Revenue using Analytic Accounts in odoo Accounting, App...Celine George
Analytic accounts are used to track and manage financial transactions related to specific projects, departments, or business units. They provide detailed insights into costs and revenues at a granular level, independent of the main accounting system. This helps to better understand profitability, performance, and resource allocation, making it easier to make informed financial decisions and strategic planning.
2. Definition Of Convex HULL
Simply, given a set of points P in a plane, the convex hull of this set is the smallest convex polygon that
contains all points of it.
(A set of points and its convex hull)
2
3. We will introduce an O(nlogh) algorithm known as Chan’s
Algorithm, where h refers the number of points in the hull.
However, Chan’s Algorithm is based on other two
algorithms known as Jarvis’s Algorithm O(nh) and Graham’s
Algorithm O(nlogn).
So, we will talk about these two algorithms first.
3
4. Before Start…
• Counterclockwise and Clockwise
• It’s relative
• In this presentation
• Use function orient(p, q, i) to calculate the
relationship of pq and pi.
• Obviously, orient(p, q, i) = - orient(p, i, q)
• Extreme points
• There will be four extreme points
• All of them MUST be in the hull lastly
• Most algorithm choose to start with one of the
extreme points.
• In this presentation
• All algorithms will start will the left most point.
4
6. Jarvis’s Algorithm
• Perhaps the simplest algorithm for computing Convex Hull
• In the two-dimensional case the algorithm is also known as Jarvis march, after R. A. Jarvis, who
published it in 1973.
• It has a more visual name: ‘Gift Wrapping’.
6
7. HOW IT WORKS?
1. Start with the left most point, l.
2. Let p = l, find out the point q that
appears to be furthest to the
right to someone standing at p
and looking at other points. (by
comparing all others points)
That’s is: orient(p, q, i) < 0 is always
true for all other points.
3. Set q as p, and use p as the start
point and use the same method
to find the next q.
4. Keep doing step 3, until q is equal
to l.
O(n)
O(h)
Total: O(nh)
O(n)
7
9. GRAHAM’S ALGORITHM
• It is named after Ronald Graham, who published the original algorithm in 1972.
• Also know as Graham’s scan, first explicitly sorts the points and then scanning algorithm to finish
building the hull.
• Basically, sort + scan.
9
10. HOW IT WORKS?
1. Start with the left most point, l.
2. Sorts all other points in
counterclockwise order around l.
That’s is: orient(l, i, i+1) > 0 is always
true for all points i.
3. Start with l, let p = l, q = l +1, i = l +
2.
4. Check orient(p, q, i)
• If < 0, move forward, let p = q, q =i, i =
i +1;
• If > 0, remove q, let p = p-1, q = p ;
5. Keep doing step 4, until all points
have been checked.
O(nlogn)
O(n)
Total: O(nlogn)
O(n)
SORTSCAN
10
12. Chan’s Algorithm = Jarvis's + Graham’s + ...
• It was discovered by Timothy Chan in 1993.
• It’s a combination of divide-and-conquer, gift-wrapping and graham’s scan.
• it’s output-sensitive, which means its running time depends on the size of its output (or input).
12
13. HOW IT WORKS?
1. Find a magic value of ‘m’, which
divides all points into n/m subsets,
and each subset has m points,
approximately.
2. To each subset, use Graham’s
algorithm to compute its sub-hull.
3. To all sub-hulls, use Jarvis’s
algorithm to compute the final
convex hull.
• Choose one extreme point as the start
point, and compare the right tangents
of all sub-hulls.
• Choose the rightest one as the next
point.
• Start with the next point, and do it
again, until the next point is equal to
the start point
13
14. Find Magic ‘m’
• The core of Chan’s algorithm is how to figure out the value of m. (The object is to make m very close to
h, or equal)
• Chan proposed a amazing trick here:
• We set a parameter t = 1 and set m = 2^(2^t).
• Then use this m to execute Chan’s Algorithm, in step 3, we set a counter for the output number of points in the
hull. Once the counter reaches value m, it terminate the algorithm and increment t by 1, re-calculate the value
m, and do it again!
• By doing this, the time for running this algorithm will always be less than O(nlogm).
14
15. TIME COMPLEXITY
• We divided points into n/m parts, so each part has m
points.
• Since the algorithm will be terminated when it number
of output reaches m, so this step will at most cost
O(nlogm), when m is small.
• For step 2
• It’s O((n/m) * mlogm) = O(nlogm)
• For step 3
• Finding one extreme point, O(n).
• tangents
• Finding the right tangents of one sub-hull, O(logm).
• There are n/m sub-hulls, so O((n/m)logm)
• There are h points in the hull. O(h*(n/m)logm) = O(nlogh)
when h=m.
• Totally, it’s O(nlogh).
1. Find a magic value of ‘m’, which
divides all points into n/m subsets,
and each subset has m points,
approximately.
2. To each subset, use Graham’s
algorithm to compute its sub-hull.
3. To all sub-hulls, use Jarvis’s
algorithm to compute the final
convex hull.
• Choose one extreme point as the start
point, and compare the right tangents
of all sub-hulls.
• Choose the rightest one as the next
point.
• Start with the next point, and do it
again,until the next point is equal to
the start point
15