SlideShare a Scribd company logo
M&S
Convolutional Neural
Network from Theory
to Code
Seongwon Hwang
M&S
Preliminaries
M&S
Tensor :
(Index Notation)
ky
kl
ijy
ijklA
kj
a
ijA iA
ki
jjB
M&S
Order (Rank)
M&S
Range
𝑎 𝑏
𝑐 𝑑
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑎 𝑏
𝑒 𝑓
𝑐 𝑑
𝑔 ℎ
𝑖 𝑗
𝑚 𝑛
𝑘 𝑙
𝑜 𝑝
𝐴𝑖𝑗
i = 2, j = 2
i = 3, j = 3 i = 4, j = 4
𝑎 𝑏
𝑐 𝑑
𝑒 𝑓
i = 3, j = 2
M&S
Free index : unrepeated index
𝑦1 = 𝑎11 𝑥1+𝑎12 𝑥2
𝑦2 = 𝑎21 𝑥1+𝑎22 𝑥2
𝑦 𝑘 = 𝑎 𝑘1 𝑥1+𝑎 𝑘2 𝑥2, k = 1,2


2
1i
ikik xay
),( 21 yyy 
M&S
Dummy index : repeated index
1,2kixay ikik  ,
Free index Dummy index


2
1i
ikik xay
𝑦1 = 𝑎11 𝑥1+𝑎12 𝑥2
𝑦2 = 𝑎21 𝑥1+𝑎22 𝑥2
M&S
Example
iji BA jj BABA 2211 =
212111,1 BABAj 
222121,2 BABAj 
),( 222121212111 BABABABA iji BA =
i, j = 1,2
M&S
Example
ijjA 332211 iii AAA 
),,( 333322311233222211133122111 AAAAAAAAA 
133122111,1 AAAi 
233222211,2 AAAi 
333322311,3 AAAi 
=
i, j = 1,2,3
M&S
e-Permutation
ijke
M&S
Example – Determinant
bcad
dc
ba
aa
aa
A  detdetdet
2221
1211
bcad
aaaa
aaeaaeaaeaae
aae jiij




00 21122211
221222211221221112211111
21
M&S
Example – Determinant
)(...det 21... matrixNNaaaeA Nkjikij 
M&S
Kronecker delta
M&S
Derivatives
kjjkjj
xx
y
y
x
y
y






2
,, ,
1,2,3jφ
x
φ
z
φ
y
φ
x
φ
φgrad jj










 ),,( ,
Example – Gradient
M&S
CNN Tensor notation in Theano
- Input Images -
4D tensor
1D tensor
[number of feature maps at layer m, number of feature maps at layer m-1,
filter height, filter width]
ij
klx
op
qrW
mb
[ i, j, k, l ] =
[ o, p, q, r ] =
[ m ] =
- Weight -
- Bias -
[n’th feature map number]
[mini-batch size, number of input feature
maps, image height, image width]
M&S
Convolutional Neural
Network
Theory I
M&S
Convolution?





daatwax
twxty
)()(
))(()(




a
anwaxny ][][][
- Continuous Variables -
- Discrete Variables -
M&S
Convolution?




a
anwaxny ][][][
- Discrete Variables -
][][ awax ][][ awax 
)]([][ nawax 
Y-axis transformation
M&S
Y축
X축
Convolution?
X축
X축
M&S
Cross-Correlation?




a
nawaxnwxny ][][])[(][
- Discrete Variables (In real number) -
][][ awax ][][ nawax n step move
★
M&S
Convolution VS. Cross-Correlation
Cross-CorrelationConvolution
M&S
Cross-Correlation in 2D
Output (y) Kernel (w) Input (x)
 






n m
nmwjnimx
jiwxjiy
],[],[
],)[(],[
M&S
Intuition for Cross-Correlation
wx
★
M&S
wx
★
Intuition for Cross-Correlation
M&S
wx
★
Intuition for Cross-Correlation
M&S
wx
★
Intuition for Cross-Correlation
M&S
wx
★
Intuition for Cross-Correlation
Input
)( mapFreature
neuronHidden
fieldrecptiveLocal
filterorkernel
M&S
Convolutional Neural
Network
Theory II
M&S
CNN overall procedures
Input Image Convolutional Layer Pooling MLP Softmax Output
M&S
CNN overall procedures
Input Image
Convolutional
Layer
Pooling
MLP
Softmax Output
M&S
Input Image
Input Image
1D - Input neurons
2D - Input neurons
M&S
Convolutional Layer
Input Image
Convolutional
Layer
Input neurons
Hidden neuron
M&S
Traditional Neural Network
Input layer Hidden layer Output layer
M&S
CNN - Sparse Connectivity
Input layer Hidden layer
(Feature map)
Output layer
M&S
CNN – Dimension shrinkage ( + Pooling)
Input layer Output layerHidden layer
(Feature map)
M&S
Cross-Correlation Input (or Hidden) layer with weight
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)(Receptive field)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Shared Weight representation
Input layer Output layer
1W
2W
3W
'3W
'2W
'1W
Hidden layer
(Feature map)
M&S
Multiple Feature maps
Input Image
Convolutional
Layer
Input neurons
First hidden layer
M&S
Max Pooling
Input Image
Convolutional
Layer
Pooling
Max pooling with
2x2 filters and stride 2
M&S
Why pooling?
Input Image
Convolutional
Layer
Pooling
1. Low computation 2. Translation invariance
3. Transformation invariance
4. Scaling invariance
M&S
Several types of Pooling
Input Image
Convolutional
Layer
Pooling
M&S
Transform data dimension before MLP
Input Image
Convolutional
Layer
Pooling
MLP
1D - Output neurons
2D - Output neurons
M&S
Multilayer Perceptron (MLP)
Input Image
Convolutional
Layer
Pooling
MLP
Input layer Hidden layer 1 Hidden layer 2
M&S
Softmax Output
Input Image
Convolutional
Layer
Pooling
MLP
Softmax Output
Hidden layer 2 Output layer
M&S
Several types of CNN
M&S
Intuition for CNN
Input Image
Convolutional
Layer
Pooling
MLP
Softmax Output
M&S
Convolutional Neural
Network
Code in Theono
M&S
CNN overall procedures
Input Image
Convolutional
Layer
Pooling
MLP
Softmax Output
M&S
Input Image
Input Image
- Input Images -
4D tensor
[mini-batch size, number of input feature
maps, image height, image width]ij
klx
5
...
28
28
500
7
[ i, j, k, l ] =
Mini batch 1
5
...
28
28
500
8
Mini batch 100
. . .
50,000 images
in the training data
M&S
Weight tensor
Input Image
Convolutional
Layer
4D tensor
[number of feature maps at layer m, number of feature maps at layer m-1,
filter height, filter width]
op
qrW [ o, p, q, r ] =
- Weight -
M&S
Exercise for Input and Weight tensor
11
11x
11
11W
Input layer
Convolutional layer 1 Convolutional layer 2
[ 1, 1, 1, 1 ]
[ 1, 1, 1, 1 ]
M&S
Code for Convolutional Layer
28
28
8
def evaluate_lenet5(learning_rate=0.1,
n_epochs=2, dataset=‘minist.pkl.gz’,
nkerns=[20, 50], batch_size=500):
LeNetConvPoolLayer
image_shape=(batch_size, 1, 28, 28)
filter_shape=(nkerns[0], 1, 5, 5)
poolsize=(2, 2)
image_shape=(batch_size, nkerns[0], 12, 12)
filter_shape=(nkerns[1], nkerns[0], 5, 5)
poolsize=(2, 2)
Layer0 – Convolutional layer 1
Layer1 – Convolutional layer 2
5
5
20
24
24
20
5
5
12
12
8
8
4
4
20 50 50 50
28 – 5 + 1 = 24
Convolution
24 / 2 = 12
Pooling
12 – 5 + 1 = 8
Convolution
8 / 2 = 4
Pooling
Class
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
Input Image
Convolutional
Layer
Pooling
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
0
0
M&S
Zero-Padding Input layer Output layerHidden layer
(Feature map)
0
0
0
0
M&S
Zero-Padding
0
0
M&S
Zero-Padding
0
0
M&S
Zero-Padding
0
0
M&S
Zero-Padding
0
0
0
0
M&S
Zero-Padding
0
0
0
0
M&S
Zero-Padding
0
0
0
0
M&S
Zero-Padding
No zero-padding Zero-padding 1 Zero-padding 2
Dimension Reduction Dimension Equality Dimension Increase
Zero-
padding in
Theano
Default in
Theano
M&S
Code for Zero-Padding setting in Theano Library
conv.py (In Library File)
def conv2d(input, filters, image_shape=None, filter_shape=None,
border_mode=‘valid’, subsample=(1, 1), **kargs):
‘valid’ ‘full’
We should modify dimension changes in code by ourselves!
Image_shape + filter_shape – 1Image_shape - filter_shape + 1
28 + 5 – 1 = 3228 - 5 + 1 = 24
M&S
1. Border in Pooling
No problem in Border Ingore_border = False Ingore_border = True
M&S
1. Border in Pooling (Code)
No problem in Border
Ingore_border = False Ingore_border = True
pooled_out =
downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True)
LeNetConvPoolLayer
Class
Default in Theano library is False!
M&S
2. Stride in Pooling
Default in Theano
stride size = poolsize
Unduplicated!
M&S
2. Stride in Pooling
2
Default in Theano
stride size = poolsize
Unduplicated!
M&S
2. Stride in Pooling
2
Default in Theano
stride size = poolsize = (2,2)
Unduplicated!
M&S
2. Stride in Pooling
2
Default in Theano
stride size = poolsize = (2,2)
Unduplicated!
M&S
2. Stride in Pooling
2
Default in Theano
stride size = poolsize = (2,2)
Unduplicated!
M&S
2. Stride in Pooling
stride size = (1, 1)
6
M&S
2. Stride in Pooling
1
76
M&S
2. Stride in Pooling (Code)
76 8
6 7 8
3 3 4
pooled_out =
downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True)
pooled_out =
downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True, st = (1,1))
M&S
Activation Function in Convolutional Layer
self.output=T.tanh(pooled_out +
self.b.dimshuffle(‘x’,0,‘x’,‘x’)
Convolution Pooling Activation
LeNetConvPoolLayer
Class
M&S
Dimension Reduction 2D  1D
Input Image
Convolutional
Layer
Pooling
MLP
layer2_input = layer1_input.output.flatten(2)
1D - Output neurons
2D - Output neurons
M&S
Code for MLP in Theano
Input Image
Convolutional
Layer
Pooling
MLP layer2 = HiddenLayer( rng,
input=layer2_input,
n_in-nkerns[1] * 4 * 4,
n_out=500,
activation = T.tanh)
HiddenLayer
Class
Last output size for C+P
Number of node at Hidden layer
Activation function at Hidden layer
***In order to extend the number of Hidden Layer in MLP,
We need to make layer3 by copying this code***
M&S
Code for Softmax Output in Theano
Input Image
Convolutional
Layer
Pooling
MLP
Softmax Output
layer3 =
LogisticRegression( input=layer2.output,
n_in=500,
n_out=10)
LogisticRegression
Class
cost = layer3.negative_log_likelihood(y)
Number of node at previous
Hidden layer
Final Output size
Ex) 0, 1, 2, ,,, 9
Softmax activation function
M&S
CNN application in bioinformatics problem
Ad

More Related Content

What's hot (20)

Autoencoder
AutoencoderAutoencoder
Autoencoder
HARISH R
 
Introduction to Keras
Introduction to KerasIntroduction to Keras
Introduction to Keras
John Ramey
 
AlexNet
AlexNetAlexNet
AlexNet
Bertil Hatt
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
Si Haem
 
Feed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descentFeed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descent
Muhammad Rasel
 
Video Transformers.pptx
Video Transformers.pptxVideo Transformers.pptx
Video Transformers.pptx
Sangmin Woo
 
Autoencoders
AutoencodersAutoencoders
Autoencoders
CloudxLab
 
Image Classification using deep learning
Image Classification using deep learning Image Classification using deep learning
Image Classification using deep learning
Asma-AH
 
Resnet
ResnetResnet
Resnet
ashwinjoseph95
 
Cnn
CnnCnn
Cnn
Nirthika Rajendran
 
Face Recognition: From Scratch To Hatch
Face Recognition: From Scratch To HatchFace Recognition: From Scratch To Hatch
Face Recognition: From Scratch To Hatch
Eduard Tyantov
 
Semantic Segmentation Methods using Deep Learning
Semantic Segmentation Methods using Deep LearningSemantic Segmentation Methods using Deep Learning
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
Convolutional neural network
Convolutional neural networkConvolutional neural network
Convolutional neural network
MojammilHusain
 
Hog
HogHog
Hog
Anirudh Kanneganti
 
Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)
Muhammad Haroon
 
Deep Neural Networks (DNN)
Deep Neural Networks (DNN)Deep Neural Networks (DNN)
Deep Neural Networks (DNN)
Sir Syed University of Engineering & Technology
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Deep Learning in Computer Vision
Deep Learning in Computer VisionDeep Learning in Computer Vision
Deep Learning in Computer Vision
Sungjoon Choi
 
CNN Tutorial
CNN TutorialCNN Tutorial
CNN Tutorial
Sungjoon Choi
 
Autoencoder
AutoencoderAutoencoder
Autoencoder
HARISH R
 
Introduction to Keras
Introduction to KerasIntroduction to Keras
Introduction to Keras
John Ramey
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
Si Haem
 
Feed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descentFeed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descent
Muhammad Rasel
 
Video Transformers.pptx
Video Transformers.pptxVideo Transformers.pptx
Video Transformers.pptx
Sangmin Woo
 
Autoencoders
AutoencodersAutoencoders
Autoencoders
CloudxLab
 
Image Classification using deep learning
Image Classification using deep learning Image Classification using deep learning
Image Classification using deep learning
Asma-AH
 
Face Recognition: From Scratch To Hatch
Face Recognition: From Scratch To HatchFace Recognition: From Scratch To Hatch
Face Recognition: From Scratch To Hatch
Eduard Tyantov
 
Semantic Segmentation Methods using Deep Learning
Semantic Segmentation Methods using Deep LearningSemantic Segmentation Methods using Deep Learning
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
Convolutional neural network
Convolutional neural networkConvolutional neural network
Convolutional neural network
MojammilHusain
 
Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)
Muhammad Haroon
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
Deep Learning in Computer Vision
Deep Learning in Computer VisionDeep Learning in Computer Vision
Deep Learning in Computer Vision
Sungjoon Choi
 

Similar to Convolutional Neural Network (CNN) presentation from theory to code in Theano (20)

Idea for ineractive programming language
Idea for ineractive programming languageIdea for ineractive programming language
Idea for ineractive programming language
Lincoln Hannah
 
8. Vectors data frames
8. Vectors data frames8. Vectors data frames
8. Vectors data frames
ExternalEvents
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Different Types of Machine Learning Algorithms
Different Types of Machine Learning AlgorithmsDifferent Types of Machine Learning Algorithms
Different Types of Machine Learning Algorithms
rahmedraj93
 
COCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate AscentCOCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate Ascent
jeykottalam
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from Scratch
Ahmed BESBES
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Craig Chao
 
Primitives
PrimitivesPrimitives
Primitives
Nageswara Rao Gottipati
 
Tutorial on convolutional neural networks
Tutorial on convolutional neural networksTutorial on convolutional neural networks
Tutorial on convolutional neural networks
Hojin Yang
 
Count-Distinct Problem
Count-Distinct ProblemCount-Distinct Problem
Count-Distinct Problem
Kai Zhang
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
Bala Murali
 
Digital Image Processing UNIT-2.ppt
Digital Image Processing      UNIT-2.pptDigital Image Processing      UNIT-2.ppt
Digital Image Processing UNIT-2.ppt
durgakru
 
ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2
zukun
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015
ihji
 
Vectors data frames
Vectors data framesVectors data frames
Vectors data frames
FAO
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Amro Elfeki
 
Computer graphics 2
Computer graphics 2Computer graphics 2
Computer graphics 2
Prabin Gautam
 
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov VyacheslavSeminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Vyacheslav Arbuzov
 
Linear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorialLinear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorial
Jia-Bin Huang
 
Lesson_8_DeepLearning.pdf
Lesson_8_DeepLearning.pdfLesson_8_DeepLearning.pdf
Lesson_8_DeepLearning.pdf
ssuser7f0b19
 
Idea for ineractive programming language
Idea for ineractive programming languageIdea for ineractive programming language
Idea for ineractive programming language
Lincoln Hannah
 
8. Vectors data frames
8. Vectors data frames8. Vectors data frames
8. Vectors data frames
ExternalEvents
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Different Types of Machine Learning Algorithms
Different Types of Machine Learning AlgorithmsDifferent Types of Machine Learning Algorithms
Different Types of Machine Learning Algorithms
rahmedraj93
 
COCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate AscentCOCOA: Communication-Efficient Coordinate Ascent
COCOA: Communication-Efficient Coordinate Ascent
jeykottalam
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from Scratch
Ahmed BESBES
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Craig Chao
 
Tutorial on convolutional neural networks
Tutorial on convolutional neural networksTutorial on convolutional neural networks
Tutorial on convolutional neural networks
Hojin Yang
 
Count-Distinct Problem
Count-Distinct ProblemCount-Distinct Problem
Count-Distinct Problem
Kai Zhang
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
Bala Murali
 
Digital Image Processing UNIT-2.ppt
Digital Image Processing      UNIT-2.pptDigital Image Processing      UNIT-2.ppt
Digital Image Processing UNIT-2.ppt
durgakru
 
ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2ECCV2010: feature learning for image classification, part 2
ECCV2010: feature learning for image classification, part 2
zukun
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015
ihji
 
Vectors data frames
Vectors data framesVectors data frames
Vectors data frames
FAO
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Amro Elfeki
 
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov VyacheslavSeminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Seminar PSU 09.04.2013 - 10.04.2013 MiFIT, Arbuzov Vyacheslav
Vyacheslav Arbuzov
 
Linear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorialLinear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorial
Jia-Bin Huang
 
Lesson_8_DeepLearning.pdf
Lesson_8_DeepLearning.pdfLesson_8_DeepLearning.pdf
Lesson_8_DeepLearning.pdf
ssuser7f0b19
 
Ad

Recently uploaded (20)

Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
spssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptxspssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptx
clarkraal
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx
dharmendrasingh31102
 
Process Mining at AE - Key success factors
Process Mining at AE - Key success factorsProcess Mining at AE - Key success factors
Process Mining at AE - Key success factors
Process mining Evangelist
 
Suncorp - Integrating Process Mining at Australia's Largest Insurer
Suncorp - Integrating Process Mining at Australia's Largest InsurerSuncorp - Integrating Process Mining at Australia's Largest Insurer
Suncorp - Integrating Process Mining at Australia's Largest Insurer
Process mining Evangelist
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
spssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptxspssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptx
clarkraal
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx
dharmendrasingh31102
 
Suncorp - Integrating Process Mining at Australia's Largest Insurer
Suncorp - Integrating Process Mining at Australia's Largest InsurerSuncorp - Integrating Process Mining at Australia's Largest Insurer
Suncorp - Integrating Process Mining at Australia's Largest Insurer
Process mining Evangelist
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
Ad

Convolutional Neural Network (CNN) presentation from theory to code in Theano

Editor's Notes

  • #24: Cross correlation 의 직관적 이해
  • #25: Cross correlation 의 직관적 이해
  • #26: Cross correlation 의 직관적 이해
  • #27: Cross correlation 의 직관적 이해
  • #28: Cross correlation 의 직관적 이해
  • #52: Cross correlation 의 직관적 이해