Education data mining is an emerging stream which h
elps in mining academic data for solving various
types of problems. One of the problems is the selec
tion of a proper academic track. The admission of a
student in engineering college depends on many fact
ors. In this paper we have tried to implement a
classification technique to assist students in pred
icting their success in admission in an engineering
stream.We have analyzed the data set containing inf
ormation about student’s academic as well as socio-
demographic variables, with attributes such as fami
ly pressure, interest, gender, XII marks and CET ra
nk
in entrance examinations and historical data of pre
vious batch of students. Feature selection is a pro
cess
for removing irrelevant and redundant features whic
h will help improve the predictive accuracy of
classifiers. In this paper first we have used featu
re selection attribute algorithms Chi-square.InfoGa
in, and
GainRatio to predict the relevant features. Then we
have applied fast correlation base filter on given
features. Later classification is done using NBTree
, MultilayerPerceptron, NaiveBayes and Instance bas
ed
–K- nearest neighbor. Results showed reduction in c
omputational cost and time and increase in predicti
ve
accuracy for the student model