SlideShare a Scribd company logo
CORRELATION AND
REGRESSION
Correlation and Regression
The test you choose depends on level of measurement:
Independent Dependent StatisticalTest
Dichotomous Interval-ratio Independent Samples t-test
Dichotomous
Nominal Nominal CrossTabs
Dichotomous Dichotomous
Nominal Interval-ratio ANOVA
Dichotomous Dichotomous
Interval-ratio Interval-ratio Correlation and
Dichotomous OLS Regression
Correlation and Regression
•Correlation is a statistic that assesses the
strength and direction of linear association of
two interval-ratio variables . . . It is created
through a technique called “regression”
•Bivariate regression is a technique that fits a
straight line as close as possible between all the
coordinates of two interval-ratio variables
plotted on a two-dimensional graph--to
summarize the relationship between the
variables
Correlation and Regression
• For example:
A sociologist may be interested in the relationship between education
and self-esteem or Income and Number of Children in a family.
Independent Variables
Education
Family Income
Dependent Variables
Self-Esteem
Number of Children
Correlation and Regression
•For example:
•May expect: As education increases, self-esteem increases
(positive relationship).
•May expect: As family income increases, the number of
children in families declines (negative relationship).
Independent Variables
Education
Family Income
Dependent Variables
Self-Esteem
Number of Children
+
-
Correlation and Regression
•For example:
•Null Hypothesis: There is no relationship between education
and self-esteem.
•Null Hypothesis: There is no relationship between family
income and the number of children in families.
•Ho: b = 0 “b” is a symbol for a statistic
•Ha: b ≠ 0 that describes the relationship
Independent Variables
Education
Family Income
Dependent Variables
Self-Esteem
Number of Children
Correlation and Regression
•Let’s look at the relationship between income and
number of children.
•Regression will start with plotting the coordinates in
your data (although you will hardly ever “plot” your
data in reality).
•Some data:
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Can you see a relationship?
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Well, the slope of a
line fitted to the
points could tell us
the nature of the
relationship!
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Is it positive?
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Is it negative?
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Is there no
relationship?
Correlation and Regression
Y
(# Children)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
What is the slope of a “fitted line?”
The slope is the change in Y along the line
as you go up one on X while following the
line (rise over run).
Slope = 0, No relationship!
X
(Income)
Correlation and Regression
Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
What is the slope of a “fitted line?”
The slope is the change in Y along the line
as you go up one on X while following the
line (rise over run).
Slope = 0.5, Positive Relationship!
1
0.5
Y
(# Children)
X
(Income)
Correlation and Regression
Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
What is the slope of a “fitted line?”
The slope is the change in Y along the line
as you go up one on X while following the
line (rise over run).
Slope = -0.5, Negative Relationship!
1
0.5
Correlation and Regression
•The mathematical equation for a line:
Y = mx + b
Where: Y = the line’s position on the
vertical axis at any point
X = the line’s position on the
horizontal axis at any point
m = the slope of the line
b = the intercept with theY axis,
where X equals zero
Correlation and Regression
• The statistics equation for a line:
Y = a + bx
Where: Y = the line’s position on the
vertical axis at any point (estimated
value of dependent variable)
X = the line’s position on the
horizontal axis at any point (value of
the independent variable for which you
want an estimate ofY)
b = the slope of the line (called the coefficient)
a = the intercept with theY axis,
where X equals zero
^
^
Correlation and Regression
• The next question:
How do we draw the line???
• Our goal for the line:
Fit the line as close as possible to all the data points for all values of
X.
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
How do we
minimize the
distance between a
line and all the
data points?
Correlation and Regression
•How do we minimize the distance between a line and
all the data points?
•You already know of a statistic that minimizes the
distance between itself and all data values for a
variable--the mean!
•The mean minimizes the sum of squared deviations-
-it is where deviations sum to zero and where the
squared deviations are at their lowest value. (Y -
Y-bar)2
•
Correlation and Regression
•Let’s “fit the line” to the place where squared
deviations from the line (vertically) are at their
lowest value (across all X’s).
•Minimize this: (Y - Y)2 Y = line
•Minimizing the sum of squared errors gives you the
unique, best fitting line for all the data points. It is the
line that is closest to all points.
^ ^
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
(Y - Y)2= ?
(9 - 4)2 = 25
(Y - Y)2= ?
(1 - 2)2 = 1
^
^
Correlation and Regression
• (Y -Y)2 aka “sum of squared errors”
•There is a simple, elegant formula for “discovering”
the line that minimizes the sum of squared errors—
You don’t have to memorize!
((X - X)(Y -Y))
b = (X - X)2 a =Y - bX Y = a + bX
•This is the method of least squares, it gives our least
squares estimate and indicates why we call this
technique “ordinary least squares” or OLS regression
^
^
Correlation and Regression
u
a
M
1
R
q u
s t
u
E
t
m
P
a
O
b
4
1
4
3
0 a
6
3
8
0
4
R
R
T
M
1
m
u a
d
e
u
F
S i
P
a
D
b
i c
a
4
0
0
4
9
0
0
(
I N
M
1
B
E
d a
i c
e t
d
e
f
s
t
i g
D
a
In fact, this is the output that SPSS would give you for the
data values:
Y = a + bX
^
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
The fitted line for our
example has the equation:
Y = 6 - .4X
If you were to draw any other line,
it would not
minimize (Y - Y)2
^
^
Correlation and Regression
Y
X
0 1
1
2
3
4
5
6
7
8
9
10
Considering that our line minimizes  (Y - Y)2,
where would the regression cross data points for two
groups in a dichotomous independent variable?
^
0=Men: Mean = 6
1=Women: Mean = 4
Correlation and Regression
Y
X
0 1
1
2
3
4
5
6
7
8
9
10
The difference of means will be the slope.
This is the same number that is tested for
significance in an independent samples t-test.
^
0=Men: Mean = 6
1=Women: Mean = 4
Slope = -2 ; Y = 6 – 2X
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Getting back to interval-ratio independent
variables, the line is fitted among the
minimized squared vertical distance of all
data points from itself cumulatively for all
values of X.
(Y - Y)2
Y - Y
^
^
Correlation and Regression
•Y = a + bX This equation gives the conditional mean
ofY at any given value of X.
• So… In reality, our line gives us the expected mean ofY given each
value of X
• The line’s equation tells you how the mean on your dependent variable
changes as your independent variable goes up.
^
Y
^
X
Y Y = Average
for Y at
each level
of X
^
Correlation and Regression
• As you know, every mean has a distribution around it--so
there is a standard deviation. This is true for conditional
means as well. So, you also have a conditional standard
deviation.
• “Conditional Standard Deviation” or “Root Mean Square Error” equals
“approximate average deviation from the line.”
SSE  (Y -Y)2
• = n - 2 = n - 2
Y
^
X
Y
^
^
Correlation and Regression
• The Assumption of Homoskedasticity:
• The variation around the line is the same no matter the X.
• The conditional standard deviation is for any given value of X.
• If there is a relationship between X andY, the conditional standard deviation is
going to be less than the standard deviation ofY--if this is so, you have
improved prediction of the mean value ofY by taking into account each level of
X.
• If there were no relationship, the conditional standard deviation would be the
same as the original, and the regression line would be flat at the mean ofY.
Y
X
Y Conditional
standard
deviation
Original
standard
deviation
Correlation and Regression
•So guess what?
•We have a way to determine how much our
understanding ofY is improved when taking X into
account—it is based on the fact that conditional
standard deviations should be smaller thanY’s
original standard deviation.
Correlation and Regression
•Proportional Reduction in Error
• Let’s call the variation around the mean inY “Error 1.”
• Let’s call the variation around the line when X is considered “Error 2.”
• But rather than going all the way to standard deviation to determine
error, let’s just stop at the basic measure, Sum of Squared Deviations.
• Error 1 (E1) =  (Y –Y)2 also called “Sum of Squares”
• Error 2 (E2) =  (Y –Y)2 also called “Sum of Squared Errors”
Y
Y Error 2
Error 1

Correlation and Regression
•Proportional Reduction in Error
• To determine how much taking X into consideration reduces the variation
inY (at each level of X) we can use a simple formula:
E1 – E2 Which tells us the proportion or
E1 percentage of original error that
is Explained by X.
• Error 1 (E1) =  (Y –Y)2
• Error 2 (E2) =  (Y –Y)2
Y
X
Y
Error 2
Error 1

Correlation and Regression
r2 = E1 - E2
E1
= TSS - SSE
TSS
=  (Y –Y)2 -  (Y –Y)2
 (Y –Y)2

r2 is called the “coefficient of
determination”…
It is also the square of the
Pearson correlation
Y
X
Y Error 2
Error 1
Correlation and Regression
• R2
• Is the improvement obtained by using X (and drawing a line through the
conditional means) in getting as near as possible to everybody’s value for
Y over just using the mean forY alone.
• Falls between 0 and 1
• 1 means an exact fit (and there is no variation of scores around the regression
line)
• 0 means no relationship (and as much scatter around the line as in the originalY
variable and a flat regression line (slope = 0) through the mean ofY)
• Would be the same for X regressed onY as forY regressed on X
• Can be interpreted as the percentage of variability inY that is explained
by X.
• Some people get hung up on maximizing R2, but this is too bad because any
effect is still a finding—a small R2 only indicates that you haven’t told the
whole (or much of the) story of the relationship between your variables.
Correlation and Regression
u
a
M
1
R
q u
s t
u
E
t
m
P
a
O
b
4
1
4
3
0 a
6
3
8
0
4
R
R
T
M
1
m
u a
d
e
u
F
S i
P
a
D
b
i c
a
4
0
0
4
9
0
0
(
I N
M
1
B
E
d a
i c
e t
d
e
f
s
t
i g
D
a
Back to the SPSS output:
r2
 (Y – Y)2 -  (Y – Y)2
 (Y – Y)2

71.194 ÷ 154.64 = .460
Correlation and Regression
ANOVA
b
71.194
1
71.194
19.623
.000a
83.446
23
3.628
154.640
24
Regression
Residual
Total
Model
1
Sum of
Squares
df
Mean
Square
F
Sig.
Predictors: (Constant), INCOME
a.
Dependent Variable: CHILD
b.
X
Y
Mean
Q: So why did I see an ANOVA Table?
A: Levels of X can be thought of like
groups in ANOVA
…and the squared distance from the
line to the mean (Regression SS) is
equivalent to BSS—group mean to
big mean (but df = 1)
…and the squared distance from the
line to the data values on Y (Residual
SS) is equivalent to WSS—data value
to the group’s mean
… and the ratio of these forms an F
distribution in repeated sampling
If F is significant, X is explaining
some of the variation in Y.
BSS
WSS
TSS
Correlation and Regression
Y
X
0 1
1
2
3
4
5
6
7
8
9
10 Using a dichotomous independent variable,
the ANOVA table in bivariate regression will
have the same numbers and ANOVA results
as a one-way ANOVA table would (and
compare this with an independent samples t-
test).
^
0=Men: Mean = 6
1=Women: Mean = 4
Slope = -2 ; Y = 6 – 2X
Mean = 5 BSS
WSS
TSS
Correlation and Regression
Descriptive:
•The equation for your line is
a descriptive statistic. It tells
you the real, best-fitted line
that minimizes squared
errors.
Inferential:
•But what about the
population? What can we
say about the relationship
between your variables in
the population???
•The inferential statistics are
estimates based on the best-
fitted line.
Recall that statistics are divided between descriptive
and inferential statistics.
Correlation and Regression
•The significance of F, you already understand.
• The ratio of Regression (line to the mean ofY) to Residual (line to data
point) Sums of Squares forms an F ratio in repeated sampling.
• Null: r2 = 0 in the population. If F exceeds critical F, then your variables have
a relationship in the population (X explains some of the variation inY).
Most extreme
5% of F’s
F = Regression SS / Residual SS
Correlation and Regression
• What about the Slope (called “Coefficient”)?
• The slope has a sampling distribution that is normally distributed.
• So we can do a significance test.
-3 -2 -1 0 1 2 3
z-scores

Population Slope of relationship between
two interval-ratio variables
Slope
values
-3 -2 -1 0 1 2 3 Flippy Ruler
Correlation and Regression
Conducting aTest of Significance for the slope of the Regression Line
By slapping the sampling distribution for the slope over a guess of the
population’s slope, Ho, we can find out whether our sample could have been
drawn from a population where the slope is equal to our guess.
1.Two-tailed significance test for -level = .05
2.Critical t = +/- 1.96
3.To find if there is a significant slope in the population,
Ho:  = 0
Ha:   0  (Y –Y )2
4.Collect Data n - 2
5.Calculate t (z): t = b – o s.e. =
s.e.  ( X – X )2
6.Make decision about the null hypothesis
7.Find P-value

Correlation and Regression
u
a
M
1
R
q u
s t
u
E
t
m
P
a
O
b
4
1
4
3
0 a
6
3
8
0
4
R
R
T
M
1
m
u a
d
e
u
F
S i
P
a
D
b
i c
a
4
0
0
4
9
0
0
(
I N
M
1
B
E
d a
i c
e t
d
e
f
s
t
i g
D
a
Back to the SPSS output:
Of course, you get the
standard error and
t on your output,
…and the p-value too!
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
Y = 6 - .4X
So in our example,
the slope is
significant, there is a
relationship in the
population, and 46%
of the variation in
number of children is
explained by income.
^
Correlation and Regression
•We’ve talked about the
summary of the
relationship, but not
about strength of
association.
•How strong is the
association between our
variables?
•For this we need
correlation.
Correlation and Regression
Y
X
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
9
10
Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7
Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
Plotted coordinates for income and children
So our equation is:
Y = 6 - .4X
The slope tells us
direction of
association… How
strong is that?
^
Correlation and Regression
• To find the strength of the relationship between two variables, we
need correlation.
• The correlation is the standardized slope… it refers to the standard
deviation change inY when you go up a standard deviation in X.
Correlation and Regression
1
2
3
4
5
6
7
8
9
10
Example of Low Negative Correlation
Correlation and Regression
1
2
3
4
5
6
7
8
9
10
Example of High Negative Correlation
Correlation and Regression
• The correlation is the standardized slope… it refers to the standard
deviation change inY when you go up a standard deviation in X.
(X - X)2
• Recall that s.d. of x, Sx = n - 1
(Y -Y)2
• and the s.d. of y, Sy = n - 1
Sx
• Pearson correlation, r = Sy b
Correlation and Regression
• The PearsonCorrelation, r:
• tells the direction and strength of the relationship between continuous
variables
• ranges from -1 to +1
• is + when the relationship is positive and - when the relationship is
negative
• the higher the absolute value of r, the stronger the association
• a standard deviation change in x corresponds with r standard deviation
change inY
Correlation and Regression
• The PearsonCorrelation, r:
• The pearson correlation is a statistic that is an inferential statistic too.
r - (null = 0)
• tn-2 = (1-r2) (n-2)
• When it is significant, there is a linear relationship between the two variables in
the population—it is not non-existent!
Correlation and Regression
u
a
M
1
R
q u
s t
u
E
t
m
P
a
O
b
4
1
4
3
0 a
6
3
8
0
4
R
R
T
M
1
m
u a
d
e
u
F
S i
P
a
D
b
i c
a
4
0
0
4
9
0
0
(
I N
M
1
B
E
d a
i c
e t
d
e
f
s
t
i g
D
a
Our data’s correlation is .679. How strong is that?
Correlation, r,
is significant.
Correlation and Regression
If you were to use the “correlate, bivariate” command, you’d get this ouput…
Correlation, r, is significant.
Ad

More Related Content

Similar to Correlation_and_Regression-3.ppt (20)

Chapter 12
Chapter 12Chapter 12
Chapter 12
Ami Spears
 
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
RekhaChoudhary24
 
correlationcoefficient-20090414 0531.pdf
correlationcoefficient-20090414 0531.pdfcorrelationcoefficient-20090414 0531.pdf
correlationcoefficient-20090414 0531.pdf
DrAmanSaxena
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Neeraj Bhandari
 
Unit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptxUnit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptx
AppasamiG
 
Correlation and regression
Correlation and regressionCorrelation and regression
Correlation and regression
NANDINI SRIVASTAVA
 
data analysis
data analysisdata analysis
data analysis
Sujeet Kumar
 
Corr-and-Regress (1).ppt
Corr-and-Regress (1).pptCorr-and-Regress (1).ppt
Corr-and-Regress (1).ppt
MuhammadAftab89
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
BAGARAGAZAROMUALD2
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
MoinPasha12
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
HarunorRashid74
 
Correlation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social ScienceCorrelation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social Science
ssuser71ac73
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
krunal soni
 
Cr-and-Regress.ppt
Cr-and-Regress.pptCr-and-Regress.ppt
Cr-and-Regress.ppt
RidaIrfan10
 
Correlation
CorrelationCorrelation
Correlation
HemamaliniSakthivel
 
Frequency Tables - Statistics
Frequency Tables - StatisticsFrequency Tables - Statistics
Frequency Tables - Statistics
mscartersmaths
 
Regression and Co-Relation
Regression and Co-RelationRegression and Co-Relation
Regression and Co-Relation
nuwan udugampala
 
Module 3 Course Slides Lesson 1 McGill University
Module 3 Course Slides Lesson 1 McGill UniversityModule 3 Course Slides Lesson 1 McGill University
Module 3 Course Slides Lesson 1 McGill University
pedroguaraldi
 
"Understanding Correlation and Regression: Key Concepts for Data Analysis"
"Understanding Correlation and Regression: Key Concepts for Data Analysis""Understanding Correlation and Regression: Key Concepts for Data Analysis"
"Understanding Correlation and Regression: Key Concepts for Data Analysis"
RekhaBoraChatare
 
Correlation and Regression
Correlation and Regression Correlation and Regression
Correlation and Regression
Dr. Tushar J Bhatt
 
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
Simple Correlation : Karl Pearson’s Correlation co- efficient and Spearman’s ...
RekhaChoudhary24
 
correlationcoefficient-20090414 0531.pdf
correlationcoefficient-20090414 0531.pdfcorrelationcoefficient-20090414 0531.pdf
correlationcoefficient-20090414 0531.pdf
DrAmanSaxena
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Neeraj Bhandari
 
Unit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptxUnit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptx
AppasamiG
 
Corr-and-Regress (1).ppt
Corr-and-Regress (1).pptCorr-and-Regress (1).ppt
Corr-and-Regress (1).ppt
MuhammadAftab89
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
MoinPasha12
 
Correlation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social ScienceCorrelation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social Science
ssuser71ac73
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
krunal soni
 
Cr-and-Regress.ppt
Cr-and-Regress.pptCr-and-Regress.ppt
Cr-and-Regress.ppt
RidaIrfan10
 
Frequency Tables - Statistics
Frequency Tables - StatisticsFrequency Tables - Statistics
Frequency Tables - Statistics
mscartersmaths
 
Regression and Co-Relation
Regression and Co-RelationRegression and Co-Relation
Regression and Co-Relation
nuwan udugampala
 
Module 3 Course Slides Lesson 1 McGill University
Module 3 Course Slides Lesson 1 McGill UniversityModule 3 Course Slides Lesson 1 McGill University
Module 3 Course Slides Lesson 1 McGill University
pedroguaraldi
 
"Understanding Correlation and Regression: Key Concepts for Data Analysis"
"Understanding Correlation and Regression: Key Concepts for Data Analysis""Understanding Correlation and Regression: Key Concepts for Data Analysis"
"Understanding Correlation and Regression: Key Concepts for Data Analysis"
RekhaBoraChatare
 

Recently uploaded (20)

How to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 WebsiteHow to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 Website
Celine George
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
Operations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdfOperations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdf
Arab Academy for Science, Technology and Maritime Transport
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
milanasargsyan5
 
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Library Association of Ireland
 
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam SuccessUltimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Mark Soia
 
The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...
Sandeep Swamy
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - WorksheetCBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
Sritoma Majumder
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
SPRING FESTIVITIES - UK AND USA -
SPRING FESTIVITIES - UK AND USA            -SPRING FESTIVITIES - UK AND USA            -
SPRING FESTIVITIES - UK AND USA -
Colégio Santa Teresinha
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 4-30-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 4-30-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 4-30-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 4-30-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
How to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 WebsiteHow to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 Website
Celine George
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Marie Boran Special Collections Librarian Hardiman Library, University of Gal...
Library Association of Ireland
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
milanasargsyan5
 
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Library Association of Ireland
 
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam SuccessUltimate VMware 2V0-11.25 Exam Dumps for Exam Success
Ultimate VMware 2V0-11.25 Exam Dumps for Exam Success
Mark Soia
 
The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...The ever evoilving world of science /7th class science curiosity /samyans aca...
The ever evoilving world of science /7th class science curiosity /samyans aca...
Sandeep Swamy
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - WorksheetCBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
Sritoma Majumder
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Ad

Correlation_and_Regression-3.ppt

  • 2. Correlation and Regression The test you choose depends on level of measurement: Independent Dependent StatisticalTest Dichotomous Interval-ratio Independent Samples t-test Dichotomous Nominal Nominal CrossTabs Dichotomous Dichotomous Nominal Interval-ratio ANOVA Dichotomous Dichotomous Interval-ratio Interval-ratio Correlation and Dichotomous OLS Regression
  • 3. Correlation and Regression •Correlation is a statistic that assesses the strength and direction of linear association of two interval-ratio variables . . . It is created through a technique called “regression” •Bivariate regression is a technique that fits a straight line as close as possible between all the coordinates of two interval-ratio variables plotted on a two-dimensional graph--to summarize the relationship between the variables
  • 4. Correlation and Regression • For example: A sociologist may be interested in the relationship between education and self-esteem or Income and Number of Children in a family. Independent Variables Education Family Income Dependent Variables Self-Esteem Number of Children
  • 5. Correlation and Regression •For example: •May expect: As education increases, self-esteem increases (positive relationship). •May expect: As family income increases, the number of children in families declines (negative relationship). Independent Variables Education Family Income Dependent Variables Self-Esteem Number of Children + -
  • 6. Correlation and Regression •For example: •Null Hypothesis: There is no relationship between education and self-esteem. •Null Hypothesis: There is no relationship between family income and the number of children in families. •Ho: b = 0 “b” is a symbol for a statistic •Ha: b ≠ 0 that describes the relationship Independent Variables Education Family Income Dependent Variables Self-Esteem Number of Children
  • 7. Correlation and Regression •Let’s look at the relationship between income and number of children. •Regression will start with plotting the coordinates in your data (although you will hardly ever “plot” your data in reality). •Some data: Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2
  • 8. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Can you see a relationship?
  • 9. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Well, the slope of a line fitted to the points could tell us the nature of the relationship!
  • 10. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Is it positive?
  • 11. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Is it negative?
  • 12. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Is there no relationship?
  • 13. Correlation and Regression Y (# Children) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 What is the slope of a “fitted line?” The slope is the change in Y along the line as you go up one on X while following the line (rise over run). Slope = 0, No relationship! X (Income)
  • 14. Correlation and Regression Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 What is the slope of a “fitted line?” The slope is the change in Y along the line as you go up one on X while following the line (rise over run). Slope = 0.5, Positive Relationship! 1 0.5 Y (# Children) X (Income)
  • 15. Correlation and Regression Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 What is the slope of a “fitted line?” The slope is the change in Y along the line as you go up one on X while following the line (rise over run). Slope = -0.5, Negative Relationship! 1 0.5
  • 16. Correlation and Regression •The mathematical equation for a line: Y = mx + b Where: Y = the line’s position on the vertical axis at any point X = the line’s position on the horizontal axis at any point m = the slope of the line b = the intercept with theY axis, where X equals zero
  • 17. Correlation and Regression • The statistics equation for a line: Y = a + bx Where: Y = the line’s position on the vertical axis at any point (estimated value of dependent variable) X = the line’s position on the horizontal axis at any point (value of the independent variable for which you want an estimate ofY) b = the slope of the line (called the coefficient) a = the intercept with theY axis, where X equals zero ^ ^
  • 18. Correlation and Regression • The next question: How do we draw the line??? • Our goal for the line: Fit the line as close as possible to all the data points for all values of X.
  • 19. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children How do we minimize the distance between a line and all the data points?
  • 20. Correlation and Regression •How do we minimize the distance between a line and all the data points? •You already know of a statistic that minimizes the distance between itself and all data values for a variable--the mean! •The mean minimizes the sum of squared deviations- -it is where deviations sum to zero and where the squared deviations are at their lowest value. (Y - Y-bar)2 •
  • 21. Correlation and Regression •Let’s “fit the line” to the place where squared deviations from the line (vertically) are at their lowest value (across all X’s). •Minimize this: (Y - Y)2 Y = line •Minimizing the sum of squared errors gives you the unique, best fitting line for all the data points. It is the line that is closest to all points. ^ ^
  • 22. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children (Y - Y)2= ? (9 - 4)2 = 25 (Y - Y)2= ? (1 - 2)2 = 1 ^ ^
  • 23. Correlation and Regression • (Y -Y)2 aka “sum of squared errors” •There is a simple, elegant formula for “discovering” the line that minimizes the sum of squared errors— You don’t have to memorize! ((X - X)(Y -Y)) b = (X - X)2 a =Y - bX Y = a + bX •This is the method of least squares, it gives our least squares estimate and indicates why we call this technique “ordinary least squares” or OLS regression ^ ^
  • 24. Correlation and Regression u a M 1 R q u s t u E t m P a O b 4 1 4 3 0 a 6 3 8 0 4 R R T M 1 m u a d e u F S i P a D b i c a 4 0 0 4 9 0 0 ( I N M 1 B E d a i c e t d e f s t i g D a In fact, this is the output that SPSS would give you for the data values: Y = a + bX ^
  • 25. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children The fitted line for our example has the equation: Y = 6 - .4X If you were to draw any other line, it would not minimize (Y - Y)2 ^ ^
  • 26. Correlation and Regression Y X 0 1 1 2 3 4 5 6 7 8 9 10 Considering that our line minimizes  (Y - Y)2, where would the regression cross data points for two groups in a dichotomous independent variable? ^ 0=Men: Mean = 6 1=Women: Mean = 4
  • 27. Correlation and Regression Y X 0 1 1 2 3 4 5 6 7 8 9 10 The difference of means will be the slope. This is the same number that is tested for significance in an independent samples t-test. ^ 0=Men: Mean = 6 1=Women: Mean = 4 Slope = -2 ; Y = 6 – 2X
  • 28. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Getting back to interval-ratio independent variables, the line is fitted among the minimized squared vertical distance of all data points from itself cumulatively for all values of X. (Y - Y)2 Y - Y ^ ^
  • 29. Correlation and Regression •Y = a + bX This equation gives the conditional mean ofY at any given value of X. • So… In reality, our line gives us the expected mean ofY given each value of X • The line’s equation tells you how the mean on your dependent variable changes as your independent variable goes up. ^ Y ^ X Y Y = Average for Y at each level of X ^
  • 30. Correlation and Regression • As you know, every mean has a distribution around it--so there is a standard deviation. This is true for conditional means as well. So, you also have a conditional standard deviation. • “Conditional Standard Deviation” or “Root Mean Square Error” equals “approximate average deviation from the line.” SSE  (Y -Y)2 • = n - 2 = n - 2 Y ^ X Y ^ ^
  • 31. Correlation and Regression • The Assumption of Homoskedasticity: • The variation around the line is the same no matter the X. • The conditional standard deviation is for any given value of X. • If there is a relationship between X andY, the conditional standard deviation is going to be less than the standard deviation ofY--if this is so, you have improved prediction of the mean value ofY by taking into account each level of X. • If there were no relationship, the conditional standard deviation would be the same as the original, and the regression line would be flat at the mean ofY. Y X Y Conditional standard deviation Original standard deviation
  • 32. Correlation and Regression •So guess what? •We have a way to determine how much our understanding ofY is improved when taking X into account—it is based on the fact that conditional standard deviations should be smaller thanY’s original standard deviation.
  • 33. Correlation and Regression •Proportional Reduction in Error • Let’s call the variation around the mean inY “Error 1.” • Let’s call the variation around the line when X is considered “Error 2.” • But rather than going all the way to standard deviation to determine error, let’s just stop at the basic measure, Sum of Squared Deviations. • Error 1 (E1) =  (Y –Y)2 also called “Sum of Squares” • Error 2 (E2) =  (Y –Y)2 also called “Sum of Squared Errors” Y Y Error 2 Error 1 
  • 34. Correlation and Regression •Proportional Reduction in Error • To determine how much taking X into consideration reduces the variation inY (at each level of X) we can use a simple formula: E1 – E2 Which tells us the proportion or E1 percentage of original error that is Explained by X. • Error 1 (E1) =  (Y –Y)2 • Error 2 (E2) =  (Y –Y)2 Y X Y Error 2 Error 1 
  • 35. Correlation and Regression r2 = E1 - E2 E1 = TSS - SSE TSS =  (Y –Y)2 -  (Y –Y)2  (Y –Y)2  r2 is called the “coefficient of determination”… It is also the square of the Pearson correlation Y X Y Error 2 Error 1
  • 36. Correlation and Regression • R2 • Is the improvement obtained by using X (and drawing a line through the conditional means) in getting as near as possible to everybody’s value for Y over just using the mean forY alone. • Falls between 0 and 1 • 1 means an exact fit (and there is no variation of scores around the regression line) • 0 means no relationship (and as much scatter around the line as in the originalY variable and a flat regression line (slope = 0) through the mean ofY) • Would be the same for X regressed onY as forY regressed on X • Can be interpreted as the percentage of variability inY that is explained by X. • Some people get hung up on maximizing R2, but this is too bad because any effect is still a finding—a small R2 only indicates that you haven’t told the whole (or much of the) story of the relationship between your variables.
  • 37. Correlation and Regression u a M 1 R q u s t u E t m P a O b 4 1 4 3 0 a 6 3 8 0 4 R R T M 1 m u a d e u F S i P a D b i c a 4 0 0 4 9 0 0 ( I N M 1 B E d a i c e t d e f s t i g D a Back to the SPSS output: r2  (Y – Y)2 -  (Y – Y)2  (Y – Y)2  71.194 ÷ 154.64 = .460
  • 38. Correlation and Regression ANOVA b 71.194 1 71.194 19.623 .000a 83.446 23 3.628 154.640 24 Regression Residual Total Model 1 Sum of Squares df Mean Square F Sig. Predictors: (Constant), INCOME a. Dependent Variable: CHILD b. X Y Mean Q: So why did I see an ANOVA Table? A: Levels of X can be thought of like groups in ANOVA …and the squared distance from the line to the mean (Regression SS) is equivalent to BSS—group mean to big mean (but df = 1) …and the squared distance from the line to the data values on Y (Residual SS) is equivalent to WSS—data value to the group’s mean … and the ratio of these forms an F distribution in repeated sampling If F is significant, X is explaining some of the variation in Y. BSS WSS TSS
  • 39. Correlation and Regression Y X 0 1 1 2 3 4 5 6 7 8 9 10 Using a dichotomous independent variable, the ANOVA table in bivariate regression will have the same numbers and ANOVA results as a one-way ANOVA table would (and compare this with an independent samples t- test). ^ 0=Men: Mean = 6 1=Women: Mean = 4 Slope = -2 ; Y = 6 – 2X Mean = 5 BSS WSS TSS
  • 40. Correlation and Regression Descriptive: •The equation for your line is a descriptive statistic. It tells you the real, best-fitted line that minimizes squared errors. Inferential: •But what about the population? What can we say about the relationship between your variables in the population??? •The inferential statistics are estimates based on the best- fitted line. Recall that statistics are divided between descriptive and inferential statistics.
  • 41. Correlation and Regression •The significance of F, you already understand. • The ratio of Regression (line to the mean ofY) to Residual (line to data point) Sums of Squares forms an F ratio in repeated sampling. • Null: r2 = 0 in the population. If F exceeds critical F, then your variables have a relationship in the population (X explains some of the variation inY). Most extreme 5% of F’s F = Regression SS / Residual SS
  • 42. Correlation and Regression • What about the Slope (called “Coefficient”)? • The slope has a sampling distribution that is normally distributed. • So we can do a significance test. -3 -2 -1 0 1 2 3 z-scores  Population Slope of relationship between two interval-ratio variables Slope values -3 -2 -1 0 1 2 3 Flippy Ruler
  • 43. Correlation and Regression Conducting aTest of Significance for the slope of the Regression Line By slapping the sampling distribution for the slope over a guess of the population’s slope, Ho, we can find out whether our sample could have been drawn from a population where the slope is equal to our guess. 1.Two-tailed significance test for -level = .05 2.Critical t = +/- 1.96 3.To find if there is a significant slope in the population, Ho:  = 0 Ha:   0  (Y –Y )2 4.Collect Data n - 2 5.Calculate t (z): t = b – o s.e. = s.e.  ( X – X )2 6.Make decision about the null hypothesis 7.Find P-value 
  • 44. Correlation and Regression u a M 1 R q u s t u E t m P a O b 4 1 4 3 0 a 6 3 8 0 4 R R T M 1 m u a d e u F S i P a D b i c a 4 0 0 4 9 0 0 ( I N M 1 B E d a i c e t d e f s t i g D a Back to the SPSS output: Of course, you get the standard error and t on your output, …and the p-value too!
  • 45. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children Y = 6 - .4X So in our example, the slope is significant, there is a relationship in the population, and 46% of the variation in number of children is explained by income. ^
  • 46. Correlation and Regression •We’ve talked about the summary of the relationship, but not about strength of association. •How strong is the association between our variables? •For this we need correlation.
  • 47. Correlation and Regression Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Case: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Children (Y): 2 5 1 9 6 3 1 0 3 7 7 2 4 2 1 0 1 2 4 3 0 1 2 5 7 Income 1=$10K (X): 3 4 9 5 4 12 14 10 1 4 3 11 4 9 13 10 7 5 2 5 15 11 8 3 2 Plotted coordinates for income and children So our equation is: Y = 6 - .4X The slope tells us direction of association… How strong is that? ^
  • 48. Correlation and Regression • To find the strength of the relationship between two variables, we need correlation. • The correlation is the standardized slope… it refers to the standard deviation change inY when you go up a standard deviation in X.
  • 51. Correlation and Regression • The correlation is the standardized slope… it refers to the standard deviation change inY when you go up a standard deviation in X. (X - X)2 • Recall that s.d. of x, Sx = n - 1 (Y -Y)2 • and the s.d. of y, Sy = n - 1 Sx • Pearson correlation, r = Sy b
  • 52. Correlation and Regression • The PearsonCorrelation, r: • tells the direction and strength of the relationship between continuous variables • ranges from -1 to +1 • is + when the relationship is positive and - when the relationship is negative • the higher the absolute value of r, the stronger the association • a standard deviation change in x corresponds with r standard deviation change inY
  • 53. Correlation and Regression • The PearsonCorrelation, r: • The pearson correlation is a statistic that is an inferential statistic too. r - (null = 0) • tn-2 = (1-r2) (n-2) • When it is significant, there is a linear relationship between the two variables in the population—it is not non-existent!
  • 54. Correlation and Regression u a M 1 R q u s t u E t m P a O b 4 1 4 3 0 a 6 3 8 0 4 R R T M 1 m u a d e u F S i P a D b i c a 4 0 0 4 9 0 0 ( I N M 1 B E d a i c e t d e f s t i g D a Our data’s correlation is .679. How strong is that? Correlation, r, is significant.
  • 55. Correlation and Regression If you were to use the “correlate, bivariate” command, you’d get this ouput… Correlation, r, is significant.